1
|
Bollinger KW, Müh U, Ocius KL, Apostolos AJ, Pires MM, Helm RF, Popham DL, Weiss DS, Ellermeier CD. Identification of a family of peptidoglycan transpeptidases reveals that Clostridioides difficile requires noncanonical cross-links for viability. Proc Natl Acad Sci U S A 2024; 121:e2408540121. [PMID: 39150786 PMCID: PMC11348318 DOI: 10.1073/pnas.2408540121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024] Open
Abstract
Most bacteria are surrounded by a cell wall that contains peptidoglycan (PG), a large polymer composed of glycan strands held together by short peptide cross-links. There are two major types of cross-links, termed 4-3 and 3-3 based on the amino acids involved. 4-3 cross-links are created by penicillin-binding proteins, while 3-3 cross-links are created by L,D-transpeptidases (LDTs). In most bacteria, the predominant mode of cross-linking is 4-3, and these cross-links are essential for viability, while 3-3 cross-links comprise only a minor fraction and are not essential. However, in the opportunistic intestinal pathogen Clostridioides difficile, about 70% of the cross-links are 3-3. We show here that 3-3 cross-links and LDTs are essential for viability in C. difficile. We also show that C. difficile has five LDTs, three with a YkuD catalytic domain as in all previously known LDTs and two with a VanW catalytic domain, whose function was until now unknown. The five LDTs exhibit extensive functional redundancy. VanW domain proteins are found in many gram-positive bacteria but scarce in other lineages. We tested seven non-C. difficile VanW domain proteins and confirmed LDT activity in three cases. In summary, our findings uncover a previously unrecognized family of PG cross-linking enzymes, assign a catalytic function to VanW domains, and demonstrate that 3-3 cross-linking is essential for viability in C. difficile, the first time this has been shown in any bacterial species. The essentiality of LDTs in C. difficile makes them potential targets for antibiotics that kill C. difficile selectively.
Collapse
Affiliation(s)
- Kevin W. Bollinger
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Ute Müh
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Karl L. Ocius
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | | | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061
| | - David S. Weiss
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Graduate Program in Genetics, University of Iowa, Iowa City, IA52242
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Graduate Program in Genetics, University of Iowa, Iowa City, IA52242
| |
Collapse
|
2
|
Bollinger KW, Müh U, Ocius KL, Apostolos AJ, Pires MM, Helm RF, Popham DL, Weiss DS, Ellermeier CD. Identification of a new family of peptidoglycan transpeptidases reveals atypical crosslinking is essential for viability in Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584917. [PMID: 38559057 PMCID: PMC10980060 DOI: 10.1101/2024.03.14.584917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Clostridioides difficile, the leading cause of antibiotic-associated diarrhea, relies primarily on 3-3 crosslinks created by L,D-transpeptidases (LDTs) to fortify its peptidoglycan (PG) cell wall. This is unusual, as in most bacteria the vast majority of PG crosslinks are 4-3 crosslinks, which are created by penicillin-binding proteins (PBPs). Here we report the unprecedented observation that 3-3 crosslinking is essential for viability in C. difficile. We also report the discovery of a new family of LDTs that use a VanW domain to catalyze 3-3 crosslinking rather than a YkuD domain as in all previously known LDTs. Bioinformatic analyses indicate VanW domain LDTs are less common than YkuD domain LDTs and are largely restricted to Gram-positive bacteria. Our findings suggest that LDTs might be exploited as targets for antibiotics that kill C. difficile without disrupting the intestinal microbiota that is important for keeping C. difficile in check.
