1
|
Che R, Panah M, Mirani B, Knowles K, Ostapovich A, Majumdar D, Chen X, DeSimone J, White W, Noonan M, Luo H, Alexandrov A. Identification of Human Pathways Acting on Nuclear Non-Coding RNAs Using the Mirror Forward Genetic Approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.26.615073. [PMID: 39386709 PMCID: PMC11463631 DOI: 10.1101/2024.09.26.615073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Despite critical roles in diseases, human pathways acting on strictly nuclear non-coding RNAs have been refractory to forward genetics. To enable their forward genetic discovery, we developed a single-cell approach that "Mirrors" activities of nuclear pathways with cytoplasmic fluorescence. Application of Mirror to two nuclear pathways targeting MALAT1's 3' end, the pathway of its maturation and the other, the degradation pathway blocked by the triple-helical Element for Nuclear Expression (ENE), identified nearly all components of three complexes: Ribonuclease P and the RNA Exosome, including nuclear DIS3, EXOSC10, and C1D, as well as the Nuclear Exosome Targeting (NEXT) complex. Additionally, Mirror identified DEAD-box helicase DDX59 associated with the genetic disorder Oral-Facial-Digital syndrome (OFD), yet lacking known substrates or roles in nuclear RNA degradation. Knockout of DDX59 exhibits stabilization of the full-length MALAT1 with a stability-compromised ENE and increases levels of 3'-extended forms of small nuclear RNAs. It also exhibits extensive retention of minor introns, including in OFD-associated genes, suggesting a mechanism for DDX59 association with OFD. Mirror efficiently identifies pathways acting on strictly nuclear non-coding RNAs, including essential and indirectly-acting components, and, as a result, uncovers unexpected links to human disease.
Collapse
Affiliation(s)
- Rui Che
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Monireh Panah
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Bhoomi Mirani
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Krista Knowles
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Anastacia Ostapovich
- Dept. of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536, USA
| | - Debarati Majumdar
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Xiaotong Chen
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - Joseph DeSimone
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - William White
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - Megan Noonan
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - Hong Luo
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - Andrei Alexandrov
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| |
Collapse
|
2
|
Nemsick S, Hansen AS. Molecular models of bidirectional promoter regulation. Curr Opin Struct Biol 2024; 87:102865. [PMID: 38905929 PMCID: PMC11550790 DOI: 10.1016/j.sbi.2024.102865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/30/2024] [Accepted: 05/27/2024] [Indexed: 06/23/2024]
Abstract
Approximately 11% of human genes are transcribed by a bidirectional promoter (BDP), defined as two genes with <1 kb between their transcription start sites. Despite their evolutionary conservation and enrichment for housekeeping genes and oncogenes, the regulatory role of BDPs remains unclear. BDPs have been suggested to facilitate gene coregulation and/or decrease expression noise. This review discusses these potential regulatory functions through the context of six prospective underlying mechanistic models: a single nucleosome free region, shared transcription factor/regulator binding, cooperative negative supercoiling, bimodal histone marks, joint activation by enhancer(s), and RNA-mediated recruitment of regulators. These molecular mechanisms may act independently and/or cooperatively to facilitate the coregulation and/or decreased expression noise predicted of BDPs.
