1
|
Paulo TF, Akyaw PA, Paixão T, Sucena É. Evolution of resistance and disease tolerance mechanisms to oral bacterial infection in Drosophila melanogaster. Open Biol 2025; 15:240265. [PMID: 40068814 PMCID: PMC11896704 DOI: 10.1098/rsob.240265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 03/15/2025] Open
Abstract
Pathogens exert strong selection on hosts that evolve and deploy different defensive strategies, namely minimizing pathogen exposure (avoidance), directly promoting pathogen elimination (resistance) and/or managing the deleterious effects of illness (disease tolerance). However, how the host response partitions across these processes has not been directly tested in a single host-pathogen system, let alone in the context of known adaptive trajectories resulting from experimental evolution. Here, we compare a Drosophila melanogaster population adapted to oral infection with its natural pathogen Pseudomonas entomophila (BactOral), to its control population to find no evidence for behavioural changes but measurable differences in both resistance and disease tolerance. In BactOral, no differences were detected in bacterial intake or defecation, nor gut cell renewal. However, a measurable relative decrease in bacterial loads correlates with an increase in gut-specific anti-microbial peptide production, pointing to a strengthening in resistance. Additionally, we posit that disease tolerance also contributes to the response of BactOral through a tighter control of self- and pathogen-derived damage caused by bacteria exposure. This study reveals a genetically complex and mechanistically multi-layered response, possibly reflecting the structure of adaptation to infection in natural populations.
Collapse
Affiliation(s)
| | - Priscilla A. Akyaw
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculdade de Ciências, Universidade de Lisboa, cE3c: Centre for Ecology, Evolution and Environmental Changes, Lisbon, Portugal
| | - Tiago Paixão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Élio Sucena
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculdade de Ciências, Universidade de Lisboa, cE3c: Centre for Ecology, Evolution and Environmental Changes, Lisbon, Portugal
- Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Santos J, Matos M, Flatt T, Chelo IM. Microbes are potential key players in the evolution of life histories and aging in Caenorhabditis elegans. Ecol Evol 2023; 13:e10537. [PMID: 37753311 PMCID: PMC10518755 DOI: 10.1002/ece3.10537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Microbes can have profound effects on host fitness and health and the appearance of late-onset diseases. Host-microbe interactions thus represent a major environmental context for healthy aging of the host and might also mediate trade-offs between life-history traits in the evolution of host senescence. Here, we have used the nematode Caenorhabditis elegans to study how host-microbe interactions may modulate the evolution of life histories and aging. We first characterized the effects of two non-pathogenic and one pathogenic Escherichia coli strains, together with the pathogenic Serratia marcescens DB11 strain, on population growth rates and survival of C. elegans from five different genetic backgrounds. We then focused on an outbred C. elegans population, to understand if microbe-specific effects on the reproductive schedule and in traits such as developmental rate and survival were also expressed in the presence of males and standing genetic variation, which could be relevant for the evolution of C. elegans and other nematode species in nature. Our results show that host-microbe interactions have a substantial host-genotype-dependent impact on the reproductive aging and survival of the nematode host. Although both pathogenic bacteria reduced host survival in comparison with benign strains, they differed in how they affected other host traits. Host fertility and population growth rate were affected by S. marcescens DB11 only during early adulthood, whereas this occurred at later ages with the pathogenic E. coli IAI1. In both cases, these effects were largely dependent on the host genotypes. Given such microbe-specific genotypic differences in host life history, we predict that the evolution of reproductive schedules and senescence might be critically contingent on host-microbe interactions in nature.