Collapse
Affiliation(s)
- Kevin W. Bollinger
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ute Müh
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Karl L. Ocius
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Alexis J. Apostolos
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
- Present address: Haleon, 1211 Sherwood Ave, Richmond, VA 23220
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - David S. Weiss
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Graduate Program in Genetics, University of Iowa, Iowa City, IA USA
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Graduate Program in Genetics, University of Iowa, Iowa City, IA USA
| |
Collapse
|
3
|
Pannullo AG, Zbylicki BR, Ellermeier CD. Identification of DraRS in Clostridioides difficile, a Two-Component Regulatory System That Responds to Lipid II-Interacting Antibiotics. J Bacteriol 2023; 205:e0016423. [PMID: 37439672 PMCID: PMC10601625 DOI: 10.1128/jb.00164-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Clostridioides difficile is a Gram-positive opportunistic pathogen that results in 220,000 infections, 12,000 deaths, and upwards of $1 billion in medical costs in the United States each year. C. difficile is highly resistant to a variety of antibiotics, but we have a poor understanding of how C. difficile senses and responds to antibiotic stress and how such sensory systems affect clinical outcomes. We have identified a spontaneous C. difficile mutant that displays increased daptomycin resistance. We performed whole-genome sequencing and found a nonsense mutation, S605*, in draS, which encodes a putative sensor histidine kinase of a two-component system (TCS). The draSS605* mutant has an ~4- to 8-fold increase in the daptomycin MIC compared to the wild type (WT). We found that the expression of constitutively active DraRD54E in the WT increases daptomycin resistance 8- to 16-fold and increases bacitracin resistance ~4-fold. We found that a selection of lipid II-inhibiting compounds leads to the increased activity of the luciferase-based reporter PdraR-slucopt, including vancomycin, bacitracin, ramoplanin, and daptomycin. Using RNA sequencing (RNA-seq), we identified the DraRS regulon. Interestingly, we found that DraRS can induce the expression of the previously identified hex locus required for the synthesis of a novel glycolipid produced in C. difficile. Our data suggest that the induction of the hex locus by DraR explains some, but not all, of the DraR-induced daptomycin and bacitracin resistance. IMPORTANCE Clostridioides difficile is a major cause of hospital-acquired diarrhea and represents an urgent concern due to the prevalence of antibiotic resistance and the rate of recurrent infections. C. difficile encodes ~50 annotated two-component systems (TCSs); however, only a few have been studied. The function of these unstudied TCSs is not known. Here, we show that the TCS DraRS plays a role in responding to a subset of lipid II-inhibiting antibiotics and mediates resistance to daptomycin and bacitracin in part by inducing the expression of the recently identified hex locus, which encodes enzymes required for the production of a novel glycolipid in C. difficile.
Collapse
Affiliation(s)
- Anthony G. Pannullo
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Brianne R. Zbylicki
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Activation of the Extracytoplasmic Function σ Factor σ V in Clostridioides difficile Requires Regulated Intramembrane Proteolysis of the Anti-σ Factor RsiV. mSphere 2022; 7:e0009222. [PMID: 35317618 PMCID: PMC9044953 DOI: 10.1128/msphere.00092-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Clostridioides (Clostridium) difficile is one of the leading causes of nosocomial diarrhea. Lysozyme is a common host defense against many pathogenic bacteria. C. difficile exhibits high levels of lysozyme resistance, which is due in part to the extracytoplasmic functioning (ECF) σ factor, σV. It has been previously demonstrated that genes regulated by σV are responsible for peptidoglycan modifications that provide C. difficile with high lysozyme resistance. σV is not unique to C. difficile however, and its role in lysozyme resistance and its mechanism of activation has been well characterized in Bacillus subtilis where the anti-σ, RsiV, sequesters σV until lysozyme directly binds to RsiV, activating σV. However, it remains unclear if the mechanism of σV activation is similar in C. difficile. Here, we investigated how activation of σV is controlled in C. difficile by lysozyme. We found that C. difficile RsiV was degraded in the presence of lysozyme. We also found that disruption of a predicted signal peptidase cleavage site blocked RsiV degradation and σV activation, indicating that the site-1 protease is likely a signal peptidase. We also identified a conserved site-2 protease, RasP, that was required for site-2 cleavage of RsiV and σV activation in response to lysozyme. Combined with previous work showing RsiV directly binds lysozyme, these data suggested that RsiV directly binds lysozyme in C. difficile, which leads to RsiV destruction via cleavage at site-1 by signal peptidase and then at site-2 by RasP, ultimately resulting in σV activation and increased resistance to lysozyme. IMPORTANCE Clostridioides difficile is a major cause of hospital-acquired diarrhea and represents an urgent concern due to the prevalence of antibiotic resistance and the rate of recurrent infections. We previously showed that σV and the regulon under its control were involved in lysozyme resistance. We have also shown in B. subtilis that the anti-σ RsiV acts as a direct sensor for lysozyme. which results in the destruction of RsiV and activation of σV. Here, we described the proteases required for degradation of RsiV in C. difficile in response to lysozyme. Our data indicated that the mechanism is highly conserved between B. subtilis and C. difficile.
Collapse
|
5
|
Ho TD, Ellermeier CD. Activation of the extracytoplasmic function σ factor σ V by lysozyme in Clostridioides difficile. Curr Opin Microbiol 2022; 65:162-166. [PMID: 34894542 PMCID: PMC8792214 DOI: 10.1016/j.mib.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 02/03/2023]
Abstract
Clostridioides difficile is naturally resistant to high levels of lysozyme an important component of the innate immune defense system. C. difficile encodes both constitutive as well as inducible lysozyme resistance genes. The inducible lysozyme resistance genes are controlled by an alternative σ factor σV that belongs to the Extracytoplasmic function σ factor family. In the absence of lysozyme, the activity of σV is inhibited by the anti-σ factor RsiV. In the presence of lysozyme RsiV is destroyed via a proteolytic cascade that leads to σV activation and increased lysozyme resistance. This review highlights how activity of σV is controlled.
Collapse
Affiliation(s)
- Theresa D. Ho
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 431 Newton Rd, Iowa City, IA 52242
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 431 Newton Rd, Iowa City, IA 52242,Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA,Corresponding author: , 319-384-4565
| |
Collapse
|
6
|
Parthasarathy S, Wang X, Carr KR, Varahan S, Hancock EB, Hancock LE. SigV Mediates Lysozyme Resistance in Enterococcus faecalis via RsiV and PgdA. J Bacteriol 2021; 203:e0025821. [PMID: 34370556 PMCID: PMC8459761 DOI: 10.1128/jb.00258-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Enterococcus faecalis is a gut commensal but transitions to a pathogenic state as a consequence of intestinal dysbiosis and/or the presence of indwelling medical devices, causing a wide range of infections. One of the unique features of E. faecalis is its ability to display high level resistance to lysozyme, an important host defense of the innate immune response. Lysozyme resistance in E. faecalis is known to be mediated by the extracytoplasmic function (ECF) sigma factor SigV. PgdA and RsiV expression is directly regulated by SigV, but pgdA and rsiV mutants display nominal changes in lysozyme resistance, suggesting that additional gene products in the SigV regulon contribute to lysozyme resistance. Using transcriptome sequencing (RNA-seq) analysis, we compared the transcriptional profile of the parental strain to that of an isogenic sigV mutant and show that apart from sigV, only rsiV and pgdA expression was induced upon lysozyme exposure. The combined deletion mutant of both rsiV and pgdA rendered E. faecalis sensitive to lysozyme at a level comparable to that of the sigV mutant, highlighting the limited SigV regulon. Several additional genes were also induced upon lysozyme exposure, but in a SigV-independent fashion. Overexpression of pgdA from a SigV-independent promoter restored lysozyme resistance in a sigV deletion mutant and also induced cell chaining. Overexpression of rsiV from a SigV-independent promoter only partially restored lysozyme resistance in a sigV mutant. Overall, we provide evidence for a simple adaptation to lysozyme stress, in which SigV controls the expression of rsiV and pgdA, and that both gene products contribute to lysozyme resistance. IMPORTANCE Enterococcus faecalis causes health care-associated infections and displays resistance to a variety of antibiotics and molecules of the innate immune system. SigV has been shown to play an important role in enterococcal lysozyme resistance. Even though several proteins have been implicated in enterococcal lysozyme resistance, a complete SigV-dependent regulon has not been functionally characterized as being responsible for the dramatic increase in lysozyme susceptibility displayed by a sigV mutant. Using RNA-seq, we have identified the SigV regulon to be comprised of two gene loci, sigV-rsiV and pgdA. Deletion of both rsiV and pgdA renders E. faecalis susceptible to lysozyme on par with a sigV mutant. We also demonstrate that overproduction of rsiV and pgdA contributes to lysozyme resistance in susceptible strains.
