1
|
Hou S, Guo X, Du J, Ding X, Ning X, Wang H, Chen H, Liu B, Lan Y. New insights into the endothelial origin of hematopoietic system inspired by "TIF" approaches. BLOOD SCIENCE 2024; 6:e00199. [PMID: 39027902 PMCID: PMC11254119 DOI: 10.1097/bs9.0000000000000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/07/2024] [Indexed: 07/20/2024] Open
Abstract
Hematopoietic stem progenitor cells (HSPCs) are derived from a specialized subset of endothelial cells named hemogenic endothelial cells (HECs) via a process of endothelial-to-hematopoietic transition during embryogenesis. Recently, with the usage of multiple single-cell technologies and advanced genetic lineage tracing techniques, namely, "TIF" approaches that combining transcriptome, immunophenotype and function/fate analyses, massive new insights have been achieved regarding the cellular and molecular evolution underlying the emergence of HSPCs from embryonic vascular beds. In this review, we focus on the most recent advances in the enrichment markers, functional characteristics, developmental paths, molecular controls, and the embryonic site-relevance of the key intermediate cell populations bridging embryonic vascular and hematopoietic systems, namely HECs and pre-hematopoietic stem cells, the immediate progenies of some HECs, in mouse and human embryos. Specifically, using expression analyses at both transcriptional and protein levels and especially efficient functional assays, we propose that the onset of Kit expression is at the HEC stage, which has previously been controversial.
Collapse
Affiliation(s)
- Siyuan Hou
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xia Guo
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Junjie Du
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
| | - Xiaochen Ding
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaowei Ning
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haizhen Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Haifeng Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Bing Liu
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yu Lan
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Yokomizo T, Ideue T, Morino-Koga S, Tham CY, Sato T, Takeda N, Kubota Y, Kurokawa M, Komatsu N, Ogawa M, Araki K, Osato M, Suda T. Independent origins of fetal liver haematopoietic stem and progenitor cells. Nature 2022; 609:779-784. [DOI: 10.1038/s41586-022-05203-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/05/2022] [Indexed: 11/09/2022]
|
3
|
Fan X, Krzyzanski W, Wong RSM, Yan X. Fate Determination Role of Erythropoietin and Romiplostim in the Lineage Commitment of Hematopoietic Progenitors. J Pharmacol Exp Ther 2022; 382:31-43. [PMID: 35489782 DOI: 10.1124/jpet.122.001130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022] Open
Abstract
Erythropoietin (EPO) and thrombopoietin (TPO) have long been known to promote erythropoiesis and megakaryopoiesis, respectively. However, the fate-changing role of EPO and TPO on megakaryocyte-erythroid progenitors (MEPs) to develop along the erythroid versus megakaryocyte lineage remains unclear. We have previously shown that EPO may have a fate-changing role because EPO treatment could induce progenitor cells depletion and result in EPO resistance. Therefore, we hypothesize that a combination of romiplostim, a TPO receptor agonist that could stimulate the expansion of progenitors, with EPO can treat EPO resistance. Using rats with anemia due to chronic kidney disease, we demonstrated that romiplostim synergized with EPO to promote red blood cells production whereas EPO inhibited platelet production in a dose-dependent manner to reduce the risk of thrombosis. Corroborating findings from in vivo, in vitro experiments demonstrated that romiplostim expanded hematopoietic stem cells and stimulated megakaryopoiesis whereas EPO drove the progenitors toward an erythroid fate. We further developed a novel pharmacokinetic-pharmacodynamic model to quantify the effects of EPO and romiplostim on megakaryopoiesis and erythropoiesis simultaneously. The modeling results demonstrated that EPO increased the differentiation rate of MEPs into burst-forming unit-erythroid cells up to 22-fold, indicating that the slight increase of MEPs induced by romiplostim could be further amplified and recruited by EPO to promote erythropoiesis. The data herein support that romiplostim in combination with EPO can treat EPO resistance. SIGNIFICANCE STATEMENT: This study clarified that erythropoietin (EPO) drives the fate of megakaryocyte-erythroid progenitors (MEPs) toward the erythroid lineage, thus reducing their megakaryocyte (MK) lineage commitment, whereas romiplostim, a thrombopoietin receptor agonist, stimulates megakaryopoiesis through the MK-committed progenitor and MEP bifurcation pathways simultaneously. These findings support an innovative combination of romiplostim and EPO to treat EPO-resistant anemia because the combination therapy further promotes erythropoiesis compared to EPO monotherapy and inhibits platelet production compared to romiplostim monotherapy.
