1
|
Marsin S, Jeannin S, Baconnais S, Walbott H, Pehau-Arnaudet G, Noiray M, Aumont-Nicaise M, Stender EGP, Cargemel C, Le Bars R, Le Cam E, Quevillon-Cheruel S. DciA, the Bacterial Replicative Helicase Loader, Promotes LLPS in the Presence of ssDNA. J Mol Biol 2025; 437:168873. [PMID: 39603490 DOI: 10.1016/j.jmb.2024.168873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The loading of the bacterial replicative helicase DnaB is an essential step for genome replication and depends on the assistance of accessory proteins. Several of these proteins have been identified across the bacterial phyla. DciA is the most common loading protein in bacteria, yet the one whose mechanism is the least understood. We have previously shown that DciA from Vibrio cholerae is composed of a globular domain followed by an unfolded extension and demonstrated its strong affinity for DNA. Here, we characterize the condensates formed by VcDciA upon interaction with a short single-stranded DNA substrate. We demonstrate the fluidity of these condensates using light microscopy and address their network organization through electron microscopy, thereby bridging events to conclude on a liquid-liquid phase separation behavior. Additionally, we observe the recruitment of DnaB in the droplets, concomitant with the release of DciA. We show that the well-known helicase loader DnaC from Escherichia coli is also competent to form these phase-separated condensates in the presence of ssDNA. Our phenomenological data are still preliminary as regards the existence of these condensates in vivo, but open the way for exploring the potential involvement of DciA in the formation of non-membrane compartments within the bacterium to facilitate the assembly of replication players on chromosomal DNA.
Collapse
Affiliation(s)
- Stéphanie Marsin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Sylvain Jeannin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Sonia Baconnais
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Hélène Walbott
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | - Magali Noiray
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Magali Aumont-Nicaise
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | - Claire Cargemel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Romain Le Bars
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Eric Le Cam
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Sophie Quevillon-Cheruel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Tominaga K, Ozaki S, Sato S, Katayama T, Nishimura Y, Omae K, Iwasaki W. Frequent nonhomologous replacement of replicative helicase loaders by viruses in Vibrionaceae. Proc Natl Acad Sci U S A 2024; 121:e2317954121. [PMID: 38683976 PMCID: PMC11087808 DOI: 10.1073/pnas.2317954121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/14/2024] [Indexed: 05/02/2024] Open
Abstract
Several microbial genomes lack textbook-defined essential genes. If an essential gene is absent from a genome, then an evolutionarily independent gene of unknown function complements its function. Here, we identified frequent nonhomologous replacement of an essential component of DNA replication initiation, a replicative helicase loader gene, in Vibrionaceae. Our analysis of Vibrionaceae genomes revealed two genes with unknown function, named vdhL1 and vdhL2, that were substantially enriched in genomes without the known helicase-loader genes. These genes showed no sequence similarities to genes with known function but encoded proteins structurally similar with a viral helicase loader. Analyses of genomic syntenies and coevolution with helicase genes suggested that vdhL1/2 encodes a helicase loader. The in vitro assay showed that Vibrio harveyi VdhL1 and Vibrio ezurae VdhL2 promote the helicase activity of DnaB. Furthermore, molecular phylogenetics suggested that vdhL1/2 were derived from phages and replaced an intrinsic helicase loader gene of Vibrionaceae over 20 times. This high replacement frequency implies the host's advantage in acquiring a viral helicase loader gene.
Collapse
Affiliation(s)
- Kento Tominaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
| | - Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Shohei Sato
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Yuki Nishimura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
| | - Kimiho Omae
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba277-8564, Japan
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo113-0032, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo113-8657, Japan
| |
Collapse
|
3
|
Radford HM, Toft CJ, Sorenson AE, Schaeffer PM. Inhibition of Replication Fork Formation and Progression: Targeting the Replication Initiation and Primosomal Proteins. Int J Mol Sci 2023; 24:ijms24108802. [PMID: 37240152 DOI: 10.3390/ijms24108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Over 1.2 million deaths are attributed to multi-drug-resistant (MDR) bacteria each year. Persistence of MDR bacteria is primarily due to the molecular mechanisms that permit fast replication and rapid evolution. As many pathogens continue to build resistance genes, current antibiotic treatments are being rendered useless and the pool of reliable treatments for many MDR-associated diseases is thus shrinking at an alarming rate. In the development of novel antibiotics, DNA replication is still a largely underexplored target. This review summarises critical literature and synthesises our current understanding of DNA replication initiation in bacteria with a particular focus on the utility and applicability of essential initiation proteins as emerging drug targets. A critical evaluation of the specific methods available to examine and screen the most promising replication initiation proteins is provided.