Collapse
Affiliation(s)
- Srivatsan Parthasarathy
- Department of Molecular Biosciences, University of Kansasgrid.266515.3, Lawrence, Kansas, USA
| | - Xiaofei Wang
- Department of Molecular Biosciences, University of Kansasgrid.266515.3, Lawrence, Kansas, USA
| | - Kristen R. Carr
- Department of Molecular Biosciences, University of Kansasgrid.266515.3, Lawrence, Kansas, USA
| | - Sriram Varahan
- Department of Molecular Biosciences, University of Kansasgrid.266515.3, Lawrence, Kansas, USA
| | - Elyssa B. Hancock
- Department of Molecular Biosciences, University of Kansasgrid.266515.3, Lawrence, Kansas, USA
| | - Lynn E. Hancock
- Department of Molecular Biosciences, University of Kansasgrid.266515.3, Lawrence, Kansas, USA
| |
Collapse
|
7
|
Schwall CP, Loman TE, Martins BMC, Cortijo S, Villava C, Kusmartsev V, Livesey T, Saez T, Locke JCW. Tunable phenotypic variability through an autoregulatory alternative sigma factor circuit. Mol Syst Biol 2021; 17:e9832. [PMID: 34286912 PMCID: PMC8287880 DOI: 10.15252/msb.20209832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
Genetically identical individuals in bacterial populations can display significant phenotypic variability. This variability can be functional, for example by allowing a fraction of stress prepared cells to survive an otherwise lethal stress. The optimal fraction of stress prepared cells depends on environmental conditions. However, how bacterial populations modulate their level of phenotypic variability remains unclear. Here we show that the alternative sigma factor σV circuit in Bacillus subtilis generates functional phenotypic variability that can be tuned by stress level, environmental history and genetic perturbations. Using single-cell time-lapse microscopy and microfluidics, we find the fraction of cells that immediately activate σV under lysozyme stress depends on stress level and on a transcriptional memory of previous stress. Iteration between model and experiment reveals that this tunability can be explained by the autoregulatory feedback structure of the sigV operon. As predicted by the model, genetic perturbations to the operon also modulate the response variability. The conserved sigma-anti-sigma autoregulation motif is thus a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment.
Collapse
Affiliation(s)
| | | | - Bruno M C Martins
- Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
- School of Life SciencesUniversity of WarwickCoventryUK
| | | | | | | | - Toby Livesey
- Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | - Teresa Saez
- Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
8
|
Holin-Dependent Secretion of the Large Clostridial Toxin TpeL by Clostridium perfringens. J Bacteriol 2021; 203:JB.00580-20. [PMID: 33526612 DOI: 10.1128/jb.00580-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Large clostridial toxins (LCTs) are secreted virulence factors found in several species, including Clostridioides difficile, Clostridium perfringens, Paeniclostridium sordellii, and Clostridium novyi LCTs are large toxins that lack a secretion signal sequence, and studies by others have shown that the LCTs of C. difficile, TcdA and TcdB, require a holin-like protein, TcdE, for secretion. The TcdE gene is located on the pathogenicity locus (PaLoc) of C. difficile, and holin-encoding genes are also present in the LCT-encoded PaLocs from P. sordellii and C. perfringens However, the holin (TpeE) associated with the C. perfringens LCT TpeL has no homology and a different membrane topology than TcdE. In addition, TpeE has a membrane topology identical to that of the TatA protein, which is the core of the twin-arginine translocation (Tat) secretion system. To determine if TpeE was necessary and sufficient to secrete TpeL, the genes from a type C strain of C. perfringens were expressed in a type A strain of C. perfringens, HN13, and secretion was measured using Western blot methods. We found that TpeE was required for TpeL secretion and that secretion was not due to cell lysis. Mutant forms of TpeE lacking an amphipathic helix and a charged C-terminal domain failed to secrete TpeL, and mutations that deleted conserved LCT domains in TpeL indicated that only the full-length protein could be secreted. In summary, we have identified a novel family of holin-like proteins that can function, in some cases, as a system of protein secretion for proteins that need to fold in the cytoplasm.IMPORTANCE Little is known about the mechanism by which LCTs are secreted. Since LCTs are major virulence factors in clostridial pathogens, we wanted to define the mechanism by which an LCT in C. perfringens, TpeL, is secreted by a protein (TpeE) lacking homology to previously described secretion-associated holins. We discovered that TpeE is a member of a widely dispersed class of holin proteins, and TpeE is necessary for the secretion of TpeL. TpeE bears a high degree of similarity in membrane topology to TatA proteins, which form the pore through which Tat secretion substrates pass through the cytoplasmic membrane. Thus, the TpeE-TpeL secretion system may be a model for understanding not only holin-dependent secretion but also how TatA proteins function in the secretion process.