Collapse
Affiliation(s)
- Josiane Santos
- cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability InstituteLisboaPortugal
- Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Margarida Matos
- cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability InstituteLisboaPortugal
- Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Thomas Flatt
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Ivo M. Chelo
- cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability InstituteLisboaPortugal
- Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| |
Collapse
|
3
|
Souto-Maior C, Serrano Negron YL, Harbison ST. Nonlinear expression patterns and multiple shifts in gene network interactions underlie robust phenotypic change in Drosophila melanogaster selected for night sleep duration. PLoS Comput Biol 2023; 19:e1011389. [PMID: 37561813 PMCID: PMC10443883 DOI: 10.1371/journal.pcbi.1011389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/22/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
All but the simplest phenotypes are believed to result from interactions between two or more genes forming complex networks of gene regulation. Sleep is a complex trait known to depend on the system of feedback loops of the circadian clock, and on many other genes; however, the main components regulating the phenotype and how they interact remain an unsolved puzzle. Genomic and transcriptomic data may well provide part of the answer, but a full account requires a suitable quantitative framework. Here we conducted an artificial selection experiment for sleep duration with RNA-seq data acquired each generation. The phenotypic results are robust across replicates and previous experiments, and the transcription data provides a high-resolution, time-course data set for the evolution of sleep-related gene expression. In addition to a Hierarchical Generalized Linear Model analysis of differential expression that accounts for experimental replicates we develop a flexible Gaussian Process model that estimates interactions between genes. 145 gene pairs are found to have interactions that are different from controls. Our method appears to be not only more specific than standard correlation metrics but also more sensitive, finding correlations not significant by other methods. Statistical predictions were compared to experimental data from public databases on gene interactions. Mutations of candidate genes implicated by our results affected night sleep, and gene expression profiles largely met predicted gene-gene interactions.
Collapse
Affiliation(s)
- Caetano Souto-Maior
- Laboratory of Systems Genetics, Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Yazmin L. Serrano Negron
- Laboratory of Systems Genetics, Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Susan T. Harbison
- Laboratory of Systems Genetics, Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
4
|
Ant TH, Mancini MV, McNamara CJ, Rainey SM, Sinkins SP. Wolbachia-Virus interactions and arbovirus control through population replacement in mosquitoes. Pathog Glob Health 2023; 117:245-258. [PMID: 36205550 PMCID: PMC10081064 DOI: 10.1080/20477724.2022.2117939] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022] Open
Abstract
Following transfer into the primary arbovirus vector Aedes aegypti, several strains of the intracellular bacterium Wolbachia have been shown to inhibit the transmission of dengue, Zika, and chikungunya viruses, important human pathogens that cause significant morbidity and mortality worldwide. In addition to pathogen inhibition, many Wolbachia strains manipulate host reproduction, resulting in an invasive capacity of the bacterium in insect populations. This has led to the deployment of Wolbachia as a dengue control tool, and trials have reported significant reductions in transmission in release areas. Here, we discuss the possible mechanisms of Wolbachia-virus inhibition and the implications for long-term success of dengue control. We also consider the evidence presented in several reports that Wolbachia may cause an enhancement of replication of certain viruses under particular conditions, and conclude that these should not cause any concerns with respect to the application of Wolbachia to arbovirus control.
Collapse
Affiliation(s)
- Thomas H Ant
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Maria Vittoria Mancini
- Centre for Virus Research, University of Glasgow, Glasgow, UK
- Polo d’Innovazione di Genomica, Genetica e Biologia, Terni, Italy
| | | | | | | |
Collapse
|
5
|
Pimentel AC, Cesar CS, Martins M, Cogni R. The Antiviral Effects of the Symbiont Bacteria Wolbachia in Insects. Front Immunol 2021; 11:626329. [PMID: 33584729 PMCID: PMC7878553 DOI: 10.3389/fimmu.2020.626329] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Wolbachia is a maternally transmitted bacterium that lives inside arthropod cells. Historically, it was viewed primarily as a parasite that manipulates host reproduction, but more recently it was discovered that Wolbachia can also protect Drosophila species against infection by RNA viruses. Combined with Wolbachia's ability to invade insect populations due to reproductive manipulations, this provides a way to modify mosquito populations to prevent them transmitting viruses like dengue. In this review, we discuss the main advances in the field since Wolbachia's antiviral effect was discovered 12 years ago, identifying current research gaps and potential future developments. We discuss that the antiviral effect works against a broad range of RNA viruses and depends on the Wolbachia lineage. We describe what is known about the mechanisms behind viral protection, and that recent studies suggest two possible mechanisms: activation of host immunity or competition with virus for cellular resources. We also discuss how association with Wolbachia may influence the evolution of virus defense on the insect host genome. Finally, we investigate whether the antiviral effect occurs in wild insect populations and its ecological relevance as a major antiviral component in insects.