Collapse
Affiliation(s)
- Xiaoqing Fan
- School of Pharmacy (X.F., X.Y.) and Division of Hematology, Department of Medicine and Therapeutics (R.S.M.W.), Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; and Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York (W.K.)
| | - Wojciech Krzyzanski
- School of Pharmacy (X.F., X.Y.) and Division of Hematology, Department of Medicine and Therapeutics (R.S.M.W.), Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; and Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York (W.K.)
| | - Raymond S M Wong
- School of Pharmacy (X.F., X.Y.) and Division of Hematology, Department of Medicine and Therapeutics (R.S.M.W.), Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; and Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York (W.K.)
| | - Xiaoyu Yan
- School of Pharmacy (X.F., X.Y.) and Division of Hematology, Department of Medicine and Therapeutics (R.S.M.W.), Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; and Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York (W.K.)
| |
Collapse
|
4
|
Murine AGM single-cell profiling identifies a continuum of hemogenic endothelium differentiation marked by ACE. Blood 2021; 139:343-356. [PMID: 34517413 DOI: 10.1182/blood.2020007885] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/19/2021] [Indexed: 11/20/2022] Open
Abstract
In vitro generation and expansion of hematopoietic stem cells (HSCs) holds great promise for the treatment of any ailment that relies on bone marrow or blood transplantation. To achieve this, it is essential to resolve the molecular and cellular pathways that govern HSC formation in the embryo. HSCs first emerge in the aorta-gonad-mesonephros region (AGM) where a rare subset of endothelial cells, hemogenic endothelium (HE), undergoes an endothelial-to-hematopoietic transition (EHT). Here, we present full-length single-cell-RNA-sequencing of the EHT process with a focus on HE and dorsal aorta niche cells. By using Runx1b and Gfi1/1b transgenic reporter mouse models to isolate HE, we uncovered that the pre-HE to HE continuum is specifically marked by Angiotensin-I converting enzyme (ACE) expression. We established that HE cells begin to enter the cell cycle near the time of EHT initiation when their morphology still resembles endothelial cells. We further demonstrated that RUNX1 AGM niche cells consist of vascular smooth muscle cells and PDGFRa+ mesenchymal cells and can functionally support hematopoiesis. Overall, our study provides new insights into HE differentiation towards HSC and the role of AGM RUNX1+ niche cells in this process. Our expansive scRNA-seq datasets represents a powerful resource to investigate these processes further.
Collapse
|
5
|
Mevel R, Steiner I, Mason S, Galbraith LCA, Patel R, Fadlullah MZH, Ahmad I, Leung HY, Oliveira P, Blyth K, Baena E, Lacaud G. RUNX1 marks a luminal castration-resistant lineage established at the onset of prostate development. eLife 2020; 9:e60225. [PMID: 33025905 PMCID: PMC7644213 DOI: 10.7554/elife.60225] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
The characterization of prostate epithelial hierarchy and lineage heterogeneity is critical to understand its regenerative properties and malignancies. Here, we report that the transcription factor RUNX1 marks a specific subpopulation of proximal luminal cells (PLCs), enriched in the periurethral region of the developing and adult mouse prostate, and distinct from the previously identified NKX3.1+ luminal castration-resistant cells. Using scRNA-seq profiling and genetic lineage tracing, we show that RUNX1+ PLCs are unaffected by androgen deprivation, and do not contribute to the regeneration of the distal luminal compartments. Furthermore, we demonstrate that a transcriptionally similar RUNX1+ population emerges at the onset of embryonic prostate specification to populate the proximal region of the ducts. Collectively, our results reveal that RUNX1+ PLCs is an intrinsic castration-resistant and self-sustained lineage that emerges early during prostate development and provide new insights into the lineage relationships of the prostate epithelium.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research United Kingdom, Stem Cell Biology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| | - Ivana Steiner
- Cancer Research United Kingdom, Prostate Oncobiology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| | - Susan Mason
