1
|
Lohani N, Singh MB, Bhalla PL. Deciphering the Vulnerability of Pollen to Heat Stress for Securing Crop Yields in a Warming Climate. PLANT, CELL & ENVIRONMENT 2025; 48:2549-2580. [PMID: 39722468 DOI: 10.1111/pce.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
Climate change is leading to more frequent and severe extreme temperature events, negatively impacting agricultural productivity and threatening global food security. Plant reproduction, the process fundamental to crop yield, is highly susceptible to heatwaves, which disrupt pollen development and ultimately affect seed-set and crop yields. Recent research has increasingly focused on understanding how pollen grains from various crops react to heat stress at the molecular and cellular levels. This surge in interest over the last decade has been driven by advances in genomic technologies, such as single-cell RNA sequencing, which holds significant potential for revealing the underlying regulatory reprogramming triggered by heat stress throughout the various stages of pollen development. This review focuses on how heat stress affects gene regulatory networks, including the heat stress response, the unfolded protein response, and autophagy, and discusses the impact of these changes on various stages of pollen development. It highlights the potential of pollen selection as a key strategy for improving heat tolerance in crops by leveraging the genetic variability among pollen grains. Additionally, genome-wide association studies and population screenings have shed light on the genetic underpinnings of traits in major crops that respond to high temperatures during male reproductive stages. Gene-editing tools like CRISPR/Cas systems could facilitate precise genetic modifications to boost pollen heat resilience. The information covered in this review is valuable for selecting traits and employing molecular genetic approaches to develop heat-tolerant genotypes.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
2
|
Calixto CPG. Molecular aspects of heat stress sensing in land plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70069. [PMID: 40085177 PMCID: PMC11908636 DOI: 10.1111/tpj.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
Heat stress impacts all aspects of life, from evolution to global food security. Therefore, it becomes essential to understand how plants respond to heat stress, especially in the context of climate change. The heat stress response (HSR) involves three main components: sensing, signal transduction, and cellular reprogramming. Here, I focus on the heat stress sensing component. How can cells detect heat stress if it is not a signalling particle? To answer this question, I have looked at the molecular definition of heat stress. It can be defined as any particular rise in the optimum growth temperature that leads to higher-than-normal levels of reactive molecular species and macromolecular damage to biological membranes, proteins, and nucleic acid polymers (DNA and RNA). It is precisely these stress-specific alterations that are detected by heat stress sensors, upon which they would immediately trigger the appropriate level of the HSR. In addition, the work towards thermotolerance is complemented by a second type of response, here called the cellular homeostasis response (CHR). Upon mild and extreme temperature changes, the CHR is triggered by plant thermosensors, which are responsible for monitoring temperature information. Heat stress sensors and thermosensors are distinct types of molecules, each with unique modes of activation and functions. While many recent reviews provide a comprehensive overview of plant thermosensors, there remains a notable gap in the review literature regarding an in-depth analysis of plant heat stress sensors. Here, I attempt to summarise our current knowledge of the cellular sensors involved in triggering the plant HSR.
Collapse
|
3
|
Zhao 赵 J嘉, Fu H, Wang Z, Zhang M, Liang Y, Cui X, Pan W, Ren Z, Wu Z, Zhang Y, Gui X, Huo L, Lei X, Wang C, Schnittger A, Pawlowski WP, Liu B. Genetic variation in Arabidopsis thaliana reveals the existence of natural heat resilience factors for meiosis. PLANT PHYSIOLOGY 2024; 197:kiae671. [PMID: 39711182 DOI: 10.1093/plphys/kiae671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Heat interferes with multiple meiotic processes, leading to genome instability and sterility in flowering plants, including many crops. Despite its importance for food security, the mechanisms underlying heat tolerance of meiosis are poorly understood. In this study, we analyzed different meiotic processes in the Arabidopsis (Arabidopsis thaliana) accessions Col and Ler, their F1 hybrids, and the F2 offspring under heat stress (37 °C). At 37 °C, Col exhibits significantly reduced formation of double-strand breaks and completely abolished homolog pairing, synapsis, and crossover (CO) formation. Strikingly, Ler and Col/Ler hybrids exhibit normal CO formation and show mildly impacted homolog pairing and synapsis. Interestingly, only 10% to 20% of F2 offspring behave as Ler, revealing that heat tolerance of meiotic recombination in Arabidopsis is genetically controlled by several loci. Moreover, F2 offspring show defects in chromosome morphology and integrity and sister chromatid segregation, the levels of which exceed those in either inbreds or hybrids, thus implying a transgressive effect on heat tolerance of meiosis. Furthermore, correlation and cytogenetic analyses suggest that homolog pairing and synapsis have an impact on heat tolerance of chromosome morphology and stability at postrecombination stages. This study reveals natural heat resilience factors for meiosis in Arabidopsis, which have the great potential to be exploited in breeding programs.
Collapse
Affiliation(s)
- Jiayi 嘉怡 Zhao 赵
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Huiqi Fu
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Zhengze Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Zhang
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Yaoqiong Liang
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Xueying Cui
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Wenjing Pan
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Ziming Ren
- Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yujie Zhang
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Xin Gui
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Li Huo
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Xiaoning Lei
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chong Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Hamburg 22609, Germany
| | | | - Bing Liu
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
4
|
Tan Y, Tan T, Zhang S, Li B, Chen B, Zhou X, Wang Y, Yang X, Zhai B, Huang Q, Zhang L, Wang S. Temperature regulates negative supercoils to modulate meiotic crossovers and chromosome organization. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2426-2443. [PMID: 39048717 DOI: 10.1007/s11427-024-2671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Crossover recombination is a hallmark of meiosis that holds the paternal and maternal chromosomes (homologs) together for their faithful segregation, while promoting genetic diversity of the progeny. The pattern of crossover is mainly controlled by the architecture of the meiotic chromosomes. Environmental factors, especially temperature, also play an important role in modulating crossovers. However, it is unclear how temperature affects crossovers. Here, we examined the distribution of budding yeast axis components (Red1, Hop1, and Rec8) and the crossover-associated Zip3 foci in detail at different temperatures, and found that both increased and decreased temperatures result in shorter meiotic chromosome axes and more crossovers. Further investigations showed that temperature changes coordinately enhanced the hyperabundant accumulation of Hop1 and Red1 on chromosomes and the number of Zip3 foci. Most importantly, temperature-induced changes in the distribution of axis proteins and Zip3 foci depend on changes in DNA negative supercoils. These results suggest that yeast meiosis senses temperature changes by increasing the level of negative supercoils to increase crossovers and modulate chromosome organization. These findings provide a new perspective on understanding the effect and mechanism of temperature on meiotic recombination and chromosome organization, with important implications for evolution and breeding.
Collapse
Affiliation(s)
- Yingjin Tan
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Taicong Tan
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Shuxian Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
| | - Bo Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Beiyi Chen
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Xu Zhou
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Ying Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xiao Yang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Binyuan Zhai
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Qilai Huang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Liangran Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China.
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Shunxin Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.
- Key Laboratory of Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, China.
| |
Collapse
|
5
|
McNeill J, Brandt N, Schwarzkopf EJ, Jimenez M, Heil CS. Temperature affects recombination rate plasticity and meiotic success between thermotolerant and cold tolerant yeast species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610152. [PMID: 39257736 PMCID: PMC11383653 DOI: 10.1101/2024.08.28.610152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Meiosis is required for the formation of gametes in all sexually reproducing species and the process is well conserved across the tree of life. However, meiosis is sensitive to a variety of external factors, which can impact chromosome pairing, recombination, and fertility. For example, the optimal temperature for successful meiosis varies between species of plants and animals. This suggests that meiosis is temperature sensitive, and that natural selection may act on variation in meiotic success as organisms adapt to different environmental conditions. To understand how temperature alters the successful completion of meiosis, we utilized two species of the budding yeast Saccharomyces with different temperature preferences: thermotolerant Saccharomyces cerevisiae and cold tolerant Saccharomyces uvarum. We surveyed three metrics of meiosis: sporulation efficiency, spore viability, and recombination rate in multiple strains of each species. As per our predictions, the proportion of cells that complete meiosis and form spores is temperature sensitive, with thermotolerant S. cerevisiae having a higher temperature threshold for successful meiosis than cold tolerant S. uvarum. We confirmed previous observations that S. cerevisiae recombination rate varies between strains and across genomic regions, and add new results that S. uvarum has higher recombination rates than S. cerevisiae. We find that temperature significantly influences recombination rate plasticity in S. cerevisiae and S. uvarum, in agreement with studies in animals and plants. Overall, these results suggest that meiotic thermal sensitivity is associated with organismal thermal tolerance, and may even result in temporal reproductive isolation as populations diverge in thermal profiles.
Collapse
Affiliation(s)
- Jessica McNeill
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Nathan Brandt
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | | | - Mili Jimenez
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | | |
Collapse
|
6
|
Nieto-Blázquez ME, Gómez-Suárez M, Pfenninger M, Koch K. Impact of feralization on evolutionary trajectories in the genomes of feral cat island populations. PLoS One 2024; 19:e0308724. [PMID: 39137187 PMCID: PMC11321585 DOI: 10.1371/journal.pone.0308724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Feralization is the process of domesticated animals returning to the wild and it is considered the counterpart of domestication. Molecular genetic changes are well documented in domesticated organisms but understudied in feral populations. In this study, the genetic differentiation between domestic and feral cats was inferred by analysing whole-genome sequencing data of two geographically distant feral cat island populations, Dirk Hartog Island (Australia) and Kaho'olawe (Hawaii) as well as domestic cats and European wildcats. The study investigated population structure, genetic differentiation, genetic diversity, highly differentiated genes, and recombination rates. Genetic structure analyses linked both feral cat populations to North American domestic and European cat populations. Recombination rates in feral cats were lower than in domestic cats but higher than in wildcats. For Australian and Hawaiian feral cats, 105 and 94 highly differentiated genes compared to domestic cats respectively, were identified. Annotated genes had similar functions, with almost 30% of the divergent genes related to nervous system development in both feral groups. Twenty mutually highly differentiated genes were found in both feral populations. Evolution of highly differentiated genes was likely driven by specific demographic histories, the relaxation of the selective pressures associated with domestication, and adaptation to novel environments to a minor extent. Random drift was the prevailing force driving highly divergent regions, with relaxed selection in feral populations also playing a significant role in differentiation from domestic cats. The study demonstrates that feralization is an independent process that brings feral cats on a unique evolutionary trajectory.