Collapse
|
9
|
The Penicillin-Binding Protein PbpP Is a Sensor of β-Lactams and Is Required for Activation of the Extracytoplasmic Function σ Factor σ P in Bacillus thuringiensis. mBio 2021; 12:mBio.00179-21. [PMID: 33758089 PMCID: PMC8092216 DOI: 10.1128/mbio.00179-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
β-Lactams are a class of antibiotics that target the synthesis of peptidoglycan, an essential component of the cell wall. β-Lactams inhibit the function of penicillin-binding proteins (PBPs), which form the cross-links between strands of peptidoglycan. Resistance to β-lactams complicates the treatment of bacterial infections. In recent years, the spread of β-lactam resistance has increased with growing intensity. Resistance is often conferred by β-lactamases, which inactivate β-lactams, or the expression of alternative β-lactam-resistant PBPs. σP is an extracytoplasmic function (ECF) σ factor that controls β-lactam resistance in the species Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis σP is normally held inactive by the anti-σ factor RsiP. σP is activated by β-lactams that trigger the proteolytic destruction of RsiP. Here, we identify the penicillin-binding protein PbpP and demonstrate its essential role in the activation of σP Our data show that PbpP is required for σP activation and RsiP degradation. Our data suggest that PbpP acts as a β-lactam sensor since the binding of a subset of β-lactams to PbpP is required for σP activation. We find that PbpP likely directly or indirectly controls site 1 cleavage of RsiP, which results in the degradation of RsiP and, thus, σP activation. σP activation results in increased expression of β-lactamases and, thus, increased β-lactam resistance. This work is the first report of a PBP acting as a sensor for β-lactams and controlling the activation of an ECF σ factor.IMPORTANCE The bacterial cell envelope is the target for numerous antibiotics. Many antibiotics target the synthesis of peptidoglycan, which is a central metabolic pathway essential for bacterial survival. One of the most important classes of antibiotics has been β-lactams, which inhibit the transpeptidase activity of penicillin-binding proteins to decrease the cross-linking of peptidoglycan and the strength of the cell wall. While β-lactam antibiotics have historically proven to be effective, resistance to β-lactams is a growing problem. The ECF σ factor σP is required for β-lactam resistance in B. thuringiensis and close relatives, including B. anthracis Here, we provide insight into the mechanism of activation of σP by β-lactams.