Collapse
Affiliation(s)
- Holly M Radford
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia
| | - Casey J Toft
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia
| | - Alanna E Sorenson
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia
| | - Patrick M Schaeffer
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia
| |
Collapse
|
4
|
Blaine HC, Simmons LA, Stallings CL. Diverse Mechanisms of Helicase Loading during DNA Replication Initiation in Bacteria. J Bacteriol 2023; 205:e0048722. [PMID: 36877032 PMCID: PMC10128896 DOI: 10.1128/jb.00487-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Initiation of DNA replication is required for cell viability and passage of genetic information to the next generation. Studies in Escherichia coli and Bacillus subtilis have established ATPases associated with diverse cellular activities (AAA+) as essential proteins required for loading of the replicative helicase at replication origins. AAA+ ATPases DnaC in E. coli and DnaI in B. subtilis have long been considered the paradigm for helicase loading during replication in bacteria. Recently, it has become increasingly clear that most bacteria lack DnaC/DnaI homologs. Instead, most bacteria express a protein homologous to the newly described DciA (dnaC/dnaI antecedent) protein. DciA is not an ATPase, and yet it serves as a helicase operator, providing a function analogous to that of DnaC and DnaI across diverse bacterial species. The recent discovery of DciA and of other alternative mechanisms of helicase loading in bacteria has changed our understanding of DNA replication initiation. In this review, we highlight recent discoveries, detailing what is currently known about the replicative helicase loading process across bacterial species, and we discuss the critical questions that remain to be investigated.
Collapse
Affiliation(s)
- Helen C. Blaine
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Lyle A. Simmons
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christina L. Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
5
|
Cargemel C, Marsin S, Noiray M, Legrand P, Bounoua H, Li de la Sierra-Gallay I, Walbott H, Quevillon-Cheruel S. The LH-DH module of bacterial replicative helicases is the common binding site for DciA and other helicase loaders. Acta Crystallogr D Struct Biol 2023; 79:177-187. [PMID: 36762863 PMCID: PMC9912922 DOI: 10.1107/s2059798323000281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
During the initiation step of bacterial genome replication, replicative helicases depend on specialized proteins for their loading onto oriC. DnaC and DnaI were the first loaders to be characterized. However, most bacteria do not contain any of these genes, which are domesticated phage elements that have replaced the ancestral and unrelated loader gene dciA several times during evolution. To understand how DciA assists the loading of DnaB, the crystal structure of the complex from Vibrio cholerae was determined, in which two VcDciA molecules interact with a dimer of VcDnaB without changing its canonical structure. The data showed that the VcDciA binding site on VcDnaB is the conserved module formed by the linker helix LH of one monomer and the determinant helix DH of the second monomer. Interestingly, DnaC from Escherichia coli also targets this module onto EcDnaB. Thanks to their common target site, it was shown that VcDciA and EcDnaC could be functionally interchanged in vitro despite sharing no structural similarity. This represents a milestone in understanding the mechanism employed by phage helicase loaders to hijack bacterial replicative helicases during evolution.
Collapse
Affiliation(s)
- Claire Cargemel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| | - Stéphanie Marsin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| | - Magali Noiray
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L’Orme des Merisiers, 91192 Gif-sur-Yvette, France
| | - Halil Bounoua
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| | - Inès Li de la Sierra-Gallay
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| | - Hélène Walbott
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| | - Sophie Quevillon-Cheruel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| |
Collapse
|
6
|
Ozaki S, Wang D, Wakasugi Y, Itani N, Katayama T. The Caulobacter crescentus DciA promotes chromosome replication through topological loading of the DnaB replicative helicase at replication forks. Nucleic Acids Res 2022; 50:12896-12912. [PMID: 36484102 PMCID: PMC9825169 DOI: 10.1093/nar/gkac1146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The replicative DNA helicase translocates on single-stranded DNA to drive replication forks during chromosome replication. In most bacteria the ubiquitous replicative helicase, DnaB, co-evolved with the accessory subunit DciA, but how they function remains incompletely understood. Here, using the model bacterium Caulobacter crescentus, we demonstrate that DciA plays a prominent role in DNA replication fork maintenance. Cell cycle analyses using a synchronized Caulobacter cell population showed that cells devoid of DciA exhibit a severe delay in fork progression. Biochemical characterization revealed that the DnaB helicase in its default state forms a hexamer that inhibits self-loading onto single-stranded DNA. We found that upon binding to DciA, the DnaB hexamer undergoes conformational changes required for encircling single-stranded DNA, thereby establishing the replication fork. Further investigation of the functional structure of DciA revealed that the C-terminus of DciA includes conserved leucine residues responsible for DnaB binding and is essential for DciA in vivo functions. We propose that DciA stimulates loading of DnaB onto single strands through topological isomerization of the DnaB structure, thereby ensuring fork progression. Given that the DnaB-DciA modules are widespread among eubacterial species, our findings suggest that a common mechanism underlies chromosome replication.
Collapse
Affiliation(s)
| | | | | | - Naoto Itani
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
7
|
Blaine HC, Burke JT, Ravi J, Stallings CL. DciA Helicase Operators Exhibit Diversity across Bacterial Phyla. J Bacteriol 2022; 204:e0016322. [PMID: 35880876 PMCID: PMC9380583 DOI: 10.1128/jb.00163-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023] Open
Abstract
A fundamental requirement for life is the replication of an organism's DNA. Studies in Escherichia coli and Bacillus subtilis have set the paradigm for DNA replication in bacteria. During replication initiation in E. coli and B. subtilis, the replicative helicase is loaded onto the DNA at the origin of replication by an ATPase helicase loader. However, most bacteria do not encode homologs to the helicase loaders in E. coli and B. subtilis. Recent work has identified the DciA protein as a predicted helicase operator that may perform a function analogous to the helicase loaders in E. coli and B. subtilis. DciA proteins, which are defined by the presence of a DUF721 domain (termed the DciA domain herein), are conserved in most bacteria but have only been studied in mycobacteria and gammaproteobacteria (Pseudomonas aeruginosa and Vibrio cholerae). Sequences outside the DciA domain in Mycobacterium tuberculosis DciA are essential for protein function but are not conserved in the P. aeruginosa and V. cholerae homologs, raising questions regarding the conservation and evolution of DciA proteins across bacterial phyla. To comprehensively define the DciA protein family, we took a computational evolutionary approach and analyzed the domain architectures and sequence properties of DciA domain-containing proteins across the tree of life. These analyses identified lineage-specific domain architectures among DciA homologs, as well as broadly conserved sequence-structural motifs. The diversity of DciA proteins represents the evolution of helicase operation in bacterial DNA replication and highlights the need for phylum-specific analyses of this fundamental biological process. IMPORTANCE Despite the fundamental importance of DNA replication for life, this process remains understudied in bacteria outside Escherichia coli and Bacillus subtilis. In particular, most bacteria do not encode the helicase-loading proteins that are essential in E. coli and B. subtilis for DNA replication. Instead, most bacteria encode a DciA homolog that likely constitutes the predominant mechanism of helicase operation in bacteria. However, it is still unknown how DciA structure and function compare across diverse phyla that encode DciA proteins. In this study, we performed computational evolutionary analyses to uncover tremendous diversity among DciA homologs. These studies provide a significant advance in our understanding of an essential component of the bacterial DNA replication machinery.
Collapse
Affiliation(s)
- Helen C. Blaine
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Joseph T. Burke
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Genomics and Molecular Genetics Undergraduate Program, Michigan State University, East Lansing, Michigan, USA
| | - Janani Ravi
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Christina L. Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
8
|
Cerezo-Cortés MI, Rodríguez-Castillo JG, Mata-Espinosa DA, Bini EI, Barrios-Payan J, Zatarain-Barrón ZL, Anzola JM, Cornejo-Granados F, Ochoa-Leyva A, Del Portillo P, Murcia MI, Hernández-Pando R. Close Related Drug-Resistance Beijing Isolates of Mycobacterium tuberculosis Reveal a Different Transcriptomic Signature in a Murine Disease Progression Model. Int J Mol Sci 2022; 23:ijms23095157. [PMID: 35563545 PMCID: PMC9100210 DOI: 10.3390/ijms23095157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) lineage 2/Beijing is associated with high virulence and drug resistance worldwide. In Colombia, the Beijing genotype has circulated since 1997, predominantly on the pacific coast, with the Beijing-Like SIT-190 being more prevalent. This genotype conforms to a drug-resistant cluster and shows a fatal outcome in patients. To better understand virulence determinants, we performed a transcriptomic analysis with a Beijing-Like SIT-190 isolate (BL-323), and Beijing-Classic SIT-1 isolate (BC-391) in progressive tuberculosis (TB) murine model. Bacterial RNA was extracted from mice lungs on days 3, 14, 28, and 60. On average, 0.6% of the total reads mapped against MTB genomes and of those, 90% against coding genes. The strains were independently associated as determined by hierarchical cluster and multidimensional scaling analysis. Gene ontology showed that in strain BL-323 enriched functions were related to host immune response and hypoxia, while proteolysis and protein folding were enriched in the BC-391 strain. Altogether, our results suggested a differential bacterial transcriptional program when evaluating these two closely related strains. The data presented here could potentially impact the control of this emerging, highly virulent, and drug-resistant genotype.