Collapse
Affiliation(s)
- María Esther Nieto-Blázquez
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Manuela Gómez-Suárez
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Katrin Koch
- Department of Biodiversity, Conservation and Attractions, Former, Biodiversity and Conservation Science, Woodvale, Australia
| |
Collapse
|
7
|
De Jaeger-Braet J, Schnittger A. Heating up meiosis - Chromosome recombination and segregation under high temperatures. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102548. [PMID: 38749207 DOI: 10.1016/j.pbi.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
Heat stress is one of the major constraints to plant growth and fertility. During the current climate crisis, heat waves have increased dramatically, and even more extreme conditions are predicted for the near future, considerably affecting ecosystems and seriously threatening world food security. Although heat is very well known to affect especially reproductive structures, little is known about how heat interferes with reproduction in comparison to somatic cells and tissues. Recently, the effect of heat on meiosis as a central process in sexual reproduction has been analyzed in molecular and cytological depth. Notably, these studies are not only important for applied research by laying the foundation for breeding heat-resilient crops, but also for fundamental research, revealing general regulatory mechanisms of recombination and chromosome segregation control.
Collapse
Affiliation(s)
- Joke De Jaeger-Braet
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Arp Schnittger
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
8
|
Crhak Khaitova L, Mikulkova P, Pecinkova J, Kalidass M, Heckmann S, Lermontova I, Riha K. Heat stress impairs centromere structure and segregation of meiotic chromosomes in Arabidopsis. eLife 2024; 12:RP90253. [PMID: 38629825 PMCID: PMC11023694 DOI: 10.7554/elife.90253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.
Collapse
Affiliation(s)
| | | | | | - Manikandan Kalidass
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenGaterslebenGermany
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenGaterslebenGermany
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenGaterslebenGermany
| | - Karel Riha
- CEITEC Masaryk UniversityBrnoCzech Republic
| |
Collapse
|
9
|
Kim H, Kim J, Son N, Kuo P, Morgan C, Chambon A, Byun D, Park J, Lee Y, Park YM, Fozard JA, Guérin J, Hurel A, Lambing C, Howard M, Hwang I, Mercier R, Grelon M, Henderson IR, Choi K. Control of meiotic crossover interference by a proteolytic chaperone network. NATURE PLANTS 2024; 10:453-468. [PMID: 38379086 DOI: 10.1038/s41477-024-01633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Meiosis is a specialized eukaryotic division that produces genetically diverse gametes for sexual reproduction. During meiosis, homologous chromosomes pair and undergo reciprocal exchanges, called crossovers, which recombine genetic variation. Meiotic crossovers are stringently controlled with at least one obligate exchange forming per chromosome pair, while closely spaced crossovers are inhibited by interference. In Arabidopsis, crossover positions can be explained by a diffusion-mediated coarsening model, in which large, approximately evenly spaced foci of the pro-crossover E3 ligase HEI10 grow at the expense of smaller, closely spaced clusters. However, the mechanisms that control HEI10 dynamics during meiosis remain unclear. Here, through a forward genetic screen in Arabidopsis, we identified high crossover rate3 (hcr3), a dominant-negative mutant that reduces crossover interference and increases crossovers genome-wide. HCR3 encodes J3, a co-chaperone related to HSP40, which acts to target protein aggregates and biomolecular condensates to the disassembly chaperone HSP70, thereby promoting proteasomal degradation. Consistently, we show that a network of HCR3 and HSP70 chaperones facilitates proteolysis of HEI10, thereby regulating interference and the recombination landscape. These results reveal a new role for the HSP40/J3-HSP70 chaperones in regulating chromosome-wide dynamics of recombination via control of HEI10 proteolysis.
Collapse
Affiliation(s)
- Heejin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jaeil Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Namil Son
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Pallas Kuo
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Rothamsted Research, Harpenden, UK
| | - Chris Morgan
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Aurélie Chambon
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | - Dohwan Byun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jihye Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Youngkyung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yeong Mi Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - John A Fozard
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Julie Guérin
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | - Aurélie Hurel
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Rothamsted Research, Harpenden, UK
| | - Martin Howard
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Kyuha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
10
|
Cseh A, Lenykó-Thegze A, Makai D, Szabados F, Hamow KÁ, Gulyás Z, Kiss T, Karsai I, Moncsek B, Mihók E, Sepsi A. Meiotic instability and irregular chromosome pairing underpin heat-induced infertility in bread wheat carrying the Rht-B1b or Rht-D1b Green Revolution genes. THE NEW PHYTOLOGIST 2024; 241:180-196. [PMID: 37691304 DOI: 10.1111/nph.19256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023]
Abstract
Mutations in the Rht-B1a and Rht-D1a genes of wheat (Triticum aestivum; resulting in Rht-B1b and Rht-D1b alleles) cause gibberellin-insensitive dwarfism and are one of the most important elements of increased yield introduced during the 'Green Revolution'. We measured the effects of a short period of heat imposed during the early reproductive stage on near-isogenic lines carrying Rht-B1b or Rht-D1b alleles, with respect to the wild-type (WT). The temperature shift caused a significant fertility loss within the ears of Rht-B1b and Rht-D1b wheats, greater than that observed for the WT. Defects in chromosome synapsis, reduced homologous recombination and a high frequency of chromosome mis-segregation were associated with reduced fertility. The transcription of TaGA3ox gene involved in the final stage of gibberellic acid (GA) biosynthesis was activated and ultra-performance liquid chromatography-tandem mass spectrometry identified GA1 as the dominant bioactive GA in developing ears, but levels were unaffected by the elevated temperature. Rht-B1b and Rht-D1b mutants were inclined to meiotic errors under optimal temperatures and showed a higher susceptibility to heat than their tall counterparts. Identification and introduction of new dwarfing alleles into modern breeding programmes is invaluable in the development of climate-resilient wheat varieties.
Collapse
Affiliation(s)
- András Cseh
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Andrea Lenykó-Thegze
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Egyetem tér 1-3, Budapest, 1053, Hungary
| | - Diána Makai
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Fanni Szabados
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Kamirán Áron Hamow
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Zsolt Gulyás
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Tibor Kiss
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eszterházy tér 1, Eger, 3300, Hungary
| | - Ildikó Karsai
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Blanka Moncsek
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Edit Mihók
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Adél Sepsi
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| |
Collapse
|
11
|
Resentini F, Orozco-Arroyo G, Cucinotta M, Mendes MA. The impact of heat stress in plant reproduction. FRONTIERS IN PLANT SCIENCE 2023; 14:1271644. [PMID: 38126016 PMCID: PMC10732258 DOI: 10.3389/fpls.2023.1271644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
The increment in global temperature reduces crop productivity, which in turn threatens food security. Currently, most of our food supply is produced by plants and the human population is estimated to reach 9 billion by 2050. Gaining insights into how plants navigate heat stress in their reproductive phase is essential for effectively overseeing the future of agricultural productivity. The reproductive success of numerous plant species can be jeopardized by just one exceptionally hot day. While the effects of heat stress on seedlings germination and root development have been extensively investigated, studies on reproduction are limited. The intricate processes of gamete development and fertilization unfold within a brief timeframe, largely concealed within the flower. Nonetheless, heat stress is known to have important effects on reproduction. Considering that heat stress typically affects both male and female reproductive structures concurrently, it remains crucial to identify cultivars with thermotolerance. In such cultivars, ovules and pollen can successfully undergo development despite the challenges posed by heat stress, enabling the completion of the fertilization process and resulting in a robust seed yield. Hereby, we review the current understanding of the molecular mechanisms underlying plant resistance to abiotic heat stress, focusing on the reproductive process in the model systems of Arabidopsis and Oryza sativa.
Collapse
Affiliation(s)
| | | | | | - Marta A. Mendes
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
12
|
Chowdary KVSKA, Saini R, Singh AK. Epigenetic regulation during meiosis and crossover. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1945-1958. [PMID: 38222277 PMCID: PMC10784443 DOI: 10.1007/s12298-023-01390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 01/16/2024]
Abstract
Meiosis is a distinctive type of cell division that reorganizes genetic material between generations. The initial stages of meiosis consist of several crucial steps which include double strand break, homologous chromosome pairing, break repair and crossover. Crossover frequency varies depending on the position on the chromosome, higher at euchromatin region and rare at heterochromatin, centromeres, telomeres and ribosomal DNA. Crossover positioning is dependent on various factors, especially epigenetic modifications. DNA methylation, histone post-translational modifications, histone variants and non-coding RNAs are most probably playing an important role in positioning of crossovers on a chromosomal level as well as hotspot level. DNA methylation negatively regulates crossover frequency and its effect is visible in centromeres, pericentromeres and heterochromatin regions. Pericentromeric chromatin and heterochromatin mark studies have been a centre of attraction in meiosis. Crossover hotspots are associated with euchromatin regions having specific chromatin modifications such as H3K4me3, H2A.Z. and H3 acetylation. This review will provide the current understanding of the epigenetic role in plants during meiotic recombination, chromosome synapsis, double strand break and hotspots with special attention to euchromatin and heterochromatin marks. Further, the role of epigenetic modifications in regulating meiosis and crossover in other organisms is also discussed.
Collapse
Affiliation(s)
- K. V. S. K. Arjun Chowdary
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Ramswaroop Saini
- Department of Biotechnology, Joy University, Vadakangulam, Tirunelveli, Tamil Nadu 627116 India
| | - Amit Kumar Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
13
|
Rybnikov SR, Frenkel Z, Hübner S, Weissman DB, Korol AB. Modeling the evolution of recombination plasticity: A prospective review. Bioessays 2023; 45:e2200237. [PMID: 37246937 DOI: 10.1002/bies.202200237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
Meiotic recombination is one of the main sources of genetic variation, a fundamental factor in the evolutionary adaptation of sexual eukaryotes. Yet, the role of variation in recombination rate and other recombination features remains underexplored. In this review, we focus on the sensitivity of recombination rates to different extrinsic and intrinsic factors. We briefly present the empirical evidence for recombination plasticity in response to environmental perturbations and/or poor genetic background and discuss theoretical models developed to explain how such plasticity could have evolved and how it can affect important population characteristics. We highlight a gap between the evidence, which comes mostly from experiments with diploids, and theory, which typically assumes haploid selection. Finally, we formulate open questions whose solving would help to outline conditions favoring recombination plasticity. This will contribute to answering the long-standing question of why sexual recombination exists despite its costs, since plastic recombination may be evolutionary advantageous even in selection regimes rejecting any non-zero constant recombination.