Collapse
Affiliation(s)
- Sarah Nemsick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Cai X, Qian M, Zhang K, Li Y, Chang B, Chen M. Profiling and Bioinformatics Analyses of Hypoxia-Induced Differential Expression of Long Non-coding RNA in Glioblastoma Multiforme Cells. Biochem Genet 2024; 62:3052-3070. [PMID: 38066404 DOI: 10.1007/s10528-023-10597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/08/2023] [Indexed: 07/31/2024]
Abstract
Hypoxic microenvironments are intricately linked to malignant characteristics of glioblastoma multiforme (GBM). Long non-coding ribonucleic acids (lncRNAs) have been reported to be involved in the progression of GBM and closely associated with hypoxia. Nevertheless, the differential expression profiles as well as functional roles of lncRNAs in GBM cells under hypoxic conditions remain largely obscure. We explored the expression profiles of lncRNAs in hypoxic U87 cells as well as T98G cells using sequencing analysis. The effect of differentially expressed lncRNAs (DElncRNAs) was assessed through bioinformatic analysis. Furthermore, the expression of lncRNAs significantly dysregulated in both U87 and T98G cells was further validated using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Relevant cell functional experiments were also conducted. We used predicted RNA-binding proteins (RBPs) to construct an interaction network via the interaction prediction module. U87 and T98G cells showed dysregulation of 1115 and 597 lncRNAs, respectively. Gene Ontology (GO) analysis indicated that altered lncRNA expression was associated with nucleotide-excision repair and cell metabolism in GBM cells. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the association between dysregulated lncRNAs and the Hippo signaling pathway under hypoxia. The dysregulation of six selected lncRNAs (ENST00000371192, uc003tnq.3, ENST00000262952, ENST00000609350, ENST00000610036, and NR_046262) was validated by qRT-PCR. Investigation of lncRNA-microRNA (miRNA)-mRNA networks centered on HIF-1α demonstrated cross-talk between the six validated lncRNAs and 16 related miRNAs. Functional experiments showed the significant inhibition of GBM cell proliferation, invasion, and migration by the knockdown of uc003tnq.3 in vitro. Additionally, uc003tnq.3 was used to construct a comprehensive RBP-transcription factor (TF)-miRNA interaction network. The expression of LncRNAs was dysregulated in GBM cells under hypoxic conditions. The identified six lncRNAs might exert important effect on the development of GBM under hypoxic microenvironment.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Yangpu District, Shanghai, 200092, China
| | - Mengshu Qian
- Department of Emergency and Critical Care Medicine, Kong Jiang Hospital of Yangpu District, Shanghai, 200082, China
| | - Kui Zhang
- Department of Plastic Surgery, Xuzhou Medical University Affiliated Xuzhou City Hospital, Xuzhou, 221000, Jiangsu, China
| | - Yanzhen Li
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Yangpu District, Shanghai, 200092, China
| | - Bowen Chang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lu Jiang Road, Luyang District, Hefei, 230001, Anhui, China.
| | - Ming Chen
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Yangpu District, Shanghai, 200092, China.
| |
Collapse
|
4
|
van Staalduinen J, van Staveren T, Grosveld F, Wendt KS. Live-cell imaging of chromatin contacts opens a new window into chromatin dynamics. Epigenetics Chromatin 2023; 16:27. [PMID: 37349773 PMCID: PMC10288748 DOI: 10.1186/s13072-023-00503-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Our understanding of the organization of the chromatin fiber within the cell nucleus has made great progress in the last few years. High-resolution techniques based on next-generation sequencing as well as optical imaging that can investigate chromatin conformations down to the single cell level have revealed that chromatin structure is highly heterogeneous at the level of the individual allele. While TAD boundaries and enhancer-promoter pairs emerge as hotspots of 3D proximity, the spatiotemporal dynamics of these different types of chromatin contacts remain largely unexplored. Investigation of chromatin contacts in live single cells is necessary to close this knowledge gap and further enhance the current models of 3D genome organization and enhancer-promoter communication. In this review, we first discuss the potential of single locus labeling to study architectural and enhancer-promoter contacts and provide an overview of the available single locus labeling techniques such as FROS, TALE, CRISPR-dCas9 and ANCHOR, and discuss the latest developments and applications of these systems.
Collapse
Affiliation(s)
- Jente van Staalduinen
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Thomas van Staveren
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Coursimault J, Cassinari K, Lecoquierre F, Quenez O, Coutant S, Derambure C, Vezain M, Drouot N, Vera G, Schaefer E, Philippe A, Doray B, Lambert L, Ghoumid J, Smol T, Rama M, Legendre M, Lacombe D, Fergelot P, Olaso R, Boland A, Deleuze JF, Goldenberg A, Saugier-Veber P, Nicolas G. Deep intronic NIPBL de novo mutations and differential diagnoses revealed by whole genome and RNA sequencing in Cornelia de Lange syndrome patients. Hum Mutat 2022; 43:1882-1897. [PMID: 35842780 DOI: 10.1002/humu.24438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/23/2022] [Accepted: 07/09/2022] [Indexed: 01/25/2023]
Abstract
Cornelia de Lange syndrome (CdLS; MIM# 122470) is a rare developmental disorder. Pathogenic variants in 5 genes explain approximately 50% cases, leaving the other 50% unsolved. We performed whole genome sequencing (WGS) ± RNA sequencing (RNA-seq) in 5 unsolved trios fulfilling the following criteria: (i) clinical diagnosis of classic CdLS, (ii) negative gene panel sequencing from blood and saliva-isolated DNA, (iii) unaffected parents' DNA samples available and (iv) proband's blood-isolated RNA available. A pathogenic de novo mutation (DNM) was observed in a CdLS differential diagnosis gene in 3/5 patients, namely POU3F3, SPEN, and TAF1. In the other two, we identified two distinct deep intronic DNM in NIPBL predicted to create a novel splice site. RT-PCRs and RNA-Seq showed aberrant transcripts leading to the creation of a novel frameshift exon. Our findings suggest the relevance of WGS in unsolved suspected CdLS cases and that deep intronic variants may account for a proportion of them.