Collapse
Affiliation(s)
| | | | | | - Rodrigo Cogni
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Cross ST, Maertens BL, Dunham TJ, Rodgers CP, Brehm AL, Miller MR, Williams AM, Foy BD, Stenglein MD. Partitiviruses Infecting Drosophila melanogaster and Aedes aegypti Exhibit Efficient Biparental Vertical Transmission. J Virol 2020; 94:e01070-20. [PMID: 32759315 PMCID: PMC7527066 DOI: 10.1128/jvi.01070-20] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022] Open
Abstract
Partitiviruses are segmented, multipartite double-stranded RNA (dsRNA) viruses that until recently were only known to infect fungi, plants, and protozoans. Metagenomic surveys have revealed that partitivirus-like sequences are also commonly associated with arthropods. One arthropod-associated partitivirus, galbut virus, is common in wild populations of Drosophila melanogaster To begin to understand the processes that underlie this virus's high global prevalence, we established colonies of wild-caught infected flies. Infection remained at stably high levels over 3 years, with between 63 and 100% of individual flies infected. Galbut virus infects fly cells and replicates in tissues throughout infected adults, including reproductive tissues and the gut epithelium. We detected no evidence of horizontal transmission via ingestion, but vertical transmission from either infected females or infected males was ∼100% efficient. Vertical transmission of a related partitivirus, verdadero virus, that we discovered in a laboratory colony of Aedes aegypti mosquitoes was similarly efficient. This suggests that efficient biparental vertical transmission may be a feature of at least a subset of insect-infecting partitiviruses. To study the impact of galbut virus infection free from the confounding effect of other viruses, we generated an inbred line of flies with galbut virus as the only detectable virus infection. We were able to transmit infection experimentally via microinjection of homogenate from these galbut-only flies. This sets the stage for experiments to understand the biological impact and possible utility of partitiviruses infecting model organisms and disease vectors.IMPORTANCE Galbut virus is a recently discovered partitivirus that is extraordinarily common in wild populations of the model organism Drosophila melanogaster Like for most viruses discovered through metagenomics, most of the basic biological questions about this virus remain unanswered. We found that galbut virus, along with a closely related partitivirus found in Aedes aegypti mosquitoes, is transmitted from infected females or males to offspring with ∼100% efficiency and can be maintained in laboratory colonies over years. This efficient transmission mechanism likely underlies the successful spread of these viruses through insect populations. We created Drosophila lines that contained galbut virus as the only virus infection and showed that these flies can be used as a source for experimental infections. This provides insight into how arthropod-infecting partitiviruses may be maintained in nature and sets the stage for exploration of their biology and potential utility.
Collapse
Affiliation(s)
- Shaun T Cross
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Bernadette L Maertens
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Tillie J Dunham
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Case P Rodgers
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Ali L Brehm
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Megan R Miller
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Alissa M Williams
- Department of Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Brian D Foy
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
7
|
Mazzucco R, Nolte V, Vijayan T, Schlötterer C. Long-Term Dynamics Among Wolbachia Strains During Thermal Adaptation of Their Drosophila melanogaster Hosts. Front Genet 2020; 11:482. [PMID: 32477411 PMCID: PMC7241558 DOI: 10.3389/fgene.2020.00482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
Climate change is a major evolutionary force triggering thermal adaptation in a broad range of species. While the consequences of global warming are being studied for an increasing number of species, limited attention has been given to the evolutionary dynamics of endosymbionts in response to climate change. Here, we address this question by studying the dynamics of Wolbachia, a well-studied endosymbiont of Drosophila melanogaster. D. melanogaster populations infected with 13 different Wolbachia strains were exposed to novel hot and cold laboratory environments for up to 180 generations. The short-term dynamics suggested a temperature-related fitness difference resulting in the increase of clade V strains in the cold environment only. Our long-term analysis now uncovers that clade V dominates in all replicates after generation 60 irrespective of temperature treatment. We propose that adaptation of the Drosophila host to either temperature or Drosophila C virus (DCV) infection are the cause of the replicated, temporally non-concordant Wolbachia dynamics. Our study provides an interesting case demonstrating that even simple, well-controlled experiments can result in complex, but repeatable evolutionary dynamics, thus providing a cautionary note on too simple interpretations on the impact of climate change.