Collapse
|
10
|
Signal Peptidase-Mediated Cleavage of the Anti-σ Factor RsiP at Site 1 Controls σ P Activation and β-Lactam Resistance in Bacillus thuringiensis. mBio 2021; 13:e0370721. [PMID: 35164554 PMCID: PMC8844934 DOI: 10.1128/mbio.03707-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In Bacillus thuringiensis, β-lactam antibiotic resistance is controlled by the extracytoplasmic function (ECF) σ factor σP. σP activity is inhibited by the anti-σ factor RsiP. In the presence of β-lactam antibiotics, RsiP is degraded and σP is activated. Previous work found that RsiP degradation requires cleavage of RsiP at site 1 by an unknown protease, followed by cleavage at site 2 by the site 2 protease RasP. The penicillin-binding protein PbpP acts as a sensor for β-lactams. PbpP initiates σP activation and is required for site 1 cleavage of RsiP but is not the site 1 protease. Here, we describe the identification of a signal peptidase, SipP, which cleaves RsiP at a site 1 signal peptidase cleavage site and is required for σP activation. Finally, many B. anthracis strains are sensitive to β-lactams yet encode the σP-RsiP signal transduction system. We identified a naturally occurring mutation in the signal peptidase cleavage site of B. anthracis RsiP that renders it resistant to SipP cleavage. We find that B. anthracis RsiP is not degraded in the presence of β-lactams. Altering the B. anthracis RsiP site 1 cleavage site by a single residue to resemble B. thuringiensis RsiP results in β-lactam-dependent degradation of RsiP. We show that mutation of the B. thuringiensis RsiP cleavage site to resemble the sequence of B. anthracis RsiP blocks degradation by SipP. The change in the cleavage site likely explains many reasons why B. anthracis strains are sensitive to β-lactams. IMPORTANCE β-Lactam antibiotics are important for the treatment of many bacterial infections. However, resistance mechanisms have become increasingly more prevalent. Understanding how β-lactam resistance is conferred and how bacteria control expression of β-lactam resistance is important for informing the future treatment of bacterial infections. σP is an alternative σ factor that controls the transcription of genes that confer β-lactam resistance in Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis. Here, we identify a signal peptidase as the protease required for initiating activation of σP by the degradation of the anti-σ factor RsiP. The discovery that the signal peptidase SipP is required for σP activation highlights an increasing role for signal peptidases in signal transduction, as well as in antibiotic resistance.
Collapse
|
11
|
Wettstadt S, Llamas MA. Role of Regulated Proteolysis in the Communication of Bacteria With the Environment. Front Mol Biosci 2020; 7:586497. [PMID: 33195433 PMCID: PMC7593790 DOI: 10.3389/fmolb.2020.586497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022] Open
Abstract
For bacteria to flourish in different niches, they need to sense signals from the environment and translate these into appropriate responses. Most bacterial signal transduction systems involve proteins that trigger the required response through the modification of gene transcription. These proteins are often produced in an inactive state that prevents their interaction with the RNA polymerase and/or the DNA in the absence of the inducing signal. Among other mechanisms, regulated proteolysis is becoming increasingly recognized as a key process in the modulation of the activity of these signal response proteins. Regulated proteolysis can either produce complete degradation or specific cleavage of the target protein, thus modifying its function. Because proteolysis is a fast process, the modulation of signaling proteins activity by this process allows for an immediate response to a given signal, which facilitates adaptation to the surrounding environment and bacterial survival. Moreover, regulated proteolysis is a fundamental process for the transmission of extracellular signals to the cytosol through the bacterial membranes. By a proteolytic mechanism known as regulated intramembrane proteolysis (RIP) transmembrane proteins are cleaved within the plane of the membrane to liberate a cytosolic domain or protein able to modify gene transcription. This allows the transmission of a signal present on one side of a membrane to the other side where the response is elicited. In this work, we review the role of regulated proteolysis in the bacterial communication with the environment through the modulation of the main bacterial signal transduction systems, namely one- and two-component systems, and alternative σ factors.