Collapse
Affiliation(s)
- Juliette Coursimault
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Kévin Cassinari
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - François Lecoquierre
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Olivier Quenez
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Sophie Coutant
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Céline Derambure
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Myriam Vezain
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Nathalie Drouot
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Gabriella Vera
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Elise Schaefer
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anaïs Philippe
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Bérénice Doray
- Service de Génétique Médicale, Centre Hospitalier Universitaire Félix Guyon, Bellepierre Saint Denis, France
| | - Laëtitia Lambert
- Service de Génétique Clinique, CHRU NANCY, F-54000 France, UMR INSERM U 1256 N-GERE, F-54000, Nancy, France
| | - Jamal Ghoumid
- Université de Lille, ULR7364 RADEME, CHU Lille, Clinique de Génétique « Guy Fontaine », and FHU-G4 Génomique, F-59000, Lille, France
| | - Thomas Smol
- Université de Lille, ULR7364 RADEME, CHU Lille, Institut de Génétique Médicale, and FHU-G4 Génomique, F-59000, Lille, France
| | - Mélanie Rama
- Institut de Génétique Médicale, CHU de Lille, France
| | - Marine Legendre
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Didier Lacombe
- INSERM U1211, Université de Bordeaux; Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Patricia Fergelot
- INSERM U1211, Université de Bordeaux; Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Robert Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Alice Goldenberg
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Pascale Saugier-Veber
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Gaël Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| |
Collapse
|
6
|
Shi M, Liang Y, Xie B, Wei X, Zheng H, Gui C, Huang R, Fan X, Li C, Wei X, Ma Y, Chen S, Chen Y, Gui B. Case report: A novel heterozygous synonymous variant in deep exon region of NIPBL gene generating a non-canonical splice donor in a patient with cornelia de lange syndrome. Front Genet 2022; 13:1056127. [PMID: 36506332 PMCID: PMC9726764 DOI: 10.3389/fgene.2022.1056127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) is an autosomal dominant or X-linked genetic disease with significant genetic heterogeneity. Variants of the NIPBL gene are responsible for CdLS in 60% of patients. Herein, we report the case of a patient with CdLS showing distinctive facial features, microcephaly, developmental delay, and growth retardation. Whole exome sequencing was performed for the patient, and a novel de novo heterozygous synonymous variant was identified in the deep region of exon 40 in the NIPBL gene (NM_133433.4: c. 6819G > T, p. Gly2273 = ). The clinical significance of the variant was uncertain according to the ACMG/AMP guidelines; however, based on in silico analysis, it was predicted to alter mRNA splicing. To validate the prediction, a reverse transcriptase-polymerase chain reaction was conducted. The variant activated a cryptic splice donor, generating a short transcript of NIPBL. A loss of 137 bp at the 3' end of NIPBL exon 40 was detected, which potentially altered the open reading frame by inserting multiple premature termination codons. Quantitative real-time PCR analysis showed that the ratio of the transcription level of the full-length transcript to that of the altered short transcript in the patient was 5:1, instead of 1:1. These findings may explain the relatively mild phenotype of the patient, regardless of the loss of function of the truncated protein due to a frameshift in the mRNA. To the best of our knowledge, this study is the first to report a synonymous variant in the deep exon regions of the NIPBL gene responsible for CdLS. The identified variant expands the mutational spectrum of the NIPBL gene. Furthermore, synonymous variations may be pathogenic, which should not be ignored in the clinical and genetic diagnosis of the disease.