Collapse
Affiliation(s)
- Rupert Mazzucco
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Wien, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Wien, Austria
| | - Thapasya Vijayan
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Wien, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Wien, Austria
| |
Collapse
|
8
|
Mathé‐Hubert H, Kaech H, Hertaeg C, Jaenike J, Vorburger C. Nonrandom associations of maternally transmitted symbionts in insects: The roles of drift versus biased cotransmission and selection. Mol Ecol 2019; 28:5330-5346. [DOI: 10.1111/mec.15206] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/29/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Hugo Mathé‐Hubert
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | - Heidi Kaech
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Institute of Integrative Biology Department of Environmental Systems Science ETH Zürich Zürich Switzerland
| | - Corinne Hertaeg
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Institute of Agricultural Sciences Department of Environmental Systems Science ETH Zürich Zürich Switzerland
| | - John Jaenike
- Department of Biology University of Rochester Rochester NY USA
| | - Christoph Vorburger
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Institute of Integrative Biology Department of Environmental Systems Science ETH Zürich Zürich Switzerland
| |
Collapse
|
9
|
Adonyeva NV, Burdina EV, Bykov RA, Gruntenko NE, Rauschenbach IY. Genotype of Wolbachia pipientis Endosymbiont Affects Octopamine Metabolism in Drosophila melanogaster Females. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419050028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Bykov RА, Yudina MA, Gruntenko NE, Zakharov IK, Voloshina MA, Melashchenko ES, Danilova MV, Mazunin IO, Ilinsky YY. Prevalence and genetic diversity of Wolbachia endosymbiont and mtDNA in Palearctic populations of Drosophila melanogaster. BMC Evol Biol 2019; 19:48. [PMID: 30813886 PMCID: PMC6391860 DOI: 10.1186/s12862-019-1372-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Maternally inherited Wolbachia symbionts infect D. melanogaster populations worldwide. Infection rates vary greatly. Genetic diversity of Wolbachia in D. melanogaster can be subdivided into several closely related genotypes coinherited with certain mtDNA lineages. mtDNA haplotypes have the following global distribution pattern: mtDNA clade I is mostly found in North America, II and IV in Africa, III in Europe and Africa, V in Eurasia, VI is global but very rare, and VIII is found in Asia. The wMel Wolbachia genotype is predominant in D. melanogaster populations. However, according to the hypothesis of global Wolbachia replacement, the wMelCS genotype was predominant before the XX century when it was replaced by the wMel genotype. Here we analyse over 1500 fly isolates from the Palearctic region to evaluate the prevalence, genetic diversity and distribution pattrern of the Wolbachia symbiont, occurrence of mtDNA variants, and finally to discuss the Wolbachia genotype global replacement hypothesis. RESULTS All studied Palearctic populations of D. melanogaster were infected with Wolbachia at a rate of 33-100%. We did not observe any significant correlation between infection rate and longitude or latitude. Five previously reported Wolbachia genotypes were found in Palearctic populations with a predominance of the wMel variant. The mtDNA haplotypes of the I_II_III clade and V clade were prevalent in Palearctic populations. To test the recent Wolbachia genotype replacement hypothesis, we examined three genomic regions of CS-like genotypes. Low genetic diversity was observed, only two haplotypes of the CS genotypes with a 'CCG' variant predominance were found. CONCLUSION The results of our survey of Wolbachia infection prevalence and genotype diversity in Palearctic D. melanogaster populations confirm previous studies. Wolbachia is ubiquitous in the Palearctic region. The wMel genotype is dominant with local occurrence of rare genotypes. Together with variants of the V mtDNA clade, the variants of the 'III+' clade are dominant in both infected and uninfected flies of Palearctic populations. Based on our data on Wolbachia and mtDNA in different years in some Palearctic localities, we can conclude that flies that survive the winter make the predominant symbiont contribution to the subsequent generation. A comprehensive overview of mtDNA and Wolbachia infection of D. melanogaster populations worldwide does not support the recent global Wolbachia genotype replacement hypothesis. However, we cannot exclude wMelCS genotype rate fluctuations in the past.