Collapse
Affiliation(s)
- Sviatoslav R Rybnikov
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Zeev Frenkel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Sariel Hübner
- Galilee Research Institute (MIGAL), Tel-Hai College, Kiryat Shmona, Israel
| | | | - Abraham B Korol
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
14
|
Zhao J, Gui X, Ren Z, Fu H, Yang C, Wang W, Liu Q, Zhang M, Wang C, Schnittger A, Liu B. ATM-mediated double-strand break repair is required for meiotic genome stability at high temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:403-423. [PMID: 36786716 DOI: 10.1111/tpj.16145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/08/2023] [Indexed: 05/10/2023]
Abstract
In eukaryotes, meiotic recombination maintains genome stability and creates genetic diversity. The conserved Ataxia-Telangiectasia Mutated (ATM) kinase regulates multiple processes in meiotic homologous recombination, including DNA double-strand break (DSB) formation and repair, synaptonemal complex organization, and crossover formation and distribution. However, its function in plant meiotic recombination under stressful environmental conditions remains poorly understood. In this study, we demonstrate that ATM is required for the maintenance of meiotic genome stability under heat stress in Arabidopsis thaliana. Using cytogenetic approaches we determined that ATM does not mediate reduced DSB formation but does ensure successful DSB repair, and thus meiotic chromosome integrity, under heat stress. Further genetic analysis suggested that ATM mediates DSB repair at high temperature by acting downstream of the MRE11-RAD50-NBS1 (MRN) complex, and acts in a RAD51-independent but chromosome axis-dependent manner. This study extends our understanding on the role of ATM in DSB repair and the protection of genome stability in plants under high temperature stress.
Collapse
Affiliation(s)
- Jiayi Zhao
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| | - Xin Gui
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| | - Ziming Ren
- Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Huiqi Fu
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | - Wenyi Wang
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| | - Qingpei Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Min Zhang
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| | - Chong Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | - Bing Liu
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| |
Collapse
|
15
|
Peters SA, Underwood CJ. Technology-driven approaches for meiosis research in tomato and wild relatives. PLANT REPRODUCTION 2023; 36:97-106. [PMID: 36149478 PMCID: PMC9957858 DOI: 10.1007/s00497-022-00450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Meiosis is a specialized cell division during reproduction where one round of chromosomal replication is followed by genetic recombination and two rounds of segregation to generate recombined, ploidy-reduced spores. Meiosis is crucial to the generation of new allelic combinations in natural populations and artificial breeding programs. Several plant species are used in meiosis research including the cultivated tomato (Solanum lycopersicum) which is a globally important crop species. Here we outline the unique combination of attributes that make tomato a powerful model system for meiosis research. These include the well-characterized behavior of chromosomes during tomato meiosis, readily available genomics resources, capacity for genome editing, clonal propagation techniques, lack of recent polyploidy and the possibility to generate hybrids with twelve related wild species. We propose that further exploitation of genome bioinformatics, genome editing and artificial intelligence in tomato will help advance the field of plant meiosis research. Ultimately this will help address emerging themes including the evolution of meiosis, how recombination landscapes are determined, and the effect of temperature on meiosis.
Collapse
Affiliation(s)
- Sander A Peters
- Business Unit Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| |
Collapse
|
16
|
Jin C, Dong L, Wei C, Wani MA, Yang C, Li S, Li F. Creating novel ornamentals via new strategies in the era of genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1142866. [PMID: 37123857 PMCID: PMC10140431 DOI: 10.3389/fpls.2023.1142866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Ornamental breeding has traditionally focused on improving novelty, yield, quality, and resistance to biotic or abiotic stress. However, achieving these goals has often required laborious crossbreeding, while precise breeding techniques have been underutilized. Fortunately, recent advancements in plant genome sequencing and editing technology have opened up exciting new frontiers for revolutionizing ornamental breeding. In this review, we provide an overview of the current state of ornamental transgenic breeding and propose four promising breeding strategies that have already proven successful in crop breeding and could be adapted for ornamental breeding with the help of genome editing. These strategies include recombination manipulation, haploid inducer creation, clonal seed production, and reverse breeding. We also discuss in detail the research progress, application status, and feasibility of each of these tactics.
Collapse
Affiliation(s)
- Chunlian Jin
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Liqing Dong
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Chang Wei
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Muneeb Ahmad Wani
- Department of Floriculture and Landscape Architecture, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Chunmei Yang
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Shenchong Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| | - Fan Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| |
Collapse
|
17
|
Huang W, Li Y, Du Y, Pan L, Huang Y, Liu H, Zhao Y, Shi Y, Ruan YL, Dong Z, Jin W. Maize cytosolic invertase INVAN6 ensures faithful meiotic progression under heat stress. THE NEW PHYTOLOGIST 2022; 236:2172-2188. [PMID: 36104957 DOI: 10.1111/nph.18490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Faithful meiotic progression ensures the generation of viable gametes. Studies suggested the male meiosis of plants is sensitive to ambient temperature, but the underlying molecular mechanisms remain elusive. Here, we characterized a maize (Zea mays ssp. mays L.) dominant male sterile mutant Mei025, in which the meiotic process of pollen mother cells (PMCs) was arrested after pachytene. An Asp-to-Asn replacement at position 276 of INVERTASE ALKALINE NEUTRAL 6 (INVAN6), a cytosolic invertase (CIN) that predominantly exists in PMCs and specifically hydrolyses sucrose, was revealed to cause meiotic defects in Mei025. INVAN6 interacts with itself as well as with four other CINs and seven 14-3-3 proteins. Although INVAN6Mei025 , the variant of INVAN6 found in Mei025, lacks hydrolytic activity entirely, its presence is deleterious to male meiosis, possibly in a dominant negative repression manner through interacting with its partner proteins. Notably, heat stress aggravated meiotic defects in invan6 null mutant. Further transcriptome data suggest INVAN6 has a fundamental role for sugar homeostasis and stress tolerance of male meiocytes. In summary, this work uncovered the function of maize CIN in male meiosis and revealed the role of CIN-mediated sugar metabolism and signalling in meiotic progression under heat stress.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Yunfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yan Du
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Lingling Pan
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yue Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yong-Ling Ruan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
18
|
Montes N, Pagán I. Challenges and opportunities for plant viruses under a climate change scenario. Adv Virus Res 2022; 114:1-66. [PMID: 39492212 DOI: 10.1016/bs.aivir.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is an increasing societal awareness on the enormous threat that climate change may pose for human, animal and plant welfare. Although direct effects due to exposure to heat, drought or elevated greenhouse gasses seem to be progressively more obvious, indirect effects remain debatable. A relevant aspect to be clarified relates to the relationship between altered environmental conditions and pathogen-induced diseases. In the particular case of plant viruses, it is still unclear whether climate change will primarily represent an opportunity for the emergence of new infections in previously uncolonized areas and hosts, or if it will mostly be a strong constrain reducing the impact of plant virus diseases and challenging the pathogen's adaptive capacity. This review focuses on current knowledge on the relationship between climate change and the outcome plant-virus interactions. We summarize work done on how this relationship modulates plant virus pathogenicity, between-host transmission (which include the triple interaction plant-virus-vector), ecology, evolution and management of the epidemics they cause. Considering these studies, we propose avenues for future research on this subject.
Collapse
Affiliation(s)
- Nuria Montes
- Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Madrid, Spain; Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
19
|
Li Y, Huang Y, Sun H, Wang T, Ru W, Pan L, Zhao X, Dong Z, Huang W, Jin W. Heat shock protein 101 contributes to the thermotolerance of male meiosis in maize. THE PLANT CELL 2022; 34:3702-3717. [PMID: 35758611 PMCID: PMC9516056 DOI: 10.1093/plcell/koac184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/17/2022] [Indexed: 05/12/2023]
Abstract
High temperatures interfere with meiotic recombination and the subsequent progression of meiosis in plants, but few genes involved in meiotic thermotolerance have been characterized. Here, we characterize a maize (Zea mays) classic dominant male-sterile mutant Ms42, which has defects in pairing and synapsis of homologous chromosomes and DNA double-strand break (DSB) repair. Ms42 encodes a member of the heat shock protein family, HSP101, which accumulates in pollen mother cells. Analysis of the dominant Ms42 mutant and hsp101 null mutants reveals that HSP101 functions in RADIATION SENSITIVE 51 loading, DSB repair, and subsequent meiosis. Consistent with these functions, overexpression of Hsp101 in anthers results in robust microspores with enhanced heat tolerance. These results demonstrate that HSP101 mediates thermotolerance during microsporogenesis, shedding light on the genetic basis underlying the adaptation of male meiocytes to high temperatures.
Collapse
Affiliation(s)
- Yunfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Huayue Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Tianyi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wei Ru
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Lingling Pan
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xiaoming Zhao
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wei Huang
- Author for correspondence: (W.H.), (W.J.)
| | - Weiwei Jin
- Author for correspondence: (W.H.), (W.J.)
| |
Collapse
|
20
|
Kim J, Park J, Kim H, Son N, Kim E, Kim J, Byun D, Lee Y, Park YM, Nageswaran DC, Kuo P, Rose T, Dang TVT, Hwang I, Lambing C, Henderson IR, Choi K. Arabidopsis HEAT SHOCK FACTOR BINDING PROTEIN is required to limit meiotic crossovers and HEI10 transcription. EMBO J 2022; 41:e109958. [PMID: 35670129 PMCID: PMC9289711 DOI: 10.15252/embj.2021109958] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023] Open
Abstract
The number of meiotic crossovers is tightly controlled and most depend on pro-crossover ZMM proteins, such as the E3 ligase HEI10. Despite the importance of HEI10 dosage for crossover formation, how HEI10 transcription is controlled remains unexplored. In a forward genetic screen using a fluorescent crossover reporter in Arabidopsis thaliana, we identify heat shock factor binding protein (HSBP) as a repressor of HEI10 transcription and crossover numbers. Using genome-wide crossover mapping and cytogenetics, we show that hsbp mutations or meiotic HSBP knockdowns increase ZMM-dependent crossovers toward the telomeres, mirroring the effects of HEI10 overexpression. Through RNA sequencing, DNA methylome, and chromatin immunoprecipitation analysis, we reveal that HSBP is required to repress HEI10 transcription by binding with heat shock factors (HSFs) at the HEI10 promoter and maintaining DNA methylation over the HEI10 5' untranslated region. Our findings provide insights into how the temperature response regulator HSBP restricts meiotic HEI10 transcription and crossover number by attenuating HSF activity.
Collapse
Affiliation(s)
- Juhyun Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Jihye Park
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Heejin Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Namil Son
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Eun‐Jung Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Jaeil Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Dohwan Byun
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Youngkyung Lee
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Yeong Mi Park
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | | | - Pallas Kuo
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Teresa Rose
- Department of Plant SciencesRothamsted ResearchHarpendenUK
| | - Tuong Vi T Dang
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Ildoo Hwang
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Christophe Lambing
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Department of Plant SciencesRothamsted ResearchHarpendenUK
| | - Ian R Henderson
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Kyuha Choi
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| |
Collapse
|
21
|
Kim H, Choi K. Fast and Precise: How to Measure Meiotic Crossovers in Arabidopsis. Mol Cells 2022; 45:273-283. [PMID: 35444069 PMCID: PMC9095510 DOI: 10.14348/molcells.2022.2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 11/27/2022] Open
Abstract
During meiosis, homologous chromosomes (homologs) pair and undergo genetic recombination via assembly and disassembly of the synaptonemal complex. Meiotic recombination is initiated by excess formation of DNA double-strand breaks (DSBs), among which a subset are repaired by reciprocal genetic exchange, called crossovers (COs). COs generate genetic variations across generations, profoundly affecting genetic diversity and breeding. At least one CO between homologs is essential for the first meiotic chromosome segregation, but generally only one and fewer than three inter-homolog COs occur in plants. CO frequency and distribution are biased along chromosomes, suppressed in centromeres, and controlled by pro-CO, anti-CO, and epigenetic factors. Accurate and high-throughput detection of COs is important for our understanding of CO formation and chromosome behavior. Here, we review advanced approaches that enable precise measurement of the location, frequency, and genomic landscapes of COs in plants, with a focus on Arabidopsis thaliana.