Collapse
Affiliation(s)
- María Irene Cerezo-Cortés
- Laboratorio de Micobacterias, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (M.I.C.-C.); (J.G.R.-C.)
| | - Juan Germán Rodríguez-Castillo
- Laboratorio de Micobacterias, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (M.I.C.-C.); (J.G.R.-C.)
| | - Dulce Adriana Mata-Espinosa
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (D.A.M.-E.); (E.I.B.); (J.B.-P.); (Z.L.Z.-B.)
| | - Estela Isabel Bini
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (D.A.M.-E.); (E.I.B.); (J.B.-P.); (Z.L.Z.-B.)
| | - Jorge Barrios-Payan
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (D.A.M.-E.); (E.I.B.); (J.B.-P.); (Z.L.Z.-B.)
| | - Zyanya Lucia Zatarain-Barrón
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (D.A.M.-E.); (E.I.B.); (J.B.-P.); (Z.L.Z.-B.)
| | - Juan Manuel Anzola
- Grupo de Biotecnología Molecular, Grupo de Bioinformática y Biología Computacional, Corporación CorpoGen, Bogotá 110311, Colombia; (J.M.A.); (P.D.P.)
- Universidad Central, Facultad de Ingeniería y Ciencias Básicas Bogotá, Bogotá 100270, Colombia
| | - Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (F.C.-G.); (A.O.-L.)
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (F.C.-G.); (A.O.-L.)
| | - Patricia Del Portillo
- Grupo de Biotecnología Molecular, Grupo de Bioinformática y Biología Computacional, Corporación CorpoGen, Bogotá 110311, Colombia; (J.M.A.); (P.D.P.)
| | - Martha Isabel Murcia
- Laboratorio de Micobacterias, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (M.I.C.-C.); (J.G.R.-C.)
- Correspondence: (M.I.M.); (R.H.-P.)
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (D.A.M.-E.); (E.I.B.); (J.B.-P.); (Z.L.Z.-B.)
- Correspondence: (M.I.M.); (R.H.-P.)
| |
Collapse
|
9
|
Single-Cell Analysis of Mycobacteria Using Microfluidics and Time-Lapse Microscopy. Methods Mol Biol 2021. [PMID: 34235654 DOI: 10.1007/978-1-0716-1460-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Studies on cell-to-cell phenotypic variation in microbial populations, with individuals sharing the same genetic background, provide insights not only on bacterial behavior but also on the adaptive spectrum of the population. Phenotypic variation is an innate property of microbial populations, and this can be further amplified under stressful conditions, providing a fitness advantage. Furthermore, phenotypic variation may also precede a latter step of genetic-based diversification, resulting in the transmission of the most beneficial phenotype to the progeny. While population-wide studies provide a measure of the collective average behavior, single-cell studies, which have expanded over the last decade, delve into the behavior of smaller subpopulations that would otherwise remain concealed. In this chapter, we describe approaches to carry out spatiotemporal analysis of individual mycobacterial cells using time-lapse microscopy. Our method encompasses the fabrication of a microfluidic device; the assembly of a microfluidic system suitable for long-term imaging of mycobacteria; and the quantitative analysis of single-cell behavior under varying growth conditions. Phenotypic variation is conceivably associated to the resilience and endurance of mycobacterial cells. Therefore, shedding light on the dynamics of this phenomenon, on the transience or stability of the given phenotype, on its molecular bases and its functional consequences, offers new scope for intervention.
Collapse
|
10
|
Puri N, Fernandez AJ, O'Shea Murray VL, McMillan S, Keck JL, Berger JM. The molecular coupling between substrate recognition and ATP turnover in a AAA+ hexameric helicase loader. eLife 2021; 10:64232. [PMID: 34036936 PMCID: PMC8213410 DOI: 10.7554/elife.64232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
In many bacteria and eukaryotes, replication fork establishment requires the controlled loading of hexameric, ring-shaped helicases around DNA by AAA+(ATPases Associated with various cellular Activities) ATPases. How loading factors use ATP to control helicase deposition is poorly understood. Here, we dissect how specific ATPase elements of Escherichia coli DnaC, an archetypal loader for the bacterial DnaB helicase, play distinct roles in helicase loading and the activation of DNA unwinding. We have identified a new element, the arginine-coupler, which regulates the switch-like behavior of DnaC to prevent futile ATPase cycling and maintains loader responsiveness to replication restart systems. Our data help explain how the ATPase cycle of a AAA+-family helicase loader is channeled into productive action on its target; comparative studies indicate that elements analogous to the Arg-coupler are present in related, switch-like AAA+ proteins that control replicative helicase loading in eukaryotes, as well as in polymerase clamp loading and certain classes of DNA transposases.