Collapse
Affiliation(s)
- Meizhen Shi
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China,The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuying Liang
- Department of Pediatrics, The Traditional Chinese Medicine Hospital of YuLin, Yulin, China
| | - Bobo Xie
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China,The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xianda Wei
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China,The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haiyang Zheng
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China,The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunrong Gui
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China,The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rong Huang
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China,The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xin Fan
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China,Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chuan Li
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China,Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaojiao Wei
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yunting Ma
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shaoke Chen
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China,Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China,*Correspondence: Shaoke Chen, ; Yujun Chen, ; Baoheng Gui,
| | - Yujun Chen
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China,Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China,*Correspondence: Shaoke Chen, ; Yujun Chen, ; Baoheng Gui,
| | - Baoheng Gui
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China,The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China,*Correspondence: Shaoke Chen, ; Yujun Chen, ; Baoheng Gui,
| |
Collapse
|
7
|
The Cohesin Complex and Its Interplay with Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040067. [PMID: 34707078 PMCID: PMC8552073 DOI: 10.3390/ncrna7040067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
The cohesin complex is a multi-subunit protein complex initially discovered for its role in sister chromatid cohesion. However, cohesin also has several other functions and plays important roles in transcriptional regulation, DNA double strand break repair, and chromosome architecture thereby influencing gene expression and development in organisms from yeast to man. While most of these functions rely on protein–protein interactions, post-translational protein, as well as DNA modifications, non-coding RNAs are emerging as additional players that facilitate and modulate the function or expression of cohesin and its individual components. This review provides a condensed overview about the architecture as well as the function of the cohesin complex and highlights its multifaceted interplay with both short and long non-coding RNAs.
Collapse
|
8
|
Mao Y, Nie Q, Yang Y, Mao G. Identification of co‑expression modules and hub genes of retinoblastoma via co‑expression analysis and protein‑protein interaction networks. Mol Med Rep 2020; 22:1155-1168. [PMID: 32468072 PMCID: PMC7339782 DOI: 10.3892/mmr.2020.11189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
Retinoblastoma is a common intraocular malignant tumor in children. However, the molecular and genetic mechanisms of retinoblastoma remain unclear. The gene expression dataset GSE110811 was retrieved from Gene Expression Omnibus. After preprocessing, coexpression modules were constructed by weighted gene coexpression network analysis (WGCNA), and modules associated with clinical traits were identified. In addition, functional enrichment analysis was performed for genes in the indicated modules, and protein-protein interaction (PPI) networks and subnetworks were constructed based on these genes. Eight coexpression modules were constructed through WGCNA. Of these, the yellow module had the highest association with severity and age (r=0.82 and P=3e-07; r=0.72 and P=3e-05). The turquoise module had the highest association with months (r=−0.63 and P=5e-04). The genes in the two modules participate in multiple pathways of retinoblastoma, and by combining the PPI network and subnetworks; 10 hub genes were identified in the two modules. The present study identified coexpression modules and hub genes associated with clinical traits of retinoblastoma, providing novel insight into retinoblastoma progression.
Collapse
Affiliation(s)
- Yukun Mao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Qingbin Nie
- Department of Neurovascular Surgery, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100039, P.R. China
| | - Yang Yang
- Department of Neurovascular Surgery, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100039, P.R. China
| | - Gengsheng Mao
- Department of Neurovascular Surgery, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100039, P.R. China
| |
Collapse
|
9
|
Parenti I, Diab F, Gil SR, Mulugeta E, Casa V, Berutti R, Brouwer RWW, Dupé V, Eckhold J, Graf E, Puisac B, Ramos F, Schwarzmayr T, Gines MM, van Staveren T, van IJcken WFJ, Strom TM, Pié J, Watrin E, Kaiser FJ, Wendt KS. MAU2 and NIPBL Variants Impair the Heterodimerization of the Cohesin Loader Subunits and Cause Cornelia de Lange Syndrome. Cell Rep 2020; 31:107647. [PMID: 32433956 DOI: 10.1016/j.celrep.2020.107647] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/30/2019] [Accepted: 04/24/2020] [Indexed: 12/26/2022] Open
Abstract
The NIPBL/MAU2 heterodimer loads cohesin onto chromatin. Mutations in NIPBL account for most cases of the rare developmental disorder Cornelia de Lange syndrome (CdLS). Here we report a MAU2 variant causing CdLS, a deletion of seven amino acids that impairs the interaction between MAU2 and the NIPBL N terminus. Investigating this interaction, we discovered that MAU2 and the NIPBL N terminus are largely dispensable for normal cohesin and NIPBL function in cells with a NIPBL early truncating mutation. Despite a predicted fatal outcome of an out-of-frame single nucleotide duplication in NIPBL, engineered in two different cell lines, alternative translation initiation yields a form of NIPBL missing N-terminal residues. This form cannot interact with MAU2, but binds DNA and mediates cohesin loading. Altogether, our work reveals that cohesin loading can occur independently of functional NIPBL/MAU2 complexes and highlights a novel mechanism protective against out-of-frame mutations that is potentially relevant for other genetic conditions.
