1
|
Norton J, Seah N, Santiago F, Sindi SS, Serio TR. Multiple aspects of amyloid dynamics in vivo integrate to establish prion variant dominance in yeast. Front Mol Neurosci 2024; 17:1439442. [PMID: 39139213 PMCID: PMC11319303 DOI: 10.3389/fnmol.2024.1439442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Prion variants are self-perpetuating conformers of a single protein that assemble into amyloid fibers and confer unique phenotypic states. Multiple prion variants can arise, particularly in response to changing environments, and interact within an organism. These interactions are often competitive, with one variant establishing phenotypic dominance over the others. This dominance has been linked to the competition for non-prion state protein, which must be converted to the prion state via a nucleated polymerization mechanism. However, the intrinsic rates of conversion, determined by the conformation of the variant, cannot explain prion variant dominance, suggesting a more complex interaction. Using the yeast prion system [PSI+ ], we have determined the mechanism of dominance of the [PSI+ ]Strong variant over the [PSI+ ]Weak variant in vivo. When mixed by mating, phenotypic dominance is established in zygotes, but the two variants persist and co-exist in the lineage descended from this cell. [PSI+ ]Strong propagons, the heritable unit, are amplified at the expense of [PSI+ ]Weak propagons, through the efficient conversion of soluble Sup35 protein, as revealed by fluorescence photobleaching experiments employing variant-specific mutants of Sup35. This competition, however, is highly sensitive to the fragmentation of [PSI+ ]Strong amyloid fibers, with even transient inhibition of the fragmentation catalyst Hsp104 promoting amplification of [PSI+ ]Weak propagons. Reducing the number of [PSI+ ]Strong propagons prior to mating, similarly promotes [PSI+ ]Weak amplification and conversion of soluble Sup35, indicating that template number and conversion efficiency combine to determine dominance. Thus, prion variant dominance is not an absolute hierarchy but rather an outcome arising from the dynamic interplay between unique protein conformations and their interactions with distinct cellular proteostatic niches.
Collapse
Affiliation(s)
- Jennifer Norton
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ, United States
| | - Nicole Seah
- Department of Biochemistry, The University of Washington, Seattle, WA, United States
| | - Fabian Santiago
- Department of Applied Mathematics, The University of California, Merced, Merced, CA, United States
| | - Suzanne S. Sindi
- Department of Applied Mathematics, The University of California, Merced, Merced, CA, United States
| | - Tricia R. Serio
- Department of Biochemistry, The University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
Nowakowska AW, Wojciechowski JW, Szulc N, Kotulska M. The role of tandem repeats in bacterial functional amyloids. J Struct Biol 2023; 215:108002. [PMID: 37482232 DOI: 10.1016/j.jsb.2023.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Repetitivity and modularity of proteins are two related notions incorporated into multiple evolutionary concepts. We discuss whether they may also be essential for functional amyloids. Amyloids are proteins that create very regular and usually highly insoluble fibrils, which are often associated with neurodegeneration. However, recent discoveries showed that amyloid structure of a protein could also be beneficial and desired, e.g., to promote cell adhesion. Functional amyloids are proteins which differ in their characteristics from pathological amyloids, so that the fibril formation could be more under control of an organism. We propose that repeats in the sequence could regulate the aggregation propensity of these proteins. The inclusion of multiple symmetric interactions, due to the presence of the repeats, could be supporting and strengthening the desirable structural properties of functional amyloids. Our results show that tandem repeats in bacterial functional amyloids have a distinct characteristic. The pattern of repeats supports the appropriate level of fibril formation and better controllability of fibril stability. The repeats tend to be more imperfect, which attenuates excessive aggregation propensity. Their desired structure and function are also reinforced by their amino acid profile. Although in the study we focused on bacterial functional amyloids, due to their importance in biofilm formation, we propose that similar mechanisms could be employed in other functional amyloids which are designed by evolution to aggregate in a desirable manner, but not necessarily in pathological amyloids.