Collapse
Affiliation(s)
- Roman А Bykov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia.
| | - Maria A Yudina
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Nataly E Gruntenko
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Ilya K Zakharov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | | | | | | | - Ilia O Mazunin
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Yury Yu Ilinsky
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia.
| |
Collapse
|
11
|
Faria VG, Martins NE, Schlötterer C, Sucena É. Readapting to DCV Infection without Wolbachia: Frequency Changes of Drosophila Antiviral Alleles Can Replace Endosymbiont Protection. Genome Biol Evol 2018; 10:1783-1791. [PMID: 29947761 PMCID: PMC6054199 DOI: 10.1093/gbe/evy137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
There is now ample evidence that endosymbionts can contribute to host adaptation to environmental challenges. However, how endosymbiont presence affects the adaptive trajectory and outcome of the host is yet largely unexplored. In Drosophila, Wolbachia confers protection to RNA virus infection, an effect that differs between Wolbachia strains and can be targeted by selection. Adaptation to RNA virus infections is mediated by both Wolbachia and the host, raising the question of whether adaptive genetic changes in the host vary with the presence/absence of the endosymbiont. Here, we address this question using a polymorphic D. melanogaster population previously adapted to DCV infection for 35 generations in the presence of Wolbachia, from which we removed the endosymbiont and followed survival over the subsequent 20 generations of infection. After an initial severe drop, survival frequencies upon DCV selection increased significantly, as seen before in the presence of Wolbachia. Whole-genome sequencing, revealed that the major genes involved in the first selection experiment, pastrel and Ubc-E2H, continued to be selected in Wolbachia-free D. melanogaster, with the frequencies of protective alleles being closer to fixation in the absence of Wolbachia. Our results suggest that heterogeneity in Wolbachia infection status may be sufficient to maintain polymorphisms even in the absence of costs.
Collapse
Affiliation(s)
- Vitor G Faria
- Instituto Gulbenkian de Ciência, Rua da quinta grande 6, 2780-156 Oeiras, Portugal.,Zoological Institute, Basel University, Basel, Switzerland
| | - Nelson E Martins
- Instituto Gulbenkian de Ciência, Rua da quinta grande 6, 2780-156 Oeiras, Portugal.,CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
| | - Élio Sucena
- Instituto Gulbenkian de Ciência, Rua da quinta grande 6, 2780-156 Oeiras, Portugal.,Departamento de Biologia Animal, edifício C2, Faculdade de Ciências, Universidade de Lisboa, Portugal
| |
Collapse
|
12
|
Rauschenbach IY, Adonyeva NV, Karpova EK, Ilinsky YY, Gruntenko NE. Effect of Gonadotropic Hormones on Stress Resistance of Drosophila melanogaster Females Infected with Different Wolbachia pipientis Genotypes. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418070128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Ross PA, Hoffmann AA. Continued Susceptibility of the wMel Wolbachia Infection in Aedes aegypti to Heat Stress Following Field Deployment and Selection. INSECTS 2018; 9:E78. [PMID: 29966368 PMCID: PMC6165456 DOI: 10.3390/insects9030078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 11/16/2022]
Abstract
Aedes aegypti mosquitoes infected with the wMel strain of Wolbachia are being deployed to control the spread of arboviruses around the world through blockage of viral transmission. Blockage by Wolbachia in some scenarios may be affected by the susceptibility of wMel to cyclical heat stress during mosquito larval development. We therefore evaluated the potential to generate a heat-resistant strain of wMel in Ae. aegypti through artificial laboratory selection and through exposure to field temperatures across multiple generations. To generate an artificially selected strain, wMel-infected females reared under cyclical heat stress were crossed to wMel-infected males reared at 26 °C. The low proportion of larvae that hatched founded the next generation, and this process was repeated for eight generations. The wMel heat-selected strain (wMel-HS) was similar to wMel (unselected) in its ability to induce cytoplasmic incompatibility and restore compatibility when larvae were reared under cyclical heat stress, but wMel-HS adults exhibited reduced Wolbachia densities at 26 °C. To investigate the effects of field exposure, we compared the response of wMel-infected Ae. aegypti collected from Cairns, Australia where the infection has been established for seven years, to a wMel-infected population maintained in the laboratory for approximately 60 generations. Field and laboratory strains of wMel did not differ in their response to cyclical heat stress or in their phenotypic effects at 26 °C. The capacity for the wMel infection in Ae. aegypti to adapt to high temperatures therefore appears limited, and alternative strains may need to be considered for deployment in environments where high temperatures are regularly experienced in mosquito breeding sites.
Collapse
Affiliation(s)
- Perran A Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3010, Australia.
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
14
|
Endosymbiosis as a source of immune innovation. C R Biol 2018; 341:290-296. [DOI: 10.1016/j.crvi.2018.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
|
15
|
Vorburger C, Perlman SJ. The role of defensive symbionts in host-parasite coevolution. Biol Rev Camb Philos Soc 2018; 93:1747-1764. [PMID: 29663622 DOI: 10.1111/brv.12417] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 02/06/2023]
Abstract
Understanding the coevolution of hosts and parasites is a long-standing goal of evolutionary biology. There is a well-developed theoretical framework to describe the evolution of host-parasite interactions under the assumption of direct, two-species interactions, which can result in arms race dynamics or sustained genotype fluctuations driven by negative frequency dependence (Red Queen dynamics). However, many hosts rely on symbionts for defence against parasites. Whilst the ubiquity of defensive symbionts and their potential importance for disease control are increasingly recognized, there is still a gap in our understanding of how symbionts mediate or possibly take part in host-parasite coevolution. Herein we address this question by synthesizing information already available from theoretical and empirical studies. First, we briefly introduce current hypotheses on how defensive mutualisms evolved from more parasitic relationships and highlight exciting new experimental evidence showing that this can occur very rapidly. We go on to show that defensive symbionts influence virtually all important determinants of coevolutionary dynamics, namely the variation in host resistance available to selection by parasites, the specificity of host resistance, and the trade-off structure between host resistance and other components of fitness. In light of these findings, we turn to the limited theory and experiments available for such three-species interactions to assess the role of defensive symbionts in host-parasite coevolution. Specifically, we discuss under which conditions the defensive symbiont may take over from the host the reciprocal adaptation with parasites and undergo its own selection dynamics, thereby altering or relaxing selection on the hosts' own immune defences. Finally, we address potential effects of defensive symbionts on the evolution of parasite virulence. This is an important problem for which there is no single, clear-cut prediction. The selection on parasite virulence resulting from the presence of defensive symbionts in their hosts will depend on the underlying mechanism of defence. We identify the evolutionary predictions for different functional categories of symbiont-conferred resistance and we evaluate the empirical literature for supporting evidence. We end this review with outstanding questions and promising avenues for future research to improve our understanding of symbiont-mediated coevolution between hosts and parasites.
Collapse
Affiliation(s)
- Christoph Vorburger
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland.,Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Universitätsstrasse 16, 8092, Zürich, Switzerland
| | - Steve J Perlman
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| |
Collapse
|
16
|
Gruntenko NЕ, Ilinsky YY, Adonyeva NV, Burdina EV, Bykov RA, Menshanov PN, Rauschenbach IY. Various Wolbachia genotypes differently influence host Drosophila dopamine metabolism and survival under heat stress conditions. BMC Evol Biol 2017; 17:252. [PMID: 29297293 PMCID: PMC5751659 DOI: 10.1186/s12862-017-1104-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND One of the most widespread prokaryotic symbionts of invertebrates is the intracellular bacteria of Wolbachia genus which can be found in about 50% of insect species. Wolbachia causes both parasitic and mutualistic effects on its host that include manipulating the host reproductive systems in order to increase their transmission through the female germline, and increasing the host fitness. One of the mechanisms, promoting adaptation in biological organisms, is a non-specific neuroendocrine stress reaction. In insects, this reaction includes catecholamines, dopamine, serotonin and octopamine, which act as neurotransmitters, neuromodulators and neurohormones. The level of dopamine metabolism correlates with heat stress resistance in Drosophila adults. RESULTS To examine Wolbachia effect on Drosophila survival under heat stress and dopamine metabolism we used five strains carrying the nuclear background of interbred Bi90 strain and cytoplasmic backgrounds with different genotype variants of Wolbachia (produced by 20 backcrosses of Bi90 males with appropriate source of Wolbachia). Non-infected Bi90 strain (treated with tetracycline for 3 generations) was used as a control group. We demonstrated that two of five investigated Wolbachia variants promote changes in Drosophila heat stress resistance and activity of enzymes that produce and degrade dopamine, alkaline phosphatase and dopamine-dependent arylalkylamine N-acetyltransferase. What is especially interesting, wMelCS genotype of Wolbachia increases stress resistance and the intensity of dopamine metabolism, whereas wMelPop strain decreases them. wMel, wMel2 and wMel4 genotypes of Wolbachia do not show any effect on the survival under heat stress or dopamine metabolism. L-DOPA treatment, known to increase the dopamine content in Drosophila, levels the difference in survival under heat stress between all studied groups. CONCLUSIONS The genotype of symbiont determines the effect that the symbiont has on the stress resistance of the host insect.