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
| | - Laura CA Galbraith
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
| | - Rahima Patel
- Cancer Research United Kingdom, Stem Cell Biology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| | - Muhammad ZH Fadlullah
- Cancer Research United Kingdom, Stem Cell Biology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| | - Imran Ahmad
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, BearsdenGlasgowUnited Kingdom
| | - Hing Y Leung
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, BearsdenGlasgowUnited Kingdom
| | - Pedro Oliveira
- Department of Pathology, The Christie NHS Foundation TrustManchesterUnited Kingdom
| | - Karen Blyth
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, BearsdenGlasgowUnited Kingdom
| | - Esther Baena
- Cancer Research United Kingdom, Prostate Oncobiology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
- Belfast-Manchester Movember Centre of Excellence, Cancer Research United Kingdom Manchester Institute, The University of ManchesterAlderley ParkUnited Kingdom
| | - Georges Lacaud
- Cancer Research United Kingdom, Stem Cell Biology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| |
Collapse
|
6
|
PDE2A Is Indispensable for Mouse Liver Development and Hematopoiesis. Int J Mol Sci 2020; 21:ijms21082902. [PMID: 32326334 PMCID: PMC7215450 DOI: 10.3390/ijms21082902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022] Open
Abstract
Phosphodiesterase 2A (PDE2A) is a cAMP-cGMP hydrolyzing enzyme essential for mouse development and the PDE2A knockout model (PDE2A−/−) is embryonic lethal. Notably, livers of PDE2A−/− embryos at embryonic day 14.5 (E14.5) have extremely reduced size. Morphological, cellular and molecular analyses revealed loss of integrity in the PDE2A−/− liver niche that compromises the hematopoietic function and maturation. Hematopoietic cells isolated from PDE2A−/− livers are instead able to differentiate in in vitro assays, suggesting the absence of blood cell-autonomous defects. Apoptosis was revealed in hepatoblasts and at the endothelial and stromal compartments in livers of PDE2A−/− embryos. The increase of the intracellular cAMP level and of the inducible cAMP early repressor (ICER) in liver of PDE2A−/− embryos might explain the impairment of liver development by downregulating the expression of the anti-apoptotic gene Bcl2. In summary, we propose PDE2A as an essential gene for integrity maintenance of liver niche and the accomplishment of hematopoiesis.
Collapse
|
7
|
Miyamoto C, Kojo S, Yamashita M, Moro K, Lacaud G, Shiroguchi K, Taniuchi I, Ebihara T. Runx/Cbfβ complexes protect group 2 innate lymphoid cells from exhausted-like hyporesponsiveness during allergic airway inflammation. Nat Commun 2019; 10:447. [PMID: 30683858 PMCID: PMC6347616 DOI: 10.1038/s41467-019-08365-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/08/2019] [Indexed: 01/01/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) have tissue-resident competence and contribute to the pathogenesis of allergic diseases. However, the mechanisms regulating prolonged ILC2-mediated TH2 cytokine production under chronic inflammatory conditions are unclear. Here we show that, at homeostasis, Runx deficiency induces excessive ILC2 activation due to overly active GATA-3 functions. By contrast, during allergic inflammation, the absence of Runx impairs the ability of ILC2s to proliferate and produce effector TH2 cytokines and chemokines. Instead, functional deletion of Runx induces the expression of exhaustion markers, such as IL-10 and TIGIT, on ILC2s. Finally, these 'exhausted-like' ILC2s are unable to induce type 2 immune responses to repeated allergen exposures. Thus, Runx confers competence for sustained ILC2 activity at the mucosa, and contributes to allergic pathogenesis.
Collapse
Affiliation(s)
- Chizuko Miyamoto
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Satoshi Kojo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Motoi Yamashita
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Katsuyuki Shiroguchi
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0874, Japan
- JST PRESTO, Kawaguchi, 332-0012, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takashi Ebihara
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|