Collapse
Affiliation(s)
- Heejin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Kyuha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
22
|
Casale F, Van Inghelandt D, Weisweiler M, Li J, Stich B. Genomic prediction of the recombination rate variation in barley - A route to highly recombinogenic genotypes. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:676-690. [PMID: 34783155 PMCID: PMC8989500 DOI: 10.1111/pbi.13746] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/06/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Meiotic recombination is not only fundamental to the adaptation of sexually reproducing eukaryotes in nature but increased recombination rates facilitate the combination of favourable alleles into a single haplotype in breeding programmes. The main objectives of this study were to (i) assess the extent and distribution of the recombination rate variation in cultivated barley (Hordeum vulgare L.), (ii) quantify the importance of the general and specific recombination effects, and (iii) evaluate a genomic selection approach's ability to predict the recombination rate variation. Genetic maps were created for the 45 segregating populations that were derived from crosses among 23 spring barley inbreds with origins across the world. The genome-wide recombination rate among populations ranged from 0.31 to 0.73 cM/Mbp. The crossing design used in this study allowed to separate the general recombination effects (GRE) of individual parental inbreds from the specific recombination effects (SRE) caused by the combinations of parental inbreds. The variance of the genome-wide GRE was found to be about eight times the variance of the SRE. This finding indicated that parental inbreds differ in the efficiency of their recombination machinery. The ability to predict the chromosome or genome-wide recombination rate of an inbred ranged from 0.80 to 0.85. These results suggest that a reliable screening of large genetic materials for their potential to cause a high extent of genetic recombination in their progeny is possible, allowing to systematically manipulate the recombination rate using natural variation.
Collapse
Affiliation(s)
- Federico Casale
- Institute of Quantitative Genetics and Genomics of PlantsHeinrich Heine UniversityDüsseldorfGermany
| | - Delphine Van Inghelandt
- Institute of Quantitative Genetics and Genomics of PlantsHeinrich Heine UniversityDüsseldorfGermany
| | - Marius Weisweiler
- Institute of Quantitative Genetics and Genomics of PlantsHeinrich Heine UniversityDüsseldorfGermany
| | - Jinquan Li
- Max Planck Institute for Plant Breeding ResearchKölnGermany
- Strube D&S GmbHSöllingenGermany
| | - Benjamin Stich
- Institute of Quantitative Genetics and Genomics of PlantsHeinrich Heine UniversityDüsseldorfGermany
- Max Planck Institute for Plant Breeding ResearchKölnGermany
- Cluster of Excellence on Plant SciencesFrom Complex Traits Towards Synthetic ModulesDüsseldorfGermany
| |
Collapse
|
23
|
Fayos I, Frouin J, Meynard D, Vernet A, Herbert L, Guiderdoni E. Manipulation of Meiotic Recombination to Hasten Crop Improvement. BIOLOGY 2022; 11:369. [PMID: 35336743 PMCID: PMC8945028 DOI: 10.3390/biology11030369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/15/2023]
Abstract
Reciprocal (cross-overs = COs) and non-reciprocal (gene conversion) DNA exchanges between the parental chromosomes (the homologs) during meiotic recombination are, together with mutation, the drivers for the evolution and adaptation of species. In plant breeding, recombination combines alleles from genetically diverse accessions to generate new haplotypes on which selection can act. In recent years, a spectacular progress has been accomplished in the understanding of the mechanisms underlying meiotic recombination in both model and crop plants as well as in the modulation of meiotic recombination using different strategies. The latter includes the stimulation and redistribution of COs by either modifying environmental conditions (e.g., T°), harnessing particular genomic situations (e.g., triploidy in Brassicaceae), or inactivating/over-expressing meiotic genes, notably some involved in the DNA double-strand break (DSB) repair pathways. These tools could be particularly useful for shuffling diversity in pre-breeding generations. Furthermore, thanks to the site-specific properties of genome editing technologies the targeting of meiotic recombination at specific chromosomal regions nowadays appears an attainable goal. Directing COs at desired chromosomal positions would allow breaking linkage situations existing between favorable and unfavorable alleles, the so-called linkage drag, and accelerate genetic gain. This review surveys the recent achievements in the manipulation of meiotic recombination in plants that could be integrated into breeding schemes to meet the challenges of deploying crops that are more resilient to climate instability, resistant to pathogens and pests, and sparing in their input requirements.
Collapse
Affiliation(s)
- Ian Fayos
- Meiogenix, 38 rue Sevran, 75011 Paris, France; (I.F.); (L.H.)
| | - Julien Frouin
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Donaldo Meynard
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Aurore Vernet
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Léo Herbert
- Meiogenix, 38 rue Sevran, 75011 Paris, France; (I.F.); (L.H.)
| | - Emmanuel Guiderdoni
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| |
Collapse
|
24
|
Fu H, Zhao J, Ren Z, Yang K, Wang C, Zhang X, Elesawi IE, Zhang X, Xia J, Chen C, Lu P, Chen Y, Liu H, Yu G, Liu B. Interfered chromosome pairing at high temperature promotes meiotic instability in autotetraploid Arabidopsis. PLANT PHYSIOLOGY 2022; 188:1210-1228. [PMID: 34927688 PMCID: PMC8825311 DOI: 10.1093/plphys/kiab563] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/04/2021] [Indexed: 05/03/2023]
Abstract
Changes in environmental temperature affect multiple meiotic processes in flowering plants. Polyploid plants derived from whole-genome duplication (WGD) have enhanced genetic plasticity and tolerance to environmental stress but face challenges in organizing and segregating doubled chromosome sets. In this study, we investigated the impact of increased environmental temperature on male meiosis in autotetraploid Arabidopsis (Arabidopsis thaliana). Under low to mildly increased temperatures (5°C-28°C), irregular chromosome segregation universally occurred in synthetic autotetraploid Columbia-0 (Col-0). Similar meiotic lesions occurred in autotetraploid rice (Oryza sativa L.) and allotetraploid canola (Brassica napus cv Westar), but not in evolutionarily derived hexaploid wheat (Triticum aestivum). At extremely high temperatures, chromosome separation and tetrad formation became severely disordered due to univalent formation caused by the suppression of crossing-over. We found a strong correlation between tetravalent formation and successful chromosome pairing, both of which were negatively correlated with temperature elevation, suggesting that increased temperature interferes with crossing-over predominantly by impacting homolog pairing. We also showed that loading irregularities of axis proteins ASY1 and ASY4 co-localize on the chromosomes of the syn1 mutant and the heat-stressed diploid and autotetraploid Col-0, revealing that heat stress affects the lateral region of synaptonemal complex (SC) by impacting the stability of the chromosome axis. Moreover, we showed that chromosome axis and SC in autotetraploid Col-0 are more sensitive to increased temperature than those in diploid Arabidopsis. Taken together, our data provide evidence suggesting that WGD negatively affects the stability and thermal tolerance of meiotic recombination in newly synthetic autotetraploid Arabidopsis.
Collapse
Affiliation(s)
- Huiqi Fu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jiayi Zhao
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ziming Ren
- College of Agriculture and Biotechnology, Zhejiang University, Zhejiang 310058, China
| | - Ke Yang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Chong Wang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaohong Zhang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ibrahim Eid Elesawi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Xianhua Zhang
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jing Xia
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, College of Life Science, Guizhou University, Guiyang 550025, China
| | - Ping Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Guanghui Yu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Bing Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
- Author for communication:
| |
Collapse
|
25
|
De Jaeger-Braet J, Krause L, Buchholz A, Schnittger A. Heat stress reveals a specialized variant of the pachytene checkpoint in meiosis of Arabidopsis thaliana. THE PLANT CELL 2022; 34:433-454. [PMID: 34718750 PMCID: PMC8846176 DOI: 10.1093/plcell/koab257] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/14/2021] [Indexed: 05/25/2023]
Abstract
Plant growth and fertility strongly depend on environmental conditions such as temperature. Remarkably, temperature also influences meiotic recombination and thus, the current climate change will affect the genetic make-up of plants. To better understand the effects of temperature on meiosis, we followed male meiocytes in Arabidopsis thaliana by live cell imaging under three temperature regimes: at 21°C; at heat shock conditions of 30°C and 34°C; after an acclimatization phase of 1 week at 30°C. This work led to a cytological framework of meiotic progression at elevated temperature. We determined that an increase from 21°C to 30°C speeds up meiosis with specific phases being more amenable to heat than others. An acclimatization phase often moderated this effect. A sudden increase to 34°C promoted a faster progression of early prophase compared to 21°C. However, the phase in which cross-overs mature was prolonged at 34°C. Since mutants involved in the recombination pathway largely did not show the extension of this phase at 34°C, we conclude that the delay is recombination-dependent. Further analysis also revealed the involvement of the ATAXIA TELANGIECTASIA MUTATED kinase in this prolongation, indicating the existence of a pachytene checkpoint in plants, yet in a specialized form.
Collapse
Affiliation(s)
- Joke De Jaeger-Braet
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Linda Krause
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anika Buchholz
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arp Schnittger
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
26
|
Mostoufi SL, Singh ND. Diet-induced changes in titer support a discrete response of Wolbachia-associated plastic recombination in Drosophila melanogaster. G3 GENES|GENOMES|GENETICS 2022; 12:6428536. [PMID: 34791181 PMCID: PMC8728003 DOI: 10.1093/g3journal/jkab375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022]
Abstract
Plastic recombination in Drosophila melanogaster has been associated with a variety of extrinsic and intrinsic factors such as temperature, starvation, and parasite infection. The bacterial endosymbiont Wolbachia pipientis has also been associated with plastic recombination in D. melanogaster. Wolbachia infection is pervasive in arthropods and this infection induces a variety of phenotypes in its hosts, the strength of which can depend on bacterial titer. Here, we test the hypothesis that the magnitude of Wolbachia-associated plastic recombination in D. melanogaster depends on titer. To manipulate titer, we raised Wolbachia-infected and uninfected flies on diets that have previously been shown to increase or decrease Wolbachia titer relative to controls. We measured recombination in treated and control individuals using a standard backcrossing scheme with two X-linked visible markers. Our results recapitulate previous findings that Wolbachia infection is associated with increased recombination rate across the yellow-vermillion interval of the X chromosome. Our data show no significant effect of diet or diet by Wolbachia interactions on recombination, suggesting that diet-induced changes in Wolbachia titer have no effect on the magnitude of plastic recombination. These findings represent one of the first steps toward investigating Wolbachia-associated plastic recombination and demonstrate that the phenotype is a discrete response rather than a continuous one.
