1
|
Guiyedi K, Parquet M, Aoufouchi S, Chauzeix J, Rizzo D, Al Jamal I, Feuillard J, Gachard N, Peron S. Increased c-MYC Expression Associated with Active IGH Locus Rearrangement: An Emerging Role for c-MYC in Chronic Lymphocytic Leukemia. Cancers (Basel) 2024; 16:3749. [PMID: 39594704 PMCID: PMC11592262 DOI: 10.3390/cancers16223749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
This review examines the pivotal role of c-MYC in Chronic Lymphocytic Leukemia (CLL), focusing on how its overexpression leads to increased genetