1
|
Mustafin RN. A hypothesis about interrelations of epigenetic factors and transposable elements in memory formation. Vavilovskii Zhurnal Genet Selektsii 2024; 28:476-486. [PMID: 39280851 PMCID: PMC11393658 DOI: 10.18699/vjgb-24-54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 09/18/2024] Open
Abstract
The review describes the hypothesis that the drivers of epigenetic regulation in memory formation are transposable elements that influence the expression of specific genes in the brain. The hypothesis is confirmed by research into transposon activation in neuronal stem cells during neuronal differentiation. These changes occur in the hippocampus dentate gyrus, where a pronounced activity of transposons and their insertion near neuron-specific genes have been detected. In experiments on changing the activity of histone acetyltransferase and inhibition of DNA methyltransferase and reverse transcriptase, the involvement of epigenetic factors and retroelements in the mechanisms of memory formation has been shown. Also, a number of studies on different animals have revealed the preservation of long-term memory without the participation of synaptic plasticity. The data obtained suggest that transposons, which are genome sensors highly sensitive to various environmental and internal influences, form memory at the nuclear coding level. Therefore, long-term memory is preserved after elimination of synaptic connections. This is confirmed by the fact that the proteins involved in memory formation, including the transfer of genetic information through synapses between neurons (Arc protein), originate from transposons. Long non-coding RNAs and microRNAs also originate from transposons; their role in memory consolidation has been described. Pathological activation of transposable elements is a likely cause of neurodegenerative diseases with memory impairment. Analysis of the scientific literature allowed us to identify changes in the expression of 40 microRNAs derived from transposons in Alzheimer's disease. For 24 of these microRNAs, the mechanisms of regulation of genes involved in the functioning of the brain have been described. It has been suggested that the microRNAs we identified could become potential tools for regulating transposon activity in the brain in order to improve memory.
Collapse
|
2
|
Akiyama T, Raftery LA, Wharton KA. Bone morphogenetic protein signaling: the pathway and its regulation. Genetics 2024; 226:iyad200. [PMID: 38124338 PMCID: PMC10847725 DOI: 10.1093/genetics/iyad200] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
In the mid-1960s, bone morphogenetic proteins (BMPs) were first identified in the extracts of bone to have the remarkable ability to induce heterotopic bone. When the Drosophila gene decapentaplegic (dpp) was first identified to share sequence similarity with mammalian BMP2/BMP4 in the late-1980s, it became clear that secreted BMP ligands can mediate processes other than bone formation. Following this discovery, collaborative efforts between Drosophila geneticists and mammalian biochemists made use of the strengths of their respective model systems to identify BMP signaling components and delineate the pathway. The ability to conduct genetic modifier screens in Drosophila with relative ease was critical in identifying the intracellular signal transducers for BMP signaling and the related transforming growth factor-beta/activin signaling pathway. Such screens also revealed a host of genes that encode other core signaling components and regulators of the pathway. In this review, we provide a historical account of this exciting time of gene discovery and discuss how the field has advanced over the past 30 years. We have learned that while the core BMP pathway is quite simple, composed of 3 components (ligand, receptor, and signal transducer), behind the versatility of this pathway lies multiple layers of regulation that ensures precise tissue-specific signaling output. We provide a sampling of these discoveries and highlight many questions that remain to be answered to fully understand the complexity of BMP signaling.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Biology, Rich and Robin Porter Cancer Research Center, The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
3
|
Rubio-Ferrera I, Baladrón-de-Juan P, Clarembaux-Badell L, Truchado-Garcia M, Jordán-Álvarez S, Thor S, Benito-Sipos J, Monedero Cobeta I. Selective role of the DNA helicase Mcm5 in BMP retrograde signaling during Drosophila neuronal differentiation. PLoS Genet 2022; 18:e1010255. [PMID: 35737938 PMCID: PMC9258838 DOI: 10.1371/journal.pgen.1010255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 07/06/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The MCM2-7 complex is a highly conserved hetero-hexameric protein complex, critical for DNA unwinding at the replicative fork during DNA replication. Overexpression or mutation in MCM2-7 genes is linked to and may drive several cancer types in humans. In mice, mutations in MCM2-7 genes result in growth retardation and mortality. All six MCM2-7 genes are also expressed in the developing mouse CNS, but their role in the CNS is not clear. Here, we use the central nervous system (CNS) of Drosophila melanogaster to begin addressing the role of the MCM complex during development, focusing on the specification of a well-studied neuropeptide expressing neuron: the Tv4/FMRFa neuron. In a search for genes involved in the specification of the Tv4/FMRFa neuron we identified Mcm5 and find that it plays a highly specific role in the specification of the Tv4/FMRFa neuron. We find that other components of the MCM2-7 complex phenocopies Mcm5, indicating that the role of Mcm5 in neuronal subtype specification involves the MCM2-7 complex. Surprisingly, we find no evidence of reduced progenitor proliferation, and instead find that Mcm5 is required for the expression of the type I BMP receptor Tkv, which is critical for the FMRFa expression. These results suggest that the MCM2-7 complex may play roles during CNS development outside of its well-established role during DNA replication. The MCM2-7 complex plays a critical role in the DNA replication allowing cells to progress throughout the cell cycle and divide. Overexpression or mutation in MCM2-7 genes is linked to and may drive several cancer types in humans. While MCM2-7 complex is widely expressed in the central nervous system (CNS) during development, its role is not yet clear. Here, we use the CNS of Drosophila melanogaster to address the role of the MCM complex, focusing on the specification of a well-studied neuropeptide expressing neuron: the Tv4/FMRFa neuron. We identified that Mcm5 plays a highly specific role in the specification of this neuron, and it involves other components of the MCM2-7 complex. Despite the described importance of this complex on DNA replication, we find no evidence of reduced progenitor proliferation, and instead we find that Mcm5 is required for the expression of the type I BMP receptor Tkv, which is critical for the specification of the Tv4/FMRFa neuron. These results suggest that the MCM2-7 complex may play roles during CNS development outside of its well-established role during DNA replication.
Collapse
Affiliation(s)
- Irene Rubio-Ferrera
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Pablo Baladrón-de-Juan
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Luis Clarembaux-Badell
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | - Sheila Jordán-Álvarez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Stefan Thor
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Jonathan Benito-Sipos
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- * E-mail: (JB-S); (IMC)
| | - Ignacio Monedero Cobeta
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- * E-mail: (JB-S); (IMC)
| |
Collapse
|
4
|
Yu P, Li J, Deng SP, Zhang F, Grozdanov PN, Chin EWM, Martin SD, Vergnes L, Islam MS, Sun D, LaSalle JM, McGee SL, Goh E, MacDonald CC, Jin P. Integrated analysis of a compendium of RNA-Seq datasets for splicing factors. Sci Data 2020; 7:178. [PMID: 32546682 PMCID: PMC7297722 DOI: 10.1038/s41597-020-0514-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/13/2020] [Indexed: 02/05/2023] Open
Abstract
A vast amount of public RNA-sequencing datasets have been generated and used widely to study transcriptome mechanisms. These data offer precious opportunity for advancing biological research in transcriptome studies such as alternative splicing. We report the first large-scale integrated analysis of RNA-Seq data of splicing factors for systematically identifying key factors in diseases and biological processes. We analyzed 1,321 RNA-Seq libraries of various mouse tissues and cell lines, comprising more than 6.6 TB sequences from 75 independent studies that experimentally manipulated 56 splicing factors. Using these data, RNA splicing signatures and gene expression signatures were computed, and signature comparison analysis identified a list of key splicing factors in Rett syndrome and cold-induced thermogenesis. We show that cold-induced RNA-binding proteins rescue the neurite outgrowth defects in Rett syndrome using neuronal morphology analysis, and we also reveal that SRSF1 and PTBP1 are required for energy expenditure in adipocytes using metabolic flux analysis. Our study provides an integrated analysis for identifying key factors in diseases and biological processes and highlights the importance of public data resources for identifying hypotheses for experimental testing.
Collapse
Affiliation(s)
- Peng Yu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
- Medical Big Data Center, Sichuan University, Chengdu, China.
| | - Jin Li
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Su-Ping Deng
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Feiran Zhang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Petar N Grozdanov
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA
| | - Eunice W M Chin
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, NA, Singapore
| | - Sheree D Martin
- Metabolic Reprogramming Laboratory, Metabolic Research Unit, School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - M Saharul Islam
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California Davis, Davis, CA, USA
| | - Deqiang Sun
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California Davis, Davis, CA, USA
| | - Sean L McGee
- Metabolic Reprogramming Laboratory, Metabolic Research Unit, School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Eyleen Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, NA, Singapore
| | - Clinton C MacDonald
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|