Collapse
Affiliation(s)
- Neha Puri
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, United States
| | - Amy J Fernandez
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, United States
| | - Valerie L O'Shea Murray
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, United States.,Saul Ewing Arnstein & Lehr, LLP, Centre Square West, Philadelphia, United States
| | - Sarah McMillan
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, United States
| |
Collapse
|
11
|
Zhu L, Rajendram M, Huang KC. Effects of fixation on bacterial cellular dimensions and integrity. iScience 2021; 24:102348. [PMID: 33912815 PMCID: PMC8066382 DOI: 10.1016/j.isci.2021.102348] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/25/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022] Open
Abstract
Fixation facilitates imaging of subcellular localization and cell morphology, yet it remains unknown how fixation affects cellular dimensions and intracellular fluorescence patterns, particularly during long-term storage. Here, we characterized the effects of multiple fixatives on several bacterial species. Fixation generally reduced cell length by 5-15%; single-cell tracking in microfluidics revealed that the length decrease was an aggregate effect of many steps in the fixation protocol and that fluorescence of cytoplasmic GFP but not membrane-bound MreB-msfGFP was rapidly lost with formaldehyde-based fixatives. Cellular dimensions were preserved in formaldehyde-based fixatives for ≥4 days, but methanol caused length to decrease. Although methanol preserved cytoplasmic fluorescence better than formaldehyde-based fixatives, some Escherichia coli cells were able to grow directly after fixation. Moreover, methanol fixation caused lysis in a subpopulation of cells, with virtually all Bacillus subtilis cells lysing after one day. These findings highlight tradeoffs between maintenance of fluorescence and membrane integrity for future applications of fixation.
Collapse
Affiliation(s)
- Lillian Zhu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Manohary Rajendram
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
12
|
Judd JA, Canestrari J, Clark R, Joseph A, Lapierre P, Lasek-Nesselquist E, Mir M, Palumbo M, Smith C, Stone M, Upadhyay A, Wirth SE, Dedrick RM, Meier CG, Russell DA, Dills A, Dove E, Kester J, Wolf ID, Zhu J, Rubin ER, Fortune S, Hatfull GF, Gray TA, Wade JT, Derbyshire KM. A Mycobacterial Systems Resource for the Research Community. mBio 2021; 12:e02401-20. [PMID: 33653882 PMCID: PMC8092266 DOI: 10.1128/mbio.02401-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Functional characterization of bacterial proteins lags far behind the identification of new protein families. This is especially true for bacterial species that are more difficult to grow and genetically manipulate than model systems such as Escherichia coli and Bacillus subtilis To facilitate functional characterization of mycobacterial proteins, we have established a Mycobacterial Systems Resource (MSR) using the model organism Mycobacterium smegmatis This resource focuses specifically on 1,153 highly conserved core genes that are common to many mycobacterial species, including Mycobacterium tuberculosis, in order to provide the most relevant information and resources for the mycobacterial research community. The MSR includes both biological and bioinformatic resources. The biological resource includes (i) an expression plasmid library of 1,116 genes fused to a fluorescent protein for determining protein localization; (ii) a library of 569 precise deletions of nonessential genes; and (iii) a set of 843 CRISPR-interference (CRISPRi) plasmids specifically targeted to silence expression of essential core genes and genes for which a precise deletion was not obtained. The bioinformatic resource includes information about individual genes and a detailed assessment of protein localization. We anticipate that integration of these initial functional analyses and the availability of the biological resource will facilitate studies of these core proteins in many Mycobacterium species, including the less experimentally tractable pathogens M. abscessus, M. avium, M. kansasii, M. leprae, M. marinum, M. tuberculosis, and M. ulceransIMPORTANCE Diseases caused by mycobacterial species result in millions of deaths per year globally, and present a substantial health and economic burden, especially in immunocompromised patients. Difficulties inherent in working with mycobacterial pathogens have hampered the development and application of high-throughput genetics that can inform genome annotations and subsequent functional assays. To facilitate mycobacterial research, we have created a biological and bioinformatic resource (https://msrdb.org/) using Mycobacterium smegmatis as a model organism. The resource focuses specifically on 1,153 proteins that are highly conserved across the mycobacterial genus and, therefore, likely perform conserved mycobacterial core functions. Thus, functional insights from the MSR will apply to all mycobacterial species. We believe that the availability of this mycobacterial systems resource will accelerate research throughout the mycobacterial research community.