Collapse
Affiliation(s)
- Nataly Е Gruntenko
- The Institute of Cytology and Genetics of SB RAS, Novosibirsk, 630090, Russia.
| | - Yury Yu Ilinsky
- The Institute of Cytology and Genetics of SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, Russia
- School of Life Sciences Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Natalya V Adonyeva
- The Institute of Cytology and Genetics of SB RAS, Novosibirsk, 630090, Russia
| | - Elena V Burdina
- The Institute of Cytology and Genetics of SB RAS, Novosibirsk, 630090, Russia
| | - Roman A Bykov
- The Institute of Cytology and Genetics of SB RAS, Novosibirsk, 630090, Russia
| | - Petr N Menshanov
- The Institute of Cytology and Genetics of SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, Russia
- Novosibirsk State Technical University, Novosibirsk, Russia
| | | |
Collapse
|
17
|
Faria VG, Sucena É. From Nature to the Lab: Establishing Drosophila Resources for Evolutionary Genetics. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Mussabekova A, Daeffler L, Imler JL. Innate and intrinsic antiviral immunity in Drosophila. Cell Mol Life Sci 2017; 74:2039-2054. [PMID: 28102430 PMCID: PMC5419870 DOI: 10.1007/s00018-017-2453-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/11/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
The fruit fly Drosophila melanogaster has been a valuable model to investigate the genetic mechanisms of innate immunity. Initially focused on the resistance to bacteria and fungi, these studies have been extended to include antiviral immunity over the last decade. Like all living organisms, insects are continually exposed to viruses and have developed efficient defense mechanisms. We review here our current understanding on antiviral host defense in fruit flies. A major antiviral defense in Drosophila is RNA interference, in particular the small interfering (si) RNA pathway. In addition, complex inducible responses and restriction factors contribute to the control of infections. Some of the genes involved in these pathways have been conserved through evolution, highlighting loci that may account for susceptibility to viral infections in humans. Other genes are not conserved and represent species-specific innovations.
Collapse
Affiliation(s)
- Assel Mussabekova
- Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9022, Université de Strasbourg, 15 rue René Descartes, 67000, Strasbourg, France.
| | - Laurent Daeffler
- Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9022, Université de Strasbourg, 15 rue René Descartes, 67000, Strasbourg, France
| | - Jean-Luc Imler
- Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9022, Université de Strasbourg, 15 rue René Descartes, 67000, Strasbourg, France
- Faculté des Sciences de la Vie, Université de Strasbourg, 28 rue Goethe, 67000, Strasbourg, France
| |
Collapse
|
19
|
Trinder M, Daisley BA, Dube JS, Reid G. Drosophila melanogaster as a High-Throughput Model for Host-Microbiota Interactions. Front Microbiol 2017; 8:751. [PMID: 28503170 PMCID: PMC5408076 DOI: 10.3389/fmicb.2017.00751] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/12/2017] [Indexed: 01/14/2023] Open
Abstract
Microbiota research often assumes that differences in abundance and identity of microorganisms have unique influences on host physiology. To test this concept mechanistically, germ-free mice are colonized with microbial communities to assess causation. Due to the cost, infrastructure challenges, and time-consuming nature of germ-free mouse models, an alternative approach is needed to investigate host–microbial interactions. Drosophila melanogaster (fruit flies) can be used as a high throughput in vivo screening model of host–microbiome interactions as they are affordable, convenient, and replicable. D. melanogaster were essential in discovering components of the innate immune response to pathogens. However, axenic D. melanogaster can easily be generated for microbiome studies without the need for ethical considerations. The simplified microbiota structure enables researchers to evaluate permutations of how each microbial species within the microbiota contribute to host phenotypes of interest. This enables the possibility of thorough strain-level analysis of host and microbial properties relevant to physiological outcomes. Moreover, a wide range of mutant D. melanogaster strains can be affordably obtained from public stock centers. Given this, D. melanogaster can be used to identify candidate mechanisms of host–microbe symbioses relevant to pathogen exclusion, innate immunity modulation, diet, xenobiotics, and probiotic/prebiotic properties in a high throughput manner. This perspective comments on the most promising areas of microbiota research that could immediately benefit from using the D. melanogaster model.