Collapse
Affiliation(s)
- Ilaria Parenti
- Sektion für Funktionelle Genetik am Institut für Humangenetik Lübeck, Universität zu Lübeck, Lübeck, Germany; Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Farah Diab
- Centre National de la Recherche Scientifique, UMR6290, Rennes, France; Institut de Génétique et Développement de Rennes, Université de Rennes, Rennes, France
| | - Sara Ruiz Gil
- Sektion für Funktionelle Genetik am Institut für Humangenetik Lübeck, Universität zu Lübeck, Lübeck, Germany
| | | | - Valentina Casa
- Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands
| | - Riccardo Berutti
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Rutger W W Brouwer
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Center for Biomics, the Netherlands
| | - Valerie Dupé
- Centre National de la Recherche Scientifique, UMR6290, Rennes, France; Institut de Génétique et Développement de Rennes, Université de Rennes, Rennes, France
| | - Juliane Eckhold
- Sektion für Funktionelle Genetik am Institut für Humangenetik Lübeck, Universität zu Lübeck, Lübeck, Germany; Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Beatriz Puisac
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology and Paediatrics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, 50009 Zaragoza, Spain
| | - Feliciano Ramos
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology and Paediatrics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, 50009 Zaragoza, Spain
| | - Thomas Schwarzmayr
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | - Wilfred F J van IJcken
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Center for Biomics, the Netherlands
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Juan Pié
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology and Paediatrics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, 50009 Zaragoza, Spain
| | - Erwan Watrin
- Centre National de la Recherche Scientifique, UMR6290, Rennes, France; Institut de Génétique et Développement de Rennes, Université de Rennes, Rennes, France
| | - Frank J Kaiser
- Sektion für Funktionelle Genetik am Institut für Humangenetik Lübeck, Universität zu Lübeck, Lübeck, Germany; Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany; DZHK e.V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.
| | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
10
|
Kashyap A, Rhodes A, Kronmiller B, Berger J, Champagne A, Davis EW, Finnegan MV, Geniza M, Hendrix DA, Löhr CV, Petro VM, Sharpton TJ, Wells J, Epps CW, Jaiswal P, Tyler BM, Ramsey SA. Pan-tissue transcriptome analysis of long noncoding RNAs in the American beaver Castor canadensis. BMC Genomics 2020; 21:153. [PMID: 32050897 PMCID: PMC7014947 DOI: 10.1186/s12864-019-6432-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have roles in gene regulation, epigenetics, and molecular scaffolding and it is hypothesized that they underlie some mammalian evolutionary adaptations. However, for many mammalian species, the absence of a genome assembly precludes the comprehensive identification of lncRNAs. The genome of the American beaver (Castor canadensis) has recently been sequenced, setting the stage for the systematic identification of beaver lncRNAs and the characterization of their expression in various tissues. The objective of this study was to discover and profile polyadenylated lncRNAs in the beaver using high-throughput short-read sequencing of RNA from sixteen beaver tissues and to annotate the resulting lncRNAs based on their potential for orthology with known lncRNAs in other species. RESULTS Using de novo transcriptome assembly, we found 9528 potential lncRNA contigs and 187 high-confidence lncRNA contigs. Of the high-confidence lncRNA contigs, 147 have no known orthologs (and thus are putative novel lncRNAs) and 40 have mammalian orthologs. The novel lncRNAs mapped to the Oregon State University (OSU) reference beaver genome with greater than 90% sequence identity. While the novel lncRNAs were on average shorter than their annotated counterparts, they were similar to the annotated lncRNAs in terms of the relationships between contig length and minimum free energy (MFE) and between coverage and contig length. We identified beaver orthologs of known lncRNAs such as XIST, MEG3, TINCR, and NIPBL-DT. We profiled the expression of the 187 high-confidence lncRNAs across 16 beaver tissues (whole blood, brain, lung, liver, heart, stomach, intestine, skeletal muscle, kidney, spleen, ovary, placenta, castor gland, tail, toe-webbing, and tongue) and identified both tissue-specific and ubiquitous lncRNAs. CONCLUSIONS To our knowledge this is the first report of systematic identification of lncRNAs and their expression atlas in beaver. LncRNAs-both novel and those with known orthologs-are expressed in each of the beaver tissues that we analyzed. For some beaver lncRNAs with known orthologs, the tissue-specific expression patterns were phylogenetically conserved. The lncRNA sequence data files and raw sequence files are available via the web supplement and the NCBI Sequence Read Archive, respectively.