Collapse
Affiliation(s)
- J A Judd
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - J Canestrari
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - R Clark
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - A Joseph
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - P Lapierre
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - E Lasek-Nesselquist
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - M Mir
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - M Palumbo
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - C Smith
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - M Stone
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - A Upadhyay
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - S E Wirth
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - R M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - C G Meier
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - D A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - A Dills
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - E Dove
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - J Kester
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - I D Wolf
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - J Zhu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - E R Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - S Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - G F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - T A Gray
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - J T Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - K M Derbyshire
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| |
Collapse
|
13
|
ClpX Is Essential and Activated by Single-Strand DNA Binding Protein in Mycobacteria. J Bacteriol 2021; 203:JB.00608-20. [PMID: 33229461 PMCID: PMC7847540 DOI: 10.1128/jb.00608-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 11/26/2022] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, imposes a major global health burden, surpassing HIV and malaria in annual deaths. The ClpP1P2 proteolytic complex and its cofactor ClpX are attractive drug targets, but their precise cellular functions are unclear. The ClpP1P2 proteolytic complex is essential in Mycobacterium tuberculosis. Proteolysis by ClpP1P2 requires an associated ATPase, either ClpX or ClpC1. Here, we sought to define the unique contributions of the ClpX ATPase to mycobacterial growth. We formally demonstrated that ClpX is essential for mycobacterial growth, and to understand its essential functions, we identified ClpX-His-interacting proteins by pulldown and tandem mass spectrometry. We found an unexpected association between ClpX and proteins involved in DNA replication, and we confirm a physical association between ClpX and the essential DNA maintenance protein single-stranded-DNA binding protein (SSB). Purified SSB is not degraded by ClpXP1P2; instead, SSB enhances ATP hydrolysis by ClpX and degradation of the model substrate GFP-SsrA by ClpXP1P2. This activation of ClpX is mediated by the C-terminal tail of SSB, which had been implicated in the activation of other ATPases associated with DNA replication. Consistent with the predicted interactions, depletion of clpX transcript perturbs DNA replication. These data reveal that ClpX participates in DNA replication and identify the first activator of ClpX in mycobacteria. IMPORTANCE Tuberculosis, caused by Mycobacterium tuberculosis, imposes a major global health burden, surpassing HIV and malaria in annual deaths. The ClpP1P2 proteolytic complex and its cofactor ClpX are attractive drug targets, but their precise cellular functions are unclear. This work confirms ClpX’s essentiality and describes a novel interaction between ClpX and SSB, a component of the DNA replication machinery. Further, we demonstrate that a loss of ClpX is sufficient to interrupt DNA replication, suggesting that the ClpX-SSB complex may play a role in DNA replication in mycobacteria.
Collapse
|
14
|
Bandekar AC, Subedi S, Ioerger TR, Sassetti CM. Cell-Cycle-Associated Expression Patterns Predict Gene Function in Mycobacteria. Curr Biol 2020; 30:3961-3971.e6. [PMID: 32916109 PMCID: PMC7578119 DOI: 10.1016/j.cub.2020.07.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/26/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022]
Abstract
Although the major events in prokaryotic cell cycle progression are likely to be coordinated with transcriptional and metabolic changes, these processes remain poorly characterized. Unlike many rapidly growing bacteria, DNA replication and cell division are temporally resolved in mycobacteria, making these slow-growing organisms a potentially useful system to investigate the prokaryotic cell cycle. To determine whether cell-cycle-dependent gene regulation occurs in mycobacteria, we characterized the temporal changes in the transcriptome of synchronously replicating populations of Mycobacterium tuberculosis (Mtb). By enriching for genes that display a sinusoidal expression pattern, we discover 485 genes that oscillate with a period consistent with the cell cycle. During cytokinesis, the timing of gene induction could be used to predict the timing of gene function, as mRNA abundance was found to correlate with the order in which proteins were recruited to the developing septum. Similarly, the expression pattern of primary metabolic genes could be used to predict the relative importance of these pathways for different cell cycle processes. Pyrimidine synthetic genes peaked during DNA replication, and their depletion caused a filamentation phenotype that phenocopied defects in this process. In contrast, the inosine monophasphate dehydrogenase dedicated to guanosine synthesis, GuaB2, displayed the opposite expression pattern and its depletion perturbed septation. Together, these data imply obligate coordination between primary metabolism and cell division and identify periodically regulated genes that can be related to specific cell biological functions.
Collapse
Affiliation(s)
- Aditya C Bandekar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Sishir Subedi
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Thomas R Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
15
|
Randall SE, Martini MC, Zhou Y, Joubran SR, Shell SS. MamA essentiality in Mycobacterium smegmatis is explained by the presence of an apparent cognate restriction endonuclease. BMC Res Notes 2020; 13:462. [PMID: 32993774 PMCID: PMC7526240 DOI: 10.1186/s13104-020-05302-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/22/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Restriction-Modification (R-M) systems are ubiquitous in bacteria and were considered for years as rudimentary immune systems that protect bacterial cells from foreign DNA. Currently, these R-M systems are recognized as important players in global gene expression and other cellular processes such us virulence and evolution of genomes. Here, we report the role of the unique DNA methyltransferase in Mycobacterium smegmatis, which shows a moderate degree of sequence similarity to MamA, a previously characterized methyltransferase that affects gene expression in Mycobacterium tuberculosis and is important for survival under hypoxic conditions. RESULTS We found that depletion of mamA levels impairs growth and produces elongated cell bodies. Microscopy revealed irregular septation and unevenly distributed DNA, with large areas devoid of DNA and small DNA-free cells. Deletion of MSMEG_3214, a predicted endonuclease-encoding gene co-transcribed with mamA, restored the WT growth phenotype in a mamA-depleted background. Our results suggest that the mamA-depletion phenotype can be explained by DNA cleavage by the apparent cognate restriction endonuclease MSMEG_3214. In addition, in silico analysis predicts that both MamA methyltransferase and MSMEG_3214 endonuclease recognize the same palindromic DNA sequence. We propose that MamA and MSMEG_3214 constitute a previously undescribed R-M system in M. smegmatis.
Collapse
Affiliation(s)
- Samantha E Randall
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Maria Carla Martini
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Ying Zhou
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Samantha R Joubran
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Scarlet S Shell
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA. .,Program in Bioinformatics & Computational Biology, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
16
|
Miggiano R, Morrone C, Rossi F, Rizzi M. Targeting Genome Integrity in Mycobacterium Tuberculosis: From Nucleotide Synthesis to DNA Replication and Repair. Molecules 2020; 25:E1205. [PMID: 32156001 PMCID: PMC7179400 DOI: 10.3390/molecules25051205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) is the causative agent of tuberculosis (TB), an ancient disease which still today causes 1.4 million deaths worldwide per year. Long-term, multi-agent anti-tubercular regimens can lead to the anticipated non-compliance of the patient and increased drug toxicity, which in turn can contribute to the emergence of drug-resistant MTB strains that are not susceptible to first- and second-line available drugs. Hence, there is an urgent need for innovative antitubercular drugs and vaccines. A number of biochemical processes are required to maintain the correct homeostasis of DNA metabolism in all organisms. Here we focused on reviewing our current knowledge and understanding of biochemical and structural aspects of relevance for drug discovery, for some such processes in MTB, and particularly DNA synthesis, synthesis of its nucleotide precursors, and processes that guarantee DNA integrity and genome stability. Overall, the area of drug discovery in DNA metabolism appears very much alive, rich of investigations and promising with respect to new antitubercular drug candidates. However, the complexity of molecular events that occur in DNA metabolic processes requires an accurate characterization of mechanistic details in order to avoid major flaws, and therefore the failure, of drug discovery approaches targeting genome integrity.
Collapse
Affiliation(s)
- Riccardo Miggiano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (C.M.); (F.R.)
| | | | | | - Menico Rizzi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (C.M.); (F.R.)
| |
Collapse
|
17
|
Ozaki S. Regulation of replication initiation: lessons from Caulobacter crescentus. Genes Genet Syst 2019; 94:183-196. [PMID: 31495806 DOI: 10.1266/ggs.19-00011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chromosome replication is a fundamental process in all domains of life. To accurately transmit genetic material to offspring, the initiation of chromosome replication is tightly regulated to ensure that it occurs only once in each cell division cycle. In the model bacterium Caulobacter crescentus, the CtrA response regulator inhibits the origin of replication at the pre-replication stage. Inactivation of CtrA permits the universal DnaA initiator to form an initiation complex at the origin, leading to replication initiation. Subsequently, the initiation complex is inactivated to prevent extra initiation. Whereas DNA replication occurs periodically in exponentially growing cells, replication initiation is blocked under various stress conditions to halt cell cycle progression until the normal condition is restored or the cells adapt to the stress. Thus, regulating the initiation complex plays an important role in not only driving cell cycle progression, but also maintaining cell integrity under stress. Multiple regulatory signaling pathways controlling CtrA and DnaA have been identified and recent studies have advanced our knowledge of the underlying mechanistic and molecular processes. This review focuses on how bacterial cells control replication initiation, highlighting the latest findings that have emerged from studies in C. crescentus.