Collapse
Affiliation(s)
- Sarah Wettstadt
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
12
|
Casas-Pastor D, Diehl A, Fritz G. Coevolutionary Analysis Reveals a Conserved Dual Binding Interface between Extracytoplasmic Function σ Factors and Class I Anti-σ Factors. mSystems 2020; 5:e00310-20. [PMID: 32753504 PMCID: PMC7406223 DOI: 10.1128/msystems.00310-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022] Open
Abstract
Extracytoplasmic function σ factors (ECFs) belong to the most abundant signal transduction mechanisms in bacteria. Among the diverse regulators of ECF activity, class I anti-σ factors are the most important signal transducers in response to internal and external stress conditions. Despite the conserved secondary structure of the class I anti-σ factor domain (ASDI) that binds and inhibits the ECF under noninducing conditions, the binding interface between ECFs and ASDIs is surprisingly variable between the published cocrystal structures. In this work, we provide a comprehensive computational analysis of the ASDI protein family and study the different contact themes between ECFs and ASDIs. To this end, we harness the coevolution of these diverse protein families and predict covarying amino acid residues as likely candidates of an interaction interface. As a result, we find two common binding interfaces linking the first alpha-helix of the ASDI to the DNA-binding region in the σ4 domain of the ECF, and the fourth alpha-helix of the ASDI to the RNA polymerase (RNAP)-binding region of the σ2 domain. The conservation of these two binding interfaces contrasts with the apparent quaternary structure diversity of the ECF/ASDI complexes, partially explaining the high specificity between cognate ECF and ASDI pairs. Furthermore, we suggest that the dual inhibition of RNAP- and DNA-binding interfaces is likely a universal feature of other ECF anti-σ factors, preventing the formation of nonfunctional trimeric complexes between σ/anti-σ factors and RNAP or DNA.IMPORTANCE In the bacterial world, extracytoplasmic function σ factors (ECFs) are the most widespread family of alternative σ factors, mediating many cellular responses to environmental cues, such as stress. This work uses a computational approach to investigate how these σ factors interact with class I anti-σ factors-the most abundant regulators of ECF activity. By comprehensively classifying the anti-σs into phylogenetic groups and by comparing this phylogeny to the one of the cognate ECFs, the study shows how these protein families have coevolved to maintain their interaction over evolutionary time. These results shed light on the common contact residues that link ECFs and anti-σs in different phylogenetic families and set the basis for the rational design of anti-σs to specifically target certain ECFs. This will help to prevent the cross talk between heterologous ECF/anti-σ pairs, allowing their use as orthogonal regulators for the construction of genetic circuits in synthetic biology.
Collapse
Affiliation(s)
- Delia Casas-Pastor
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Angelika Diehl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Georg Fritz
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
13
|
Ragland SA, Gray MC, Melson EM, Kendall MM, Criss AK. Effect of Lipidation on the Localization and Activity of a Lysozyme Inhibitor in Neisseria gonorrhoeae. J Bacteriol 2020; 202:e00633-19. [PMID: 32041800 PMCID: PMC7099142 DOI: 10.1128/jb.00633-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/01/2020] [Indexed: 01/02/2023] Open
Abstract
The Gram-negative pathogen Neisseria gonorrhoeae (gonococcus [Gc]) colonizes lysozyme-rich mucosal surfaces. Lysozyme hydrolyzes peptidoglycan, leading to bacterial lysis. Gc expresses two proteins, SliC and NgACP, that bind and inhibit the enzymatic activity of lysozyme. SliC is a surface-exposed lipoprotein, while NgACP is found in the periplasm and also released extracellularly. Purified SliC and NgACP similarly inhibit lysozyme. However, whereas mutation of ngACP increases Gc susceptibility to lysozyme, the sliC mutant is only susceptible to lysozyme when ngACP is inactivated. In this work, we examined how lipidation contributes to SliC expression, cellular localization, and resistance of Gc to killing by lysozyme. To do so, we mutated the conserved cysteine residue (C18) in the N-terminal lipobox motif of SliC, the site for lipid anchor attachment, to alanine. SliC(C18A) localized to soluble rather than membrane fractions in Gc and was not displayed on the bacterial surface. Less SliC(C18A) was detected in Gc lysates compared to the wild-type protein. This was due in part to some release of the C18A mutant, but not wild-type, protein into the extracellular space. Surprisingly, Gc expressing SliC(C18A) survived better than SliC (wild type)-expressing Gc after exposure to lysozyme. We conclude that lipidation is not required for the ability of SliC to inhibit lysozyme, even though the lipidated cysteine is 100% conserved in Gc SliC alleles. These findings shed light on how members of the growing family of lysozyme inhibitors with distinct subcellular localizations contribute to bacterial defense against lysozyme.IMPORTANCENeisseria gonorrhoeae is one of many bacterial species that express multiple lysozyme inhibitors. It is unclear how inhibitors that differ in their subcellular localization contribute to defense from lysozyme. We investigated how lipidation of SliC, an MliC (membrane-bound lysozyme inhibitor of c-type lysozyme)-type inhibitor, contributes to its localization and lysozyme inhibitory activity. We found that lipidation was required for surface exposure of SliC and yet was dispensable for protecting the gonococcus from killing by lysozyme. To our knowledge, this is the first time the role of lipid anchoring of a lysozyme inhibitor has been investigated. These results help us understand how different lysozyme inhibitors are localized in bacteria and how this impacts resistance to lysozyme.