Collapse
Affiliation(s)
- Alicja W Nowakowska
- Wrocław University of Science and Technology, Department of Biomedical Engineering, Poland.
| | - Jakub W Wojciechowski
- Wrocław University of Science and Technology, Department of Biomedical Engineering, Poland
| | - Natalia Szulc
- Wrocław University of Science and Technology, Department of Biomedical Engineering, Poland; Wrocław University of Environmental and Life Sciences, Department of Physics and Biophysics, Poland; LPCT, CNRS, Universite de Lorraine, F-54000 Nancy, France
| | - Malgorzata Kotulska
- Wrocław University of Science and Technology, Department of Biomedical Engineering, Poland.
| |
Collapse
|
3
|
Santiago F, Sindi S. A structured model and likelihood approach to estimate yeast prion propagon replication rates and their asymmetric transmission. PLoS Comput Biol 2022; 18:e1010107. [PMID: 35776712 PMCID: PMC9249220 DOI: 10.1371/journal.pcbi.1010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Prion proteins cause a variety of fatal neurodegenerative diseases in mammals but are generally harmless to Baker’s yeast (Saccharomyces cerevisiae). This makes yeast an ideal model organism for investigating the protein dynamics associated with these diseases. The rate of disease onset is related to both the replication and transmission kinetics of propagons, the transmissible agents of prion diseases. Determining the kinetic parameters of propagon replication in yeast is complicated because the number of propagons in an individual cell depends on the intracellular replication dynamics and the asymmetric division of yeast cells within a growing yeast cell colony. We present a structured population model describing the distribution and replication of prion propagons in an actively dividing population of yeast cells. We then develop a likelihood approach for estimating the propagon replication rate and their transmission bias during cell division. We first demonstrate our ability to correctly recover known kinetic parameters from simulated data, then we apply our likelihood approach to estimate the kinetic parameters for six yeast prion variants using propagon recovery data. We find that, under our modeling framework, all variants are best described by a model with an asymmetric transmission bias. This demonstrates the strength of our framework over previous formulations assuming equal partitioning of intracellular constituents during cell division. In this work we investigate the transmissible [PSI+] phenotype in yeast. The agents responsible for this phenotype are propagons, misfolded protein aggregates of a naturally occurring protein. These propagons increase in number within a cell and are distributed between cells during division. We use mathematical modeling to infer the replication rate of propagons within cells and if propagons are transmitted equally or unequally during cell division. Prior models in this area assumed only symmetric transmission when fitting replication rates. We couple this model with a novel likelihood framework allowing us to exclude influential outliers from our datasets when inferring parameters. We find that for all six protein variants we study, propagons are transmitted asymmetrically with different biases. Our results can be reproduced with the code and data available at https://github.com/FS-CodeBase/propagon_replication_and_transmission/.
Collapse
Affiliation(s)
- Fabian Santiago
- Department of Mathematics, University of Arizona, Tucson, Arizona, United States of America
| | - Suzanne Sindi
- Department of Applied Mathematics, University of California Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
Lemarre P, Pujo-Menjouet L, Sindi SS. A unifying model for the propagation of prion proteins in yeast brings insight into the [PSI+] prion. PLoS Comput Biol 2020; 16:e1007647. [PMID: 32453794 PMCID: PMC7274466 DOI: 10.1371/journal.pcbi.1007647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/05/2020] [Accepted: 03/06/2020] [Indexed: 11/18/2022] Open
Abstract
The use of yeast systems to study the propagation of prions and amyloids has emerged as a crucial aspect of the global endeavor to understand those mechanisms. Yeast prion systems are intrinsically multi-scale: the molecular chemical processes are indeed coupled to the cellular processes of cell growth and division to influence phenotypical traits, observable at the scale of colonies. We introduce a novel modeling framework to tackle this difficulty using impulsive differential equations. We apply this approach to the [PSI+] yeast prion, which is associated with the misconformation and aggregation of Sup35. We build a model that reproduces and unifies previously conflicting experimental observations on [PSI+] and thus sheds light onto characteristics of the intracellular molecular processes driving aggregate replication. In particular our model uncovers a kinetic barrier for aggregate replication at low densities, meaning the change between prion or prion-free phenotype is a bi-stable transition. This result is based on the study of prion curing experiments, as well as the phenomenon of colony sectoring, a phenotype which is often ignored in experimental assays and has never been modeled. Furthermore, our results provide further insight into the effect of guanidine hydrochloride (GdnHCl) on Sup35 aggregates. To qualitatively reproduce the GdnHCl curing experiment, aggregate replication must not be completely inhibited, which suggests the existence of a mechanism different than Hsp104-mediated fragmentation. Those results are promising for further development of the [PSI+] model, but also for extending the use of this novel framework to other yeast prion or amyloid systems.