Collapse
Affiliation(s)
- Amita Kashyap
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Adelaide Rhodes
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Brent Kronmiller
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Josie Berger
- College of Forestry, Oregon State University, Corvallis, OR, USA
| | - Ashley Champagne
- College of Forestry, Oregon State University, Corvallis, OR, USA
| | - Edward W Davis
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | | | - Matthew Geniza
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - David A Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.,School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA
| | - Christiane V Löhr
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Vanessa M Petro
- College of Forestry, Oregon State University, Corvallis, OR, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, USA.,Department of Statistics, Oregon State University, Corvallis, OR, USA
| | - Jackson Wells
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Clinton W Epps
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Brett M Tyler
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Stephen A Ramsey
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA. .,School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
11
|
Gong W, Yang L, Wang Y, Xian J, Qiu F, Liu L, Lin M, Feng Y, Zhou Y, Lu J. Analysis of Survival-Related lncRNA Landscape Identifies A Role for LINC01537 in Energy Metabolism and Lung Cancer Progression. Int J Mol Sci 2019; 20:ijms20153713. [PMID: 31374807 PMCID: PMC6696180 DOI: 10.3390/ijms20153713] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
Many long non-coding RNAs (lncRNAs) have emerged as good biomarkers and potential therapeutic targets for various cancers. We aimed to get a detailed understanding of the lncRNA landscape that is associated with lung cancer survival. A comparative analysis between our RNA sequencing (RNA-seq) data and TCGA datasets was conducted to reveal lncRNAs with significant correlations with lung cancer survival and then the association of the most promising lncRNA was validated in a cohort of 243 lung cancer patients. Comparing RNA-seq data with TCGA ones, 84 dysregulated lncRNAs were identified in lung cancer tissues, among which 10 lncRNAs were significantly associated with lung cancer survival. LINC01537 was the most significant one (p = 2.95 × 10−6). Validation analysis confirmed the downregulation of LINC01537 in lung cancer. LINC01537 was observed to inhibit tumor growth and metastasis. It also increased cellular sensitivity to nilotinib. PDE2A (phosphodiesterase 2A) was further identified to be a target of LINC01537 and it was seen that LINC01537 promoted PDE2A expression via RNA–RNA interaction to stabilize PDE2A mRNA and thus echoed effects of PDE2A on energy metabolism including both Warburg effect and mitochondrial respiration. Other regulators of tumor energy metabolism were also affected by LINC01537. These results elucidate a suppressed role of LINC01537 in lung cancer development involving tumor metabolic reprogramming, and we believe that it might be a biomarker for cancer survival prediction and therapy.
Collapse
Affiliation(s)
- Wei Gong
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China.
| | - Yuanyuan Wang
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Jianfeng Xian
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Li Liu
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Mingzhu Lin
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Yingyi Feng
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, 1 Shizi Road, Suzhou 215123, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China.
| |
Collapse
|
12
|
Mintzas K, Heuser M. Emerging strategies to target the dysfunctional cohesin complex in cancer. Expert Opin Ther Targets 2019; 23:525-537. [PMID: 31020869 DOI: 10.1080/14728222.2019.1609943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/17/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Mutations in cohesin genes have been described in numerous solid cancers and hematologic malignancies; subsequent experimental evidence has linked these mutations with carcinogenesis. Areas covered: In this review, we present current information about the physiological role of the cohesin complex in normal and malignant cells and describe current therapeutic strategies that are being explored in cohesin-mutated cancers. We discuss a range of targets and strategies that should be explored to develop targeted therapies for patients with aberrant cohesin. Expert opinion: Targeting of the cohesin complex is an underexplored area of drug development. There is a high frequency of cohesin mutations in multiple cancers, hence specific targeting strategies should be explored. Cohesins play a crucial role in cellular organization; therefore, we expect a narrow therapeutic window of direct inhibitors of cohesin components. Exploiting experimental approaches that correct dysfunctional cohesins and coupling them with current therapeutic strategies can provide novel, innovative and more effective treatment regimens.