Collapse
Affiliation(s)
- Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
18
|
Liu Y, Xie Z, Zhou X, Li W, Zhang H, He ZG. NapM enhances the survival of Mycobacterium tuberculosis under stress and in macrophages. Commun Biol 2019; 2:65. [PMID: 30793043 PMCID: PMC6377630 DOI: 10.1038/s42003-019-0314-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/18/2019] [Indexed: 11/09/2022] Open
Abstract
Hostile environmental cues cause Mycobacterium tuberculosis to enter a state of slow growth for survival. However, the underlying regulatory mechanism remains unclear. DnaA is essential for DNA replication initiation and represents an efficient target for growth regulation in bacteria. Here, we show that the nucleoid-associated protein NapM is a DnaA antagonist, protecting M. tuberculosis from stress-mediated killing. NapM can be induced by diverse stressful signals. It binds to DnaA to inhibit both its DNA replication origin-binding and ATP hydrolysis activity. As a DnaA antagonist, NapM inhibits the mycobacterial DNA synthesis in vitro and in vivo in M. tuberculosis. Furthermore, we show that NapM contributes to the survival of M. tuberculosis under stress and within macrophages during infection. Our findings provide a previously unidentified mechanism of mycobacterial survival under stress and also suggest NapM as a potential drug target for tuberculosis control.
Collapse
Affiliation(s)
- Yu Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiwei Xie
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiling Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weihui Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zheng-Guo He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
19
|
Structural insights into the interaction of helicase and primase in Mycobacterium tuberculosis. Biochem J 2018; 475:3493-3509. [DOI: 10.1042/bcj20180673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 11/17/2022]
Abstract
The helicase–primase interaction is an essential event in DNA replication and is mediated by the highly variable C-terminal domain of primase (DnaG) and N-terminal domain of helicase (DnaB). To understand the functional conservation despite the low sequence homology of the DnaB-binding domains of DnaGs of eubacteria, we determined the crystal structure of the helicase-binding domain of DnaG from Mycobacterium tuberculosis (MtDnaG-CTD) and did so to a resolution of 1.58 Å. We observed the overall structure of MtDnaG-CTD to consist of two subdomains, the N-terminal globular region (GR) and the C-terminal helical hairpin region (HHR), connected by a small loop. Despite differences in some of its helices, the globular region was found to have broadly similar arrangements across the species, whereas the helical hairpins showed different orientations. To gain insights into the crucial helicase–primase interaction in M. tuberculosis, a complex was modeled using the MtDnaG-CTD and MtDnaB-NTD crystal structures. Two nonconserved hydrophobic residues (Ile605 and Phe615) of MtDnaG were identified as potential key residues interacting with MtDnaB. Biosensor-binding studies showed a significant decrease in the binding affinity of MtDnaB-NTD with the Ile605Ala mutant of MtDnaG-CTD compared with native MtDnaG-CTD. The loop, connecting the two helices of the HHR, was concluded to be largely responsible for the stability of the DnaB–DnaG complex. Also, MtDnaB-NTD showed micromolar affinity with DnaG-CTDs from Escherichia coli and Helicobacter pylori and unstable binding with DnaG-CTD from Vibrio cholerae. The interacting domains of both DnaG and DnaB demonstrate the species-specific evolution of the replication initiation system.
Collapse
|
20
|
Logsdon MM, Aldridge BB. Stable Regulation of Cell Cycle Events in Mycobacteria: Insights From Inherently Heterogeneous Bacterial Populations. Front Microbiol 2018; 9:514. [PMID: 29619019 PMCID: PMC5871693 DOI: 10.3389/fmicb.2018.00514] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/06/2018] [Indexed: 11/24/2022] Open
Abstract
Model bacteria, such as E. coli and B. subtilis, tightly regulate cell cycle progression to achieve consistent cell size distributions and replication dynamics. Many of the hallmark features of these model bacteria, including lateral cell wall elongation and symmetric growth and division, do not occur in mycobacteria. Instead, mycobacterial growth is characterized by asymmetric polar growth and division. This innate asymmetry creates unequal birth sizes and growth rates for daughter cells with each division, generating a phenotypically heterogeneous population. Although the asymmetric growth patterns of mycobacteria lead to a larger variation in birth size than typically seen in model bacterial populations, the cell size distribution is stable over time. Here, we review the cellular mechanisms of growth, division, and cell cycle progression in mycobacteria in the face of asymmetry and inherent heterogeneity. These processes coalesce to control cell size. Although Mycobacterium smegmatis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) utilize a novel model of cell size control, they are similar to previously studied bacteria in that initiation of DNA replication is a key checkpoint for cell division. We compare the regulation of DNA replication initiation and strategies used for cell size homeostasis in mycobacteria and model bacteria. Finally, we review the importance of cellular organization and chromosome segregation relating to the physiology of mycobacteria and consider how new frameworks could be applied across the wide spectrum of bacterial diversity.
Collapse
Affiliation(s)
- Michelle M Logsdon
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States.,Department of Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States.,Department of Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States.,Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, United States
| |
Collapse
|