Collapse
Affiliation(s)
- Paul Lemarre
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France
- INRIA Rhônes-Alpes, INRIA, Villeurbanne, France
- Department of Applied Mathematics, University of California Merced, Merced, California, United States of America
| | - Laurent Pujo-Menjouet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France
- INRIA Rhônes-Alpes, INRIA, Villeurbanne, France
| | - Suzanne S. Sindi
- Department of Applied Mathematics, University of California Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Villali J, Dark J, Brechtel TM, Pei F, Sindi SS, Serio TR. Nucleation seed size determines amyloid clearance and establishes a barrier to prion appearance in yeast. Nat Struct Mol Biol 2020; 27:540-549. [PMID: 32367069 PMCID: PMC7293557 DOI: 10.1038/s41594-020-0416-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
Amyloid appearance is a rare event that is promoted in the presence of
other aggregated proteins. These aggregates were thought to act by templating
the formation of an assembly-competent nucleation seed, but we find an
unanticipated role for them in enhancing the persistence of amyloid after it
arises. Specifically, Saccharoymyces cerevisiae Rnq1 amyloid
reduces chaperone-mediated disassembly of Sup35 amyloid, promoting its
persistence in yeast. Mathematical modeling and corresponding in
vivo experiments link amyloid persistence to the conformationally
defined size of the Sup35 nucleation seed and suggest that amyloid is actively
cleared by disassembly below this threshold to suppress appearance of the
[PSI+] prion in vivo.
Remarkably, this framework resolves multiple known inconsistencies in the
appearance and curing of yeast prions. Thus, our observations establish the size
of the nucleation seed as a previously unappreciated characteristic of prion
variants that is key to understanding transitions between prion states.
Collapse
Affiliation(s)
- Janice Villali
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.,Relay Therapeutics, Cambridge, MA, USA
| | - Jason Dark
- Department of Applied Mathematics, University of California, Merced, Merced, CA, USA
| | - Teal M Brechtel
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Fen Pei
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.,BioLegend, San Diego, CA, USA
| | - Suzanne S Sindi
- Department of Applied Mathematics, University of California, Merced, Merced, CA, USA.
| | - Tricia R Serio
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
6
|
Danilov LG, Matveenko AG, Ryzhkova VE, Belousov MV, Poleshchuk OI, Likholetova DV, Sokolov PA, Kasyanenko NA, Kajava AV, Zhouravleva GA, Bondarev SA. Design of a New [ PSI +]-No-More Mutation in SUP35 With Strong Inhibitory Effect on the [ PSI +] Prion Propagation. Front Mol Neurosci 2019; 12:274. [PMID: 31803017 PMCID: PMC6877606 DOI: 10.3389/fnmol.2019.00274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/28/2019] [Indexed: 12/04/2022] Open
Abstract
A number of [PSI+]-no-more (PNM) mutations, eliminating [PSI+] prion, were previously described in SUP35. In this study, we designed and analyzed a new PNM mutation based on the parallel in-register β-structure of Sup35 prion fibrils suggested by the known experimental data. In such an arrangement, substitution of non-charged residues by charged ones may destabilize the fibril structure. We introduced Q33K/A34K amino acid substitutions into the Sup35 protein, corresponding allele was called sup35-M0. The mutagenized residues were chosen based on ArchCandy in silico prediction of high inhibitory effect on the amyloidogenic potential of Sup35. The experiments confirmed that Sup35-M0 leads to the elimination of [PSI+] with high efficiency. Our data suggested that the elimination of the [PSI+] prion is associated with the decreased aggregation properties of the protein. The new mutation can induce the prion with very low efficiency and is able to propagate only weak [PSI+] prion variants. We also showed that Sup35-M0 protein co-aggregates with the wild-type Sup35 in vivo. Moreover, our data confirmed the utility of the strategy of substitution of non-charged residues by charged ones to design new mutations to inhibit a prion formation.