Collapse
Affiliation(s)
- Sabrina L Mostoufi
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| | - Nadia D Singh
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| |
Collapse
|
27
|
Gutiérrez Pinzón Y, González Kise JK, Rueda P, Ronceret A. The Formation of Bivalents and the Control of Plant Meiotic Recombination. FRONTIERS IN PLANT SCIENCE 2021; 12:717423. [PMID: 34557215 PMCID: PMC8453087 DOI: 10.3389/fpls.2021.717423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 06/06/2023]
Abstract
During the first meiotic division, the segregation of homologous chromosomes depends on the physical association of the recombined homologous DNA molecules. The physical tension due to the sites of crossing-overs (COs) is essential for the meiotic spindle to segregate the connected homologous chromosomes to the opposite poles of the cell. This equilibrated partition of homologous chromosomes allows the first meiotic reductional division. Thus, the segregation of homologous chromosomes is dependent on their recombination. In this review, we will detail the recent advances in the knowledge of the mechanisms of recombination and bivalent formation in plants. In plants, the absence of meiotic checkpoints allows observation of subsequent meiotic events in absence of meiotic recombination or defective meiotic chromosomal axis formation such as univalent formation instead of bivalents. Recent discoveries, mainly made in Arabidopsis, rice, and maize, have highlighted the link between the machinery of double-strand break (DSB) formation and elements of the chromosomal axis. We will also discuss the implications of what we know about the mechanisms regulating the number and spacing of COs (obligate CO, CO homeostasis, and interference) in model and crop plants.
Collapse
|
28
|
Schindfessel C, Drozdowska Z, De Mooij L, Geelen D. Loss of obligate crossovers, defective cytokinesis and male sterility in barley caused by short-term heat stress. PLANT REPRODUCTION 2021; 34:243-253. [PMID: 34021795 DOI: 10.1007/s00497-021-00415-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 05/16/2023]
Abstract
Short-term heat stress during male meiosis causes defects in crossover formation, meiotic progression and cell wall formation in the monocot barley, ultimately leading to pollen abortion. High temperature conditions cause a reduction of fertility due to alterations in meiotic processes and gametogenesis. The male gametophyte development has been shown to be particularly sensitive to heat stress, and even short-term and modest temperature shifts cause alterations in crossover formation. In line with previous reports, we observed that male meiosis in the monocot barley exposed for 24-45 h to heat stress (32-42 °C) partially or completely eliminates obligate crossover formation and causes unbalanced chromosome segregation and meiotic abortion. Depending on the severity of heat stress, the structure and organization of the chromosomes were altered. In addition to alterations in chromosome structure and dynamics, heat treatment abolished or reduced the formation of a callose wall surrounding the meiocytes and interrupted the cell cycle progression leading to cytokinesis defects and microspore cell death.
Collapse
Affiliation(s)
- Cédric Schindfessel
- Department of Plants and Crops, Unit HortiCell, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Zofia Drozdowska
- Department of Plants and Crops, Unit HortiCell, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Len De Mooij
- Department of Plants and Crops, Unit HortiCell, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, Unit HortiCell, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
29
|
Natural variation identifies SNI1, the SMC5/6 component, as a modifier of meiotic crossover in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2021970118. [PMID: 34385313 PMCID: PMC8379953 DOI: 10.1073/pnas.2021970118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination plays a fundamental role in shaping genetic diversity in eukaryotes. Extensive variation in crossover rate exists between populations and species. The identity of modifier loci and their roles in genome evolution remain incompletely understood. We explored natural variation in Arabidopsis crossover and identified SNI1 as the causal gene underlying a major modifier locus. To date, SNI1 had no known role in crossover. SNI1 is a component of the SMC5/6 complex that is closely related to cohesin and condensin. Arabidopsis sni1 and other SMC5/6 mutants show similar effects on the interference-independent crossover pathway. Hence, our findings demonstrate that the SMC5/6 complex, which is known for its role in DNA damage repair, is also important for control of meiotic crossover. The frequency and distribution of meiotic crossovers are tightly controlled; however, variation in this process can be observed both within and between species. Using crosses of two natural Arabidopsis thaliana accessions, Col and Ler, we mapped a crossover modifier locus to semidominant polymorphisms in SUPPRESSOR OF NPR1-1 INDUCIBLE 1 (SNI1), which encodes a component of the SMC5/6 complex. The sni1 mutant exhibits a modified pattern of recombination across the genome with crossovers elevated in chromosome distal regions but reduced in pericentromeres. Mutations in SNI1 result in reduced crossover interference and can partially restore the fertility of a Class I crossover pathway mutant, which suggests that the protein affects noninterfering crossover repair. Therefore, we tested genetic interactions between SNI1 and both RECQ4 and FANCM DNA helicases, which showed that additional Class II crossovers observed in the sni1 mutant are FANCM independent. Furthermore, genetic analysis of other SMC5/6 mutants confirms the observations of crossover redistribution made for SNI1. The study reveals the importance of the SMC5/6 complex in ensuring the proper progress of meiotic recombination in plants.
Collapse
|
30
|
Abstract
Sex, as well as meiotic recombination between homologous chromosomes, is nearly ubiquitous among eukaryotes. In those species that use it, recombination is important for chromosome segregation during gamete production, and thus for fertility. Strikingly, although in most species only one crossover event per chromosome is required to ensure proper segregation, recombination rates vary considerably above this minimum and show variation within and among species. However, whether this variation in recombination is adaptive or neutral and what might shape it remain unclear. Empirical studies and theory support the idea that recombination is generally beneficial but can also have costs. Here, we review variation in genome-wide recombination rates, explore what might cause this, and discuss what is known about its mechanistic basis. We end by discussing the environmental sensitivity of meiosis and recombination rates, how these features may relate to adaptation, and their implications for a broader understanding of recombination rate evolution. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom;
| | - Kirsten Bomblies
- Plant Evolutionary Genetics, Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, 8092 Zürich, Switzerland;
| |
Collapse
|
31
|
Weitz AP, Dukic M, Zeitler L, Bomblies K. Male meiotic recombination rate varies with seasonal temperature fluctuations in wild populations of autotetraploid Arabidopsis arenosa. Mol Ecol 2021; 30:4630-4641. [PMID: 34273213 PMCID: PMC9292783 DOI: 10.1111/mec.16084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022]
Abstract
Meiosis, the cell division by which eukaryotes produce haploid gametes, is essential for fertility in sexually reproducing species. This process is sensitive to temperature, and can fail outright at temperature extremes. At less extreme values, temperature affects the genome‐wide rate of homologous recombination, which has important implications for evolution and population genetics. Numerous studies in laboratory conditions have shown that recombination rate plasticity is common, perhaps nearly universal, among eukaryotes. These studies have also shown that variation in the length or timing of stresses can strongly affect results, raising the important question whether these findings translate to more variable field conditions. Moreover, lower or higher recombination rate could cause certain kinds of meiotic aberrations, especially in polyploid species—raising the additional question whether temperature fluctuations in field conditions cause problems. Here, we tested whether (1) recombination rate varies across a season in the wild in two natural populations of autotetraploid Arabidopsis arenosa, (2) whether recombination rate correlates with temperature fluctuations in nature, and (3) whether natural temperature fluctuations might cause meiotic aberrations. We found that plants in two genetically distinct populations showed a similar plastic response with recombination rate increases correlated with both high and low temperatures. In addition, increased recombination rate correlated with increased multivalent formation, especially at lower temperature, hinting that polyploids in particular may suffer meiotic problems in conditions they encounter in nature. Our results show that studies of recombination rate plasticity done in laboratory settings inform our understanding of what happens in nature.
Collapse
Affiliation(s)
- Andrew P Weitz
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.,Department of Environmental Sciences, Western Washington University, Bellingham, Washington, USA
| | - Marinela Dukic
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Leo Zeitler
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.,Department of Biology, Ecological Genomics, Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Kirsten Bomblies
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| |
Collapse
|
32
|
Ahn YJ, Fuchs J, Houben A, Heckmann S. High-throughput measuring of meiotic recombination rates in barley pollen nuclei using Crystal Digital PCR TM. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:649-661. [PMID: 33949030 DOI: 10.1111/tpj.15305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Breeding exploits novel allelic combinations assured by meiotic recombination. Barley (Hordeum vulgare) single pollen nucleus genotyping enables measurement of meiotic recombination rates in gametes before fertilization without the need for segregating populations. However, so far, established methods rely on whole-genome amplification of every single pollen nucleus due to their limited DNA content, thus restricting the number of analyzed samples. In this study, high-throughput measurements of meiotic recombination rates in barley pollen nuclei without whole-genome amplification were performed through a Crystal Digital PCRTM -based genotyping assay. Meiotic recombination rates within two centromeric and two distal chromosomal intervals were measured in hybrid plants by genotyping a total of >42 000 individual pollen nuclei (up to 4900 nuclei analyzed per plant). Determined recombination frequencies in pollen nuclei were similar to frequencies in segregating populations. We improved the efficiency of the genotyping by pretreating the pollen nuclei with a thermostable restriction enzyme. Additional opportunities for a higher sample throughput and a further increase of the genotyping efficiency are presented and discussed. Taken together, single barley pollen nucleus genotyping based on Crystal Digital PCRTM enables reliable, rapid and high-throughput meiotic recombination measurements within defined chromosomal intervals of intraspecific hybrid plants. The successful encapsulation of nuclei from a range of species with different nuclear and genome sizes suggests that the proposed method is broadly applicable to genotyping single nuclei.
Collapse
Affiliation(s)
- Yun-Jae Ahn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, Stadt Seeland, 06466, Germany
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, Stadt Seeland, 06466, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, Stadt Seeland, 06466, Germany
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, Stadt Seeland, 06466, Germany
| |
Collapse
|
33
|
Bulankova P, Sekulić M, Jallet D, Nef C, van Oosterhout C, Delmont TO, Vercauteren I, Osuna-Cruz CM, Vancaester E, Mock T, Sabbe K, Daboussi F, Bowler C, Vyverman W, Vandepoele K, De Veylder L. Mitotic recombination between homologous chromosomes drives genomic diversity in diatoms. Curr Biol 2021; 31:3221-3232.e9. [PMID: 34102110 DOI: 10.1016/j.cub.2021.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/17/2021] [Accepted: 05/06/2021] [Indexed: 01/31/2023]
Abstract
Diatoms, an evolutionarily successful group of microalgae, display high levels of intraspecific genetic variability in natural populations. However, the contribution of various mechanisms generating such diversity is unknown. Here we estimated the genetic micro-diversity within a natural diatom population and mapped the genomic changes arising within clonally propagated diatom cell cultures. Through quantification of haplotype diversity by next-generation sequencing and amplicon re-sequencing of selected loci, we documented a rapid accumulation of multiple haplotypes accompanied by the appearance of novel protein variants in cell cultures initiated from a single founder cell. Comparison of the genomic changes between mother and daughter cells revealed copy number variation and copy-neutral loss of heterozygosity leading to the fixation of alleles within individual daughter cells. The loss of heterozygosity can be accomplished by recombination between homologous chromosomes. To test this hypothesis, we established an endogenous readout system and estimated that the frequency of interhomolog mitotic recombination was under standard growth conditions 4.2 events per 100 cell divisions. This frequency is increased under environmental stress conditions, including treatment with hydrogen peroxide and cadmium. These data demonstrate that copy number variation and mitotic recombination between homologous chromosomes underlie clonal variability in diatom populations. We discuss the potential adaptive evolutionary benefits of the plastic response in the interhomolog mitotic recombination rate, and we propose that this may have contributed to the ecological success of diatoms.
Collapse
Affiliation(s)
- Petra Bulankova
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.
| | - Mirna Sekulić
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Denis Jallet
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Charlotte Nef
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
| | - Ilse Vercauteren
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Cristina Maria Osuna-Cruz
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Emmelien Vancaester
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Koen Sabbe
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Fayza Daboussi
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Wim Vyverman
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Klaas Vandepoele
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Lieven De Veylder
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.
| |
Collapse
|
34
|
Ning Y, Liu Q, Wang C, Qin E, Wu Z, Wang M, Yang K, Elesawi IE, Chen C, Liu H, Qin R, Liu B. Heat stress interferes with formation of double-strand breaks and homolog synapsis. PLANT PHYSIOLOGY 2021; 185:1783-1797. [PMID: 33793950 PMCID: PMC8133540 DOI: 10.1093/plphys/kiab012] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/24/2020] [Indexed: 05/20/2023]
Abstract
Meiotic recombination (MR) drives novel combinations of alleles and contributes to genomic diversity in eukaryotes. In this study, we showed that heat stress (36°C-38°C) over the fertile threshold fully abolished crossover formation in Arabidopsis (Arabidopsis thaliana). Cytological and genetic studies in wild-type plants and syn1 and rad51 mutants suggested that heat stress reduces generation of SPO11-dependent double-strand breaks (DSBs). In support, the abundance of recombinase DMC1, which is required for MR-specific DSB repair, was significantly reduced under heat stress. In addition, high temperatures induced disassembly and/or instability of the ASY4- but not the SYN1-mediated chromosome axis. At the same time, the ASY1-associated lateral element of the synaptonemal complex (SC) was partially affected, while the ZYP1-dependent central element of SC was disrupted, indicating that heat stress impairs SC formation. Moreover, expression of genes involved in DSB formation; e.g. SPO11-1, PRD1, 2, and 3 was not impacted; however, recombinase RAD51 and chromosome axis factors ASY3 and ASY4 were significantly downregulated under heat stress. Taken together, these findings revealed that heat stress inhibits MR via compromised DSB formation and homolog synapsis, which are possible downstream effects of the impacted chromosome axis. Our study thus provides evidence shedding light on how increasing environmental temperature influences MR in Arabidopsis.
Collapse
Affiliation(s)
- Yingjie Ning
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Qingpei Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Chong Wang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Erdai Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Zhihua Wu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Minghui Wang
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Ke Yang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ibrahim Eid Elesawi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Bing Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
- Author for communication:
| |
Collapse
|
35
|
Huang J, Wang H, Wang Y, Copenhaver GP. Comparative transcriptomic analysis of thermally stressed Arabidopsis thaliana meiotic recombination mutants. BMC Genomics 2021; 22:181. [PMID: 33711924 PMCID: PMC7953577 DOI: 10.1186/s12864-021-07497-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Meiosis is a specialized cell division that underpins sexual reproduction in most eukaryotes. During meiosis, interhomolog meiotic recombination facilitates accurate chromosome segregation and generates genetic diversity by shuffling parental alleles in the gametes. The frequency of meiotic recombination in Arabidopsis has a U-shaped curve in response to environmental temperature, and is dependent on the Type I, crossover (CO) interference-sensitive pathway. The mechanisms that modulate recombination frequency in response to temperature are not yet known. RESULTS In this study, we compare the transcriptomes of thermally-stressed meiotic-stage anthers from msh4 and mus81 mutants that mediate the Type I and Type II meiotic recombination pathways, respectively. We show that heat stress reduces the number of expressed genes regardless of genotype. In addition, msh4 mutants have a distinct gene expression pattern compared to mus81 and wild type controls. Interestingly, ASY1, which encodes a HORMA domain protein that is a component of meiotic chromosome axes, is up-regulated in wild type and mus81 but not in msh4. In addition, SDS the meiosis-specific cyclin-like gene, DMC1 the meiosis-specific recombinase, SYN1/REC8 the meiosis-specific cohesion complex component, and SWI1 which functions in meiotic sister chromatid cohesion are up-regulated in all three genotypes. We also characterize 51 novel, previously unannotated transcripts, and show that their promoter regions are associated with A-rich meiotic recombination hotspot motifs. CONCLUSIONS Our transcriptomic analysis of msh4 and mus81 mutants enhances our understanding of how the Type I and Type II meiotic CO pathway respond to environmental temperature stress and might provide a strategy to manipulate recombination levels in plants.
Collapse
Affiliation(s)
- Jiyue Huang
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
36
|
Ferreira MTM, Glombik M, Perničková K, Duchoslav M, Scholten O, Karafiátová M, Techio VH, Doležel J, Lukaszewski AJ, Kopecký D. Direct evidence for crossover and chromatid interference in meiosis of two plant hybrids (Lolium multiflorum×Festuca pratensis and Allium cepa×A. roylei). JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:254-267. [PMID: 33029645 PMCID: PMC7853598 DOI: 10.1093/jxb/eraa455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 05/02/2023]
Abstract
Crossing over, in addition to its strictly genetic role, also performs a critical mechanical function, by bonding homologues in meiosis. Hence, it is responsible for an orderly reduction of the chromosome number. As such, it is strictly controlled in frequency and distribution. The well-known crossover control is positive crossover interference which reduces the probability of a crossover in the vicinity of an already formed crossover. A poorly studied aspect of the control is chromatid interference. Such analyses are possible in very few organisms as they require observation of all four products of a single meiosis. Here, we provide direct evidence of chromatid interference. Using in situ probing in two interspecific plant hybrids (Lolium multiflorum×Festuca pratensis and Allium cepa×A. roylei) during anaphase I, we demonstrate that the involvement of four chromatids in double crossovers is significantly more frequent than expected (64% versus 25%). We also provide a physical measure of the crossover interference distance, covering ~30-40% of the relative chromosome arm length, and show that the centromere acts as a barrier for crossover interference. The two arms of a chromosome appear to act as independent units in the process of crossing over. Chromatid interference has to be seriously addressed in genetic mapping approaches and further studies.
Collapse
Affiliation(s)
- Marco Tulio Mendes Ferreira
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- Department of Biology, Federal University of Lavras, Lavras-MG, Brazil
| | - Marek Glombik
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska, Brno, Czech Republic
| | - Kateřina Perničková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska, Brno, Czech Republic
| | - Martin Duchoslav
- Department of Botany, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Olga Scholten
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Jaroslav Doležel
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Adam J Lukaszewski
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - David Kopecký
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
37
|
Genotype-by-Sequencing Analysis of Mutations and Recombination in Pepper Progeny of Gamma-Irradiated Gametophytes. PLANTS 2021; 10:plants10010144. [PMID: 33445585 PMCID: PMC7827419 DOI: 10.3390/plants10010144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 11/17/2022]
Abstract
The irradiation of dry seeds is the most widely-used irradiation method for improving seed-propagated crops; however, the irradiation of other tissues also has useful effects. The irradiation of plant reproductive organs, rather than seeds, for mutation breeding has advantages, such as producing non-chimeric progeny. However, the mutation frequency and spectrum produced using this method have not been analyzed on a genome-wide level. We performed a genotype-by-sequencing analysis to determine the frequencies of single-base substitutions and small (1–2 bp) insertions and deletions in hot pepper (Capsicum annuum L.) plants derived from crosses using gamma-irradiated female or male gametophytes. The progeny of irradiated gametophytes showed similar or higher DNA mutation frequencies, which were dependent on the irradiation dose and irradiated tissue, and less biased single base substitutions than progeny of irradiated seeds. These characteristics were expected to be beneficial for development of mutation population with a high frequency of small DNA mutations and performing reverse-genetics-based mutation screening. We also examined the possible use of this irradiation method in manipulating the meiotic recombination frequency; however, no statistically significant increase was detected. Our results provide useful information for further research and breeding using irradiated gametophytes.
Collapse
|
38
|
Arrieta M, Macaulay M, Colas I, Schreiber M, Shaw PD, Waugh R, Ramsay L. An Induced Mutation in HvRECQL4 Increases the Overall Recombination and Restores Fertility in a Barley HvMLH3 Mutant Background. FRONTIERS IN PLANT SCIENCE 2021; 12:706560. [PMID: 34868104 PMCID: PMC8633572 DOI: 10.3389/fpls.2021.706560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/28/2021] [Indexed: 05/16/2023]
Abstract
Plant breeding relies on the meiotic recombination or crossing over to generate the new combinations of the alleles along and among the chromosomes. However, crossing over is constrained in the crops such as barley by a combination of the low frequency and biased distribution. In this study, we attempted to identify the genes that limit the recombination by performing a suppressor screen for the restoration of fertility to the semi-fertile barley mutant desynaptic10 (des10), carrying a mutation in the barley ortholog of MutL-Homolog 3 (HvMLH3), a member of the MutL-homolog (MLH) family of DNA mismatch repair genes. des10 mutants exhibit reduced recombination and fewer chiasmata, resulting in the loss of obligate crossovers (COs) leading to chromosome mis-segregation. We identified several candidate suppressor lines and confirmed their restored fertility in an Hvmlh3 background in the subsequent generations. We focus on one of the candidate suppressor lines, SuppLine2099, which showed the most complete restoration of fertility. We characterized this line by using a target-sequence enrichment and sequencing (TENSEQ) capture array representing barley orthologs of 46 meiotic genes. We found that SuppLine2099 contained a C/T change in the anti-CO gene RecQ-like helicase 4 (RECQL4) resulting in the substitution of a non-polar glycine to a polar aspartic acid (G700D) amino acid in the conserved helicase domain. Single nucleotide polymorphism (SNP) genotyping of F3 populations revealed a significant increase in the recombination frequency in lines with Hvrecql4 in the Hvmlh3 background that was associated with the restoration of fertility. The genotyping also indicated that there was nearly double the recombination levels in homozygous Hvrecql4 lines compared to the wild type (WT). However, we did not observe any significant change in the distribution of CO events. Our results confirm the anti-CO role of RECQL4 in a large genome cereal and establish the possibility of testing the utility of increasing recombination in the context of traditional crop improvement.
Collapse
Affiliation(s)
- Mikel Arrieta
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Malcolm Macaulay
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Miriam Schreiber
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Paul D. Shaw
- Information and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- Division of Plant Sciences, The University of Dundee at The James Hutton Institute, Dundee, United Kingdom
- *Correspondence: Robbie Waugh
| | - Luke Ramsay
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- Luke Ramsay
| |
Collapse
|
39
|
Arrieta M, Willems G, DePessemier J, Colas I, Burkholz A, Darracq A, Vanstraelen S, Pacolet P, Barré C, Kempeneers P, Waugh R, Barnes S, Ramsay L. The effect of heat stress on sugar beet recombination. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:81-93. [PMID: 32990769 PMCID: PMC7813734 DOI: 10.1007/s00122-020-03683-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/09/2020] [Indexed: 05/10/2023]
Abstract
Meiotic recombination plays a crucial role in plant breeding through the creation of new allelic combinations. Therefore, lack of recombination in some genomic regions constitutes a constraint for breeding programmes. In sugar beet, one of the major crops in Europe, recombination occurs mainly in the distal portions of the chromosomes, and so the development of simple approaches to change this pattern is of considerable interest for future breeding and genetics. In the present study, the effect of heat stress on recombination in sugar beet was studied by treating F1 plants at 28 °C/25 °C (day/night) and genotyping the progeny. F1 plants were reciprocally backcrossed allowing the study of male and female meiosis separately. Genotypic data indicated an overall increase in crossover frequency of approximately one extra crossover per meiosis, with an associated increase in pericentromeric recombination under heat treatment. Our data indicate that the changes were mainly induced by alterations in female meiosis only, showing that heterochiasmy in sugar beet is reduced under heat stress. Overall, despite the associated decrease in fertility, these data support the potential use of heat stress to foster recombination in sugar beet breeding programmes.
Collapse
Affiliation(s)
- Mikel Arrieta
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | | | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | - Aude Darracq
- SESVanderHave, Soldatenplein 15, 3300, Tienen, Belgium
| | | | | | - Camille Barré
- SESVanderHave, Soldatenplein 15, 3300, Tienen, Belgium
| | | | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Steve Barnes
- SESVanderHave, Soldatenplein 15, 3300, Tienen, Belgium
| | - Luke Ramsay
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| |
Collapse
|
40
|
Davis TM, Yang Y, Mahoney LL, Frailey DC. A pentaploid-based linkage map of the ancestral octoploid strawberry Fragaria virginiana reveals instances of sporadic hyper-recombination. HORTICULTURE RESEARCH 2020; 7:77. [PMID: 32411378 PMCID: PMC7206004 DOI: 10.1038/s41438-020-0308-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 05/04/2023]
Abstract
The first high-resolution genetic linkage map of the ancestral octoploid (2n = 8x = 56) strawberry species, Fragaria virginiana, was constructed using segregation data obtained from a pentaploid progeny population. This novel mapping population of size 178 was generated by crossing highly heterozygous F. virginiana hybrid "LB48" as a paternal parent with diploid (2n = 2x = 14) Fragaria vesca "Hawaii 4". The LB48 linkage map comprises 6055 markers genotyped on the Axiom® IStraw90 strawberry SNP array. The map consists of 28 linkage groups (LGs) organized into seven homoeology groups of four LGs each, and excludes a small 29th LG of undefined homoeology. One member of each homoeology group was assignable to an "A" subgenome associated with ancestral diploid Fragaria vesca, while no other subgenomes were defined. Despite an intriguing discrepancy within homoeology group VI, synteny comparisons with the previously published Fragaria ×ananassa DA × MO linkage map revealed substantial agreement. Following initial map construction, examination of crossover distributions revealed that six of the total 5162 (=29 chromosomes/individual × 178 individuals) chromosomes making up the data set exhibited abnormally high crossover counts, ranging from 15 to 48 crossovers per chromosome, as compared with the overall mean of 0.66 crossovers per chromosome. Each of these six hyper-recombinant (HypR) chromosomes occurred in a different LG and in a different individual. When calculated upon exclusion of the six HypR chromosomes, the canonical (i.e., broadly representative) LB48 map had 1851 loci distributed over a total map length of 1873 cM, while their inclusion increased the number of loci by 130, and the overall map length by 91 cM. Discovery of these hyper-recombinant chromosomes points to the existence of a sporadically acting mechanism that, if identified and manipulable, could be usefully harnessed for multiple purposes by geneticists and breeders.
Collapse
Affiliation(s)
- Thomas M. Davis
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824 USA
| | - Yilong Yang
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824 USA
| | - Lise L. Mahoney
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824 USA
| | - Daniel C. Frailey
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824 USA
| |
Collapse
|
41
|
Lei X, Ning Y, Eid Elesawi I, Yang K, Chen C, Wang C, Liu B. Heat stress interferes with chromosome segregation and cytokinesis during male meiosis in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2020; 15:1746985. [PMID: 32275182 PMCID: PMC7238882 DOI: 10.1080/15592324.2020.1746985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In higher plants, male meiosis is a key process of microsporogenesis and is crucial for plant fertility. Male meiosis programs are prone to be influenced by altered temperature conditions. Studies have reported that an increased temperature (28°C) within a fertile threshold can affect the frequency of meiotic recombination in Arabidopsis. However, not much has been known how male meiosis responses to an extremely high temperature beyond the fertile threshold. To understand the impact of extremely high temperature on male meiosis in Arabidopsis, we treated flowering Arabidopsis plants with 36-38°C and found that the high-temperature condition significantly reduced pollen shed and plant fertility, and led to formation of pollen grains with varied sizes. The heat stress-induced unbalanced tetrads, polyad and meiotic restitution, suggesting that male meiosis was interfered. Fluorescence in situ hybridization (FISH) assay confirmed that both homologous chromosome separation and sister chromatids cohesion were influenced. Aniline blue staining of tetrad-stage pollen mother cells (PMCs) revealed that meiotic cytokinesis was severely disrupted by the heat stress. Supportively, immunolocalization of ɑ-tubulin showed that the construction of spindle and phragmoplast at both meiosis I and II were interfered. Overall, our findings demonstrate that an extremely high-temperature stress over the fertile threshold affects both chromosome segregation and cytokinesis during male meiosis by disturbing microtubular cytoskeleton in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoning Lei
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
| | - Yingjie Ning
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ibrahim Eid Elesawi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
- Department of Agricultural Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ke Yang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Chong Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Science, Shanghai Normal University, Shanghai, China
- Chong Wang Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Science, Shanghai Normal University, Shanghai, China
| | - Bing Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- CONTACT Bing Liu College of Life Sciences, South-Central University for Nationalities, Wuhan China
| |
Collapse
|
42
|
De Storme N, Geelen D. High temperatures alter cross-over distribution and induce male meiotic restitution in Arabidopsis thaliana. Commun Biol 2020; 3:187. [PMID: 32327690 PMCID: PMC7181631 DOI: 10.1038/s42003-020-0897-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 03/16/2020] [Indexed: 12/03/2022] Open
Abstract
Plant fertility is highly sensitive to elevated temperature. Here, we report that hot spells induce the formation of dyads and triads by disrupting the biogenesis or stability of the radial microtubule arrays (RMAs) at telophase II. Heat-induced meiotic restitution in Arabidopsis is predominantly SDR-type (Second Division Restitution) indicating specific interference with RMAs formed between separated sister chromatids. In addition, elevated temperatures caused distinct deviations in cross-over formation in male meiosis. Synapsis at pachytene was impaired and the obligate cross-over per chromosome was discarded, resulting in partial univalency in meiosis I (MI). At diakinesis, interconnections between non-homologous chromosomes tied separate bivalents together, suggesting heat induces ectopic events of non-homologous recombination. Summarized, heat interferes with male meiotic cross-over designation and cell wall formation, providing a mechanistic basis for plant karyotype change and genome evolution under high temperature conditions. de Storme and Geelen show that heat stress has pleiotropic effects on male meiosis in Arabidopsis, causing deviations in cross-over formations, reproduction, and fertility. They show that heat also affects cell wall formation, providing mechanistic insights into karyotype change under high temperatures.
Collapse
Affiliation(s)
- Nico De Storme
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University (UGent), Coupure Links 653, 9000, Ghent, Belgium.,Laboratory for Plant Genetics and Crop Improvement (PGCI), Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001, Heverlee, Leuven, Belgium
| | - Danny Geelen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University (UGent), Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
43
|
Brown SD, Audoynaud C, Lorenz A. Intragenic meiotic recombination in Schizosaccharomyces pombe is sensitive to environmental temperature changes. Chromosome Res 2020; 28:195-207. [PMID: 32303869 PMCID: PMC7242256 DOI: 10.1007/s10577-020-09632-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 11/25/2022]
Abstract
Changes in environmental temperature influence cellular processes and their dynamics, and thus affect the life cycle of organisms that are unable to control their cell/body temperature. Meiotic recombination is the cellular process essential for producing healthy haploid gametes by providing physical links (chiasmata) between homologous chromosomes to guide their accurate segregation. Additionally, meiotic recombination—initiated by programmed DNA double-strand breaks (DSBs)—can generate genetic diversity and, therefore, is a driving force of evolution. Environmental temperature influencing meiotic recombination outcome thus may be a crucial determinant of reproductive success and genetic diversity. Indeed, meiotic recombination frequency in fungi, plants and invertebrates changes with temperature. In most organisms, these temperature-induced changes in meiotic recombination seem to be mediated through the meiosis-specific chromosome axis organization, the synaptonemal complex in particular. The fission yeast Schizosaccharomyces pombe does not possess a synaptonemal complex. Thus, we tested how environmental temperature modulates meiotic recombination frequency in the absence of a fully-fledged synaptonemal complex. We show that intragenic recombination (gene conversion) positively correlates with temperature within a certain range, especially at meiotic recombination hotspots. In contrast, crossover recombination, which manifests itself as chiasmata, is less affected. Based on our observations, we suggest that, in addition to changes in DSB frequency, DSB processing could be another temperature-sensitive step causing temperature-induced recombination rate alterations.
Collapse
Affiliation(s)
- Simon D Brown
- The Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Charlotte Audoynaud
- The Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Institut Curie, PSL Research University, UMR3348-CNRS, 91405, Orsay, France
| | - Alexander Lorenz
- The Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
44
|
Recombination Pattern Characterization via Simulation Using Different Maize Populations. Int J Mol Sci 2020; 21:ijms21062222. [PMID: 32210156 PMCID: PMC7139635 DOI: 10.3390/ijms21062222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 11/27/2022] Open
Abstract
Efficient recombination is critical to both plant breeding and gene cloning. However, almost all traditional recombination studies and genetic improvements require the slow and labor-intensive population construction process, and little is known about the recombination characteristics of populations of different types, generations, and origins. Here, we provide a simple and efficient simulation method for population construction based on doubled haploid (DH) and intermated B73 × Mo17 maize (IBM) populations to predict the recombination pattern. We found that the chromosomes had 0, 1, 2, and 3 recombination events that occurred at rates of 0.16, 0.30, 0.23, and 0.15, respectively, in the DH and the recombination rate of each chromosome in the IBM population ranged from 0 to 12.1 cM per 125 kb. Based on the observed recombination parameters, we estimated the number of recombination events and constructed the linkage maps of the simulated DH and recombination inbred line (RIL) populations. These simulated populations exhibited similar recombination patterns compared with the real populations, suggesting the feasibility of this simulation approach. We then compared the recombination rates of the simulated populations of different types (DH induced or self-crossed), generations, and origins (using the 8, 16, and 32 multiparent advanced generation intercross (MAGIC) populations), and suggested a rapid and cost-effective population construction procedure for breeders and geneticists, while maintaining an optimal recombination rate. This study offers a convenient method for optimizing the population construction process and has broader implications for other crop species, thereby facilitating future population studies and genetic improvement strategies.
Collapse
|
45
|
de Maagd RA, Loonen A, Chouaref J, Pelé A, Meijer‐Dekens F, Fransz P, Bai Y. CRISPR/Cas inactivation of RECQ4 increases homeologous crossovers in an interspecific tomato hybrid. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:805-813. [PMID: 31483929 PMCID: PMC7004904 DOI: 10.1111/pbi.13248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/10/2019] [Accepted: 08/15/2019] [Indexed: 05/05/2023]
Abstract
Crossover formation during meiosis in plants is required for proper chromosome segregation and is essential for crop breeding as it allows an (optimal) combination of traits by mixing parental alleles on each chromosome. Crossover formation commences with the production of a large number of DNA double-strand breaks, of which only a few result in crossovers. A small number of genes, which drive the resolution of DNA crossover intermediate structures towards non-crossovers, have been identified in Arabidopisis thaliana. In order to explore the potential of modification of these genes in interspecific hybrids between crops and their wild relatives towards increased production of crossovers, we have used CRISPR/Cas9-mutagenesis in an interspecific tomato hybrid to knockout RecQ4. A biallelic recq4 mutant was obtained in the F1 hybrid of Solanum lycopersicum and S. pimpinellifolium. Compared with the wild-type F1 hybrid, the F1 recq4 mutant was shown to have a significant increase in crossovers: a 1.53-fold increase when directly observing ring bivalents in male meiocytes microscopically and a 1.8-fold extension of the genetic map when measured by analysing SNP markers in the progeny (F2) plants. This is one of the first demonstrations of increasing crossover frequency in interspecific hybrids by manipulating genes in crossover intermediate resolution pathways and the first to do so by directed mutagenesis. SIGNIFICANCE STATEMENT: Increasing crossover frequency during meiosis can speed up or simplify crop breeding that relies on meiotic crossovers to introduce favourable alleles controlling important traits from wild relatives into crops. Here we show for the first time that knocking out an inhibitor of crossovers in an interspecific hybrid between tomato and its relative wild species using CRISPR/Cas9-mutagenesis results in increased recombination between the two genomes.
Collapse
Affiliation(s)
- Ruud A. de Maagd
- BioscienceCluster Plant Developmental SystemsWageningen University & ResearchWageningenThe Netherlands
- Bioinformatics GroupWageningen University & ResearchWageningenThe Netherlands
| | - Annelies Loonen
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Jihed Chouaref
- Department of Plant Development and (Epi)GeneticsSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Alexandre Pelé
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | | | - Paul Fransz
- Department of Plant Development and (Epi)GeneticsSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Yuling Bai
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
46
|
Dreissig S, Mascher M, Heckmann S. Variation in Recombination Rate Is Shaped by Domestication and Environmental Conditions in Barley. Mol Biol Evol 2020; 36:2029-2039. [PMID: 31209472 PMCID: PMC6736446 DOI: 10.1093/molbev/msz141] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Meiotic recombination generates genetic diversity upon which selection can act. Recombination rates are highly variable between species, populations, individuals, sexes, chromosomes, and chromosomal regions. The underlying mechanisms are controlled at the genetic and epigenetic level and show plasticity toward the environment. Environmental plasticity may be divided into short- and long-term responses. We estimated recombination rates in natural populations of wild barley and domesticated landraces using a population genetics approach. We analyzed recombination landscapes in wild barley and domesticated landraces at high resolution. In wild barley, high recombination rates are found in more interstitial chromosome regions in contrast to distal chromosome regions in domesticated barley. Among subpopulations of wild barley, natural variation in effective recombination rate is correlated with temperature, isothermality, and solar radiation in a nonlinear manner. A positive linear correlation was found between effective recombination rate and annual precipitation. We discuss our findings with respect to how the environment might shape effective recombination rates in natural populations. Higher recombination rates in wild barley populations subjected to specific environmental conditions could be a means to maintain fitness in a strictly inbreeding species.
Collapse
Affiliation(s)
- Steven Dreissig
- Meiosis Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Seeland, Germany
| | - Martin Mascher
- Domestication Genomics Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Seeland, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Stefan Heckmann
- Meiosis Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Seeland, Germany
| |
Collapse
|
47
|
Chang Z, Xu C, Huang X, Yan W, Qiu S, Yuan S, Ni H, Chen S, Xie G, Chen Z, Wu J, Tang X. The plant-specific ABERRANT GAMETOGENESIS 1 gene is essential for meiosis in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:204-218. [PMID: 31587067 DOI: 10.1093/jxb/erz441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Meiotic recombination plays a central role in maintaining genome stability and increasing genetic diversity. Although meiotic progression and core components are widely conserved across kingdoms, significant differences remain among species. Here we identify a rice gene ABERRANT GAMETOGENESIS 1 (AGG1) that controls both male and female gametogenesis. Cytological and immunostaining analysis showed that in the osagg1 mutant the early recombination processes and synapsis occurred normally, but the chiasma number was dramatically reduced. Moreover, OsAGG1 was found to interact with ZMM proteins OsHEI10, OsZIP4, and OsMSH5. These results suggested that OsAGG1 plays an important role in crossover formation. Phylogenetic analysis showed that OsAGG1 is a plant-specific protein with a highly conserved N-terminal region. Further genetic and protein interaction analyses revealed that the conserved N-terminus was essential for the function of the OsAGG1 protein. Overall, our work demonstrates that OsAGG1 is a novel and critical component in rice meiotic crossover formation, expanding our understanding of meiotic progression. This study identified a plant-specific gene ABERRANT GAMETOGENESIS 1 that is required for meiotic crossover formation in rice. The conserved N-terminus of the AGG1 protein was found to be essential for its function.
Collapse
Affiliation(s)
- Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Xiaoyan Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Shijun Qiu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shuting Yuan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Haoling Ni
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shujing Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Gang Xie
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| |
Collapse
|
48
|
Kim J, Choi K. Signaling-mediated meiotic recombination in plants. CURRENT OPINION IN PLANT BIOLOGY 2019; 51:44-50. [PMID: 31048232 DOI: 10.1016/j.pbi.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 05/21/2023]
Abstract
Meiotic recombination provides genetic diversity in populations and ensures accurate homologous chromosome segregation for genome integrity. During meiosis, recombination processes, from DNA double strand breaks (DSBs) to crossover formation are tightly linked to higher order chromosome structure, including chromatid cohesion, axial element formation, homolog pairing and synapsis. The extensive studies on plant meiosis have revealed the important conserved roles for meiotic proteins in homologous recombination. Recent works have focused on elucidating the mechanistic basis of how meiotic proteins regulate recombination events via protein complex formation and modifications such as phosphorylation, ubiquitination, and SUMOylation. Here, we highlight recent advances on the signaling and modifications of meiotic proteins that mediate the formation of DSBs and crossovers in plants.
Collapse
Affiliation(s)
- Jaeil Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Kyuha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea.
| |
Collapse
|
49
|
Mittal N, Srivastava AK. Cd 2+ + Cr 6+ causes toxic effects on chromosomal development of microspore in Carthamus tinctorius. AIMS GENETICS 2019; 6:1-10. [PMID: 31435523 PMCID: PMC6690227 DOI: 10.3934/genet.2019.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 03/29/2019] [Indexed: 11/18/2022]
Abstract
Intra-category hybrids of Carthamus tinctorius were analyzed for the genetic toxicity in detail for effect of Cd2+ + Cr6+ on reproductive biology of Carthamus tinctorius. Five partially tolerant and five non-tolerant accessions of Carthamus tinctorius after screening were crossed to produce intra-category hybrid. These two heavy metals in combination influenced antagonistically first as well as second meiotic divisions inducing various kinds of anomalies and reduced the number of pollen grains per anther and significantly increased pollen sterility. A differential response for the amount of meiotic irregularity was recorded between different treated sets of hybrids in (Cd + Cr) treated sets. This could be due to differential response of the genotypes for the same concentration of (Cd + Cr). These two heavy metals in combination reduced the number of pollen grains per anther and significantly increased pollen sterility.
Collapse
Affiliation(s)
- Neha Mittal
- Department of Botany C.C.S. University Meerut-250004, India
| | | |
Collapse
|
50
|
Cahoon CK, Libuda DE. Leagues of their own: sexually dimorphic features of meiotic prophase I. Chromosoma 2019; 128:199-214. [PMID: 30826870 PMCID: PMC6823309 DOI: 10.1007/s00412-019-00692-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 01/12/2023]
Abstract
Meiosis is a conserved cell division process that is used by sexually reproducing organisms to generate haploid gametes. Males and females produce different end products of meiosis: eggs (females) and sperm (males). In addition, these unique end products demonstrate sex-specific differences that occur throughout meiosis to produce the final genetic material that is packaged into distinct gametes with unique extracellular morphologies and nuclear sizes. These sexually dimorphic features of meiosis include the meiotic chromosome architecture, in which both the lengths of the chromosomes and the requirement for specific meiotic axis proteins being different between the sexes. Moreover, these changes likely cause sex-specific changes in the recombination landscape with the sex that has the longer chromosomes usually obtaining more crossovers. Additionally, epigenetic regulation of meiosis may contribute to sexually dimorphic recombination landscapes. Here we explore the sexually dimorphic features of both the chromosome axis and crossing over for each stage of meiotic prophase I in Mus musculus, Caenorhabditis elegans, and Arabidopsis thaliana. Furthermore, we consider how sex-specific changes in the meiotic chromosome axes and the epigenetic landscape may function together to regulate crossing over in each sex, indicating that the mechanisms controlling crossing over may be different in oogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Cori K Cahoon
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, OR, 97403-1229, USA
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, OR, 97403-1229, USA.
| |
Collapse
|