Collapse
Affiliation(s)
- Mark Trinder
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, St. Joseph's Health Care London, LondonON, Canada.,Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, University of Western Ontario, LondonON, Canada
| | - Brendan A Daisley
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, St. Joseph's Health Care London, LondonON, Canada.,Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, University of Western Ontario, LondonON, Canada
| | - Josh S Dube
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, St. Joseph's Health Care London, LondonON, Canada.,Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, University of Western Ontario, LondonON, Canada
| | - Gregor Reid
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, St. Joseph's Health Care London, LondonON, Canada.,Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, University of Western Ontario, LondonON, Canada.,Schulich School of Medicine and Dentistry, Department of Surgery, University of Western Ontario, LondonON, Canada
| |
Collapse
|
20
|
Novakova E, Woodhams DC, Rodríguez-Ruano SM, Brucker RM, Leff JW, Maharaj A, Amir A, Knight R, Scott J. Mosquito Microbiome Dynamics, a Background for Prevalence and Seasonality of West Nile Virus. Front Microbiol 2017; 8:526. [PMID: 28421042 PMCID: PMC5378795 DOI: 10.3389/fmicb.2017.00526] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/13/2017] [Indexed: 11/13/2022] Open
Abstract
Symbiotic microbial communities augment host phenotype, including defense against pathogen carriage and infection. We sampled the microbial communities in 11 adult mosquito host species from six regions in southern Ontario, Canada over 3 years. Of the factors examined, we found that mosquito species was the largest driver of the microbiota, with remarkable phylosymbiosis between host and microbiota. Seasonal shifts of the microbiome were consistently repeated over the 3-year period, while region had little impact. Both host species and seasonal shifts in microbiota were associated with patterns of West Nile virus (WNV) in these mosquitoes. The highest prevalence of WNV, with a seasonal spike each year in August, was in the Culex pipiens/restuans complex, and high WNV prevalence followed a decrease in relative abundance of Wolbachia in this species. Indeed, mean temperature, but not precipitation, was significantly correlated with Wolbachia abundance. This suggests that at higher temperatures Wolbachia abundance is reduced leading to greater susceptibility to WNV in the subsequent generation of C. pipiens/restuans hosts. Different mosquito genera harbored significantly different bacterial communities, and presence or abundance of Wolbachia was primarily associated with these differences. We identified several operational taxonomic units (OTUs) of Wolbachia that drive overall microbial community differentiation among mosquito taxa, locations and timepoints. Distinct Wolbachia OTUs were consistently found to dominate microbiomes of Cx. pipiens/restuans, and of Coquilletidia perturbans. Seasonal fluctuations of several other microbial taxa included Bacillus cereus, Enterococcus, Methylobacterium, Asaia, Pantoea, Acinetobacter johnsonii, Pseudomonas, and Mycoplasma. This suggests that microbiota may explain some of the variation in vector competence previously attributed to local environmental processes, especially because Wolbachia is known to affect carriage of viral pathogens.
Collapse
Affiliation(s)
- Eva Novakova
- Faculty of Science, University of South BohemiaCeske Budejovice, Czechia.,Biology Centre of ASCR, Institute of ParasitologyCeske Budejovice, Czechia
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts BostonBoston, MA, USA
| | | | | | - Jonathan W Leff
- Cooperative Institute for Research in Environmental Sciences, University of ColoradoBoulder, CO, USA.,Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA
| | | | - Amnon Amir
- Department of Computer Science and Engineering, Center for Microbiome Innovation, University of California San DiegoLa Jolla, CA, USA
| | - Rob Knight
- Department of Computer Science and Engineering, Center for Microbiome Innovation, University of California San DiegoLa Jolla, CA, USA.,Department of Pediatrics, University of California San DiegoLa Jolla, CA, USA
| | - James Scott
- Sporometrics IncToronto, ON, Canada.,Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of TorontoToronto, ON, Canada
| |
Collapse
|