Collapse
Affiliation(s)
- Lavrentii G Danilov
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Andrew G Matveenko
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Varvara E Ryzhkova
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Mikhail V Belousov
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia.,Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
| | - Olga I Poleshchuk
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Daria V Likholetova
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Petr A Sokolov
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, St. Petersburg, Russia
| | - Nina A Kasyanenko
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, St. Petersburg, Russia
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier, Montpellier, France.,Institut de Biologie Computationnelle (IBC), Universitè Montpellier, Montpellier, France
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
7
|
Prion Replication in the Mammalian Cytosol: Functional Regions within a Prion Domain Driving Induction, Propagation, and Inheritance. Mol Cell Biol 2018; 38:MCB.00111-18. [PMID: 29784771 PMCID: PMC6048315 DOI: 10.1128/mcb.00111-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
Prions of lower eukaryotes are transmissible protein particles that propagate by converting homotypic soluble proteins into growing protein assemblies. Prion activity is conferred by so-called prion domains, regions of low complexity that are often enriched in glutamines and asparagines (Q/N). Prions of lower eukaryotes are transmissible protein particles that propagate by converting homotypic soluble proteins into growing protein assemblies. Prion activity is conferred by so-called prion domains, regions of low complexity that are often enriched in glutamines and asparagines (Q/N). The compositional similarity of fungal prion domains with intrinsically disordered domains found in many mammalian proteins raises the question of whether similar sequence elements can drive prion-like phenomena in mammals. Here, we define sequence features of the prototype Saccharomyces cerevisiae Sup35 prion domain that govern prion activities in mammalian cells by testing the ability of deletion mutants to assemble into self-perpetuating particles. Interestingly, the amino-terminal Q/N-rich tract crucially important for prion induction in yeast was dispensable for the prion life cycle in mammalian cells. Spontaneous and template-assisted prion induction, growth, and maintenance were preferentially driven by the carboxy-terminal region of the prion domain that contains a putative soft amyloid stretch recently proposed to act as a nucleation site for prion assembly. Our data demonstrate that preferred prion nucleation domains can differ between lower and higher eukaryotes, resulting in the formation of prions with strikingly different amyloid cores.
Collapse
|
8
|
Pei F, DiSalvo S, Sindi SS, Serio TR. A dominant-negative mutant inhibits multiple prion variants through a common mechanism. PLoS Genet 2017; 13:e1007085. [PMID: 29084237 PMCID: PMC5679637 DOI: 10.1371/journal.pgen.1007085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/09/2017] [Accepted: 10/20/2017] [Indexed: 11/18/2022] Open
Abstract
Prions adopt alternative, self-replicating protein conformations and thereby determine novel phenotypes that are often irreversible. Nevertheless, dominant-negative prion mutants can revert phenotypes associated with some conformations. These observations suggest that, while intervention is possible, distinct inhibitors must be developed to overcome the conformational plasticity of prions. To understand the basis of this specificity, we determined the impact of the G58D mutant of the Sup35 prion on three of its conformational variants, which form amyloids in S. cerevisiae. G58D had been previously proposed to have unique effects on these variants, but our studies suggest a common mechanism. All variants, including those reported to be resistant, are inhibited by G58D but at distinct doses. G58D lowers the kinetic stability of the associated amyloid, enhancing its fragmentation by molecular chaperones, promoting Sup35 resolubilization, and leading to amyloid clearance particularly in daughter cells. Reducing the availability or activity of the chaperone Hsp104, even transiently, reverses curing. Thus, the specificity of inhibition is determined by the sensitivity of variants to the mutant dosage rather than mode of action, challenging the view that a unique inhibitor must be developed to combat each variant.