Collapse
Affiliation(s)
- Stephanie A Ragland
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Mary C Gray
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Elizabeth M Melson
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Melissa M Kendall
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
14
|
Ho TD, Ellermeier CD. Activation of the extracytoplasmic function σ factor σ V by lysozyme. Mol Microbiol 2019; 112:410-419. [PMID: 31286585 DOI: 10.1111/mmi.14348] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2019] [Indexed: 01/01/2023]
Abstract
σV is an extracytoplasmic function (ECF) σ factor that is found exclusively in Firmicutes including Bacillus subtilis and the opportunistic pathogens Clostridioides difficile and Enterococcus faecalis. σV is activated by lysozyme and is required for lysozyme resistance. The activity of σV is normally inhibited by the anti-σ factor RsiV, a transmembrane protein. RsiV acts as a receptor for lysozyme. The binding of lysozyme to RsiV triggers a signal transduction cascade which results in degradation of RsiV and activation of σV . Like the anti-σ factors for several other ECF σ factors, RsiV is degraded by a multistep proteolytic cascade that is regulated at the step of site-1 cleavage. Unlike other anti-σ factors, site-1 cleavage of RsiV is not dependent upon a site-1 protease whose activity is regulated. Instead constitutively active signal peptidase cleaves RsiV at site-1 in a lysozyme-dependent manner. The activation of σV leads to the transcription of genes, which encode proteins required for lysozyme resistance.
Collapse
Affiliation(s)
- Theresa D Ho
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 431 Newton Rd, Iowa City, IA, 52242, USA
| | - Craig D Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 431 Newton Rd, Iowa City, IA, 52242, USA.,Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
15
|
Tran NT, Huang X, Hong HJ, Bush MJ, Chandra G, Pinto D, Bibb MJ, Hutchings MI, Mascher T, Buttner MJ. Defining the regulon of genes controlled by σ E , a key regulator of the cell envelope stress response in Streptomyces coelicolor. Mol Microbiol 2019; 112:461-481. [PMID: 30907454 PMCID: PMC6767563 DOI: 10.1111/mmi.14250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2019] [Indexed: 01/01/2023]
Abstract
The extracytoplasmic function (ECF) σ factor, σE , is a key regulator of the cell envelope stress response in Streptomyces coelicolor. Although its role in maintaining cell wall integrity has been known for over a decade, a comprehensive analysis of the genes under its control has not been undertaken. Here, using a combination of chromatin immunoprecipitation-sequencing (ChIP-seq), microarray transcriptional profiling and bioinformatic analysis, we attempt to define the σE regulon. Approximately half of the genes identified encode proteins implicated in cell envelope function. Seventeen novel targets were validated by S1 nuclease mapping or in vitro transcription, establishing a σE -binding consensus. Subsequently, we used bioinformatic analysis to look for conservation of the σE target promoters identified in S. coelicolor across 19 Streptomyces species. Key proteins under σE control across the genus include the actin homolog MreB, three penicillin-binding proteins, two L,D-transpeptidases, a LytR-CpsA-Psr-family protein predicted to be involved in cell wall teichoic acid deposition and a predicted MprF protein, which adds lysyl groups to phosphatidylglycerol to neutralize membrane surface charge. Taken together, these analyses provide biological insight into the σE -mediated cell envelope stress response in the genus Streptomyces.
Collapse
Affiliation(s)
- Ngat T Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Xiaoluo Huang
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,Department Biology I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Hee-Jeon Hong
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Daniela Pinto
- Department Biology I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Maureen J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Thorsten Mascher
- Department Biology I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|