Collapse
Affiliation(s)
- Konstantinos Mintzas
- a Department of Hematology , Oncology, Hemostasis and Stem Cell Transplantation, Hannover Medical School , Hannover , Germany
| | - Michael Heuser
- a Department of Hematology , Oncology, Hemostasis and Stem Cell Transplantation, Hannover Medical School , Hannover , Germany
| |
Collapse
|
13
|
Tang H, Guo J, Linpeng S, Wu L. Next generation sequencing identified two novel mutations in NIPBL and a frame shift mutation in CREBBP in three Chinese children. Orphanet J Rare Dis 2019; 14:45. [PMID: 30770747 PMCID: PMC6377774 DOI: 10.1186/s13023-019-1022-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/04/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Cornelia de Lange syndrome (CdLS) and Rubinstein-Taybi syndrome (RSTS) are both rare congenital multiple malformation disorders caused by genes associated with transcription. They share a number of similar features clinically. In addition, it is difficult to make a molecular diagnosis rapidly and detect the mosaic mutation when only sanger sequencing is taken. This study aims to report three novel mutations in three Chinese children identified by next generation sequencing. RESULTS We describe patient 1 and patient 2 presenting with characteristics of CdLS with mutations in NIPBL and patient 3 with a frame shift mutation in CREBBP who can be diagnosed as RSTS clinically and also have similar symptoms with CdLS to some extent. The splicing site c.4321-1G > A transversion in NIPBL is a mosaic mutation and produces an abnormal transcript bearing the loss of exon 20. The nonsense mutation c.218C > A in NIPBL and the frame shift c.1715delC mutation in CREBBP generate stop codon and yield the premature termination of proteins. CONCLUSIONS In general, we detect three novel heterozygous mutations including a splicing mutation and a nonsense mutation in NIPBL and a frame shift in CREBBP. And several similar features observed in patients indicate the clinical complexity and clinically overlapping of CdLS and RSTS termed "transcriptomopathies", suggest the underlying molecular mechanism and emphasize the utilization of next generation sequencing technologies.
Collapse
Affiliation(s)
- Hui Tang
- Center for Medical Genetics, School of life sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 People’s Republic of China
| | - Jing Guo
- Center for Medical Genetics, School of life sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 People’s Republic of China
| | - Siyuan Linpeng
- Center for Medical Genetics, School of life sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 People’s Republic of China
| | - Lingqian Wu
- Center for Medical Genetics, School of life sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 People’s Republic of China
| |
Collapse
|
14
|
Gao D, Zhu B, Cao X, Zhang M, Wang X. Roles of NIPBL in maintenance of genome stability. Semin Cell Dev Biol 2018; 90:181-186. [PMID: 30096364 DOI: 10.1016/j.semcdb.2018.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022]
Abstract
A cohesin-loading factor (NIPBL) is one of important regulatory factors in the maintenance of 3D genome organization and function, by interacting with a large number of factors, e.g. cohesion, CCCTC-binding factor (CTCF) or cohesin complex component. The present article overviews the critical and regulatory roles of NIBPL in cohesion loading on chromotin and in gene expression and transcriptional signaling. We explore molecular mechanisms by which NIPBL recruits endogenous histone deacetylase (HDAC) to induce histone deacetylation and influence multi-dimensions of genome, through which NIPBL "hop" movement in chromatin regulates gene expression and alters genome folding. NIPBL regulates the process of CTCF and cohesion into chromatin loops and topologically associated domains, binding of cohesion and H3K4mes3 through interaction among promoters and enhancers. HP1 recruits NIPBL to DNA damage site through RNF8/RNF168 ubiquitylation pathway. NIPBL contributes to regulation of genome-controlled gene expression through the influence of cohesin in chromosome structure. NIPBL interacts with cohesin and then increases transcriptional activities of REC8 promoter, leading to up-regulation of gene expression. NIPBL movement among chromosomal loops regulates gene expression through dynamic alterations of genome organization. Thus, we expect a new and deep insight to understand dynamics of chromosome and explore potential strategies of therapiesc on basis of NIPBL.
Collapse
Affiliation(s)
- Danyan Gao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China
| | - Bijun Zhu
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China
| | - Miaomiao Zhang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China.
| |
Collapse
|