Collapse
Affiliation(s)
- Fen Pei
- The University of Arizona, Department of Molecular and Cellular Biology, Tucson, Arizona, United States of America
| | - Susanne DiSalvo
- Brown University, Department of Molecular and Cell Biology, Providence, Rhode Island, United States of America
| | - Suzanne S. Sindi
- University of California, Merced, Applied Mathematics, School of Natural Sciences, Merced, California, United States of America
- * E-mail: (SS); (TRS)
| | - Tricia R. Serio
- The University of Arizona, Department of Molecular and Cellular Biology, Tucson, Arizona, United States of America
- * E-mail: (SS); (TRS)
| |
Collapse
|
9
|
Chan PHW, Lee L, Kim E, Hui T, Stoynov N, Nassar R, Moksa M, Cameron DM, Hirst M, Gsponer J, Mayor T. The [PSI +] yeast prion does not wildly affect proteome composition whereas selective pressure exerted on [PSI +] cells can promote aneuploidy. Sci Rep 2017; 7:8442. [PMID: 28814753 PMCID: PMC5559586 DOI: 10.1038/s41598-017-07999-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/07/2017] [Indexed: 11/09/2022] Open
Abstract
The yeast Sup35 protein is a subunit of the translation termination factor, and its conversion to the [PSI +] prion state leads to more translational read-through. Although extensive studies have been done on [PSI +], changes at the proteomic level have not been performed exhaustively. We therefore used a SILAC-based quantitative mass spectrometry approach and identified 4187 proteins from both [psi -] and [PSI +] strains. Surprisingly, there was very little difference between the two proteomes under standard growth conditions. We found however that several [PSI +] strains harbored an additional chromosome, such as chromosome I. Albeit, we found no evidence to support that [PSI +] induces chromosomal instability (CIN). Instead we hypothesized that the selective pressure applied during the establishment of [PSI +]-containing strains could lead to a supernumerary chromosome due to the presence of the ade1-14 selective marker for translational read-through. We therefore verified that there was no prevalence of disomy among newly generated [PSI +] strains in absence of strong selection pressure. We also noticed that low amounts of adenine in media could lead to higher levels of mitochondrial DNA in [PSI +] in ade1-14 cells. Our study has important significance for the establishment and manipulation of yeast strains with the Sup35 prion.
Collapse
Affiliation(s)
- Patrick H W Chan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Lisa Lee
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Erin Kim
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Tony Hui
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Nikolay Stoynov
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Roy Nassar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Moksa
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Dale M Cameron
- Department of Biology, Ursinus College, Pennsylvania, USA
| | - Martin Hirst
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Joerg Gsponer
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada. .,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Overexpression of the essential Sis1 chaperone reduces TDP-43 effects on toxicity and proteolysis. PLoS Genet 2017; 13:e1006805. [PMID: 28531192 PMCID: PMC5460882 DOI: 10.1371/journal.pgen.1006805] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/06/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by selective loss of motor neurons with inclusions frequently containing the RNA/DNA binding protein TDP-43. Using a yeast model of ALS exhibiting TDP-43 dependent toxicity, we now show that TDP-43 overexpression dramatically alters cell shape and reduces ubiquitin dependent proteolysis of a reporter construct. Furthermore, we show that an excess of the Hsp40 chaperone, Sis1, reduced TDP-43’s effect on toxicity, cell shape and proteolysis. The strength of these effects was influenced by the presence of the endogenous yeast prion, [PIN+]. Although overexpression of Sis1 altered the TDP-43 aggregation pattern, we did not detect physical association of Sis1 with TDP-43, suggesting the possibility of indirect effects on TDP-43 aggregation. Furthermore, overexpression of the mammalian Sis1 homologue, DNAJB1, relieves TDP-43 mediated toxicity in primary rodent cortical neurons, suggesting that Sis1 and its homologues may have neuroprotective effects in ALS. Many neurodegenerative diseases are associated with aggregation of specific proteins. Thus we are interested in factors that influence the aggregation and how the aggregated proteins are associated with pathology. Here, we study a protein called TDP-43 that is frequently aggregated in the neurons of patients with amyotrophic lateral sclerosis (ALS). TDP-43 aggregates and is toxic when expressed in yeast, providing a useful model for ALS. Remarkably, a protein that modified TDP-43 toxicity in yeast successfully predicted a new ALS susceptibility gene in humans. We now report a new modifier of TDP-43 toxicity, Sis1. We show that expression of TDP-43 in yeast inhibits degradation of damaged protein, while overexpression of Sis1 restores degradation. Thus suggests a link between protein degradation and TDP-43 toxicity. Furthermore we show that a mammalian protein similar to Sis1 reduces TDP-43 toxicity in primary rodent neurons. This identifies the mammalian Sis1-like gene as a new ALS therapeutic target and possible susceptibility gene.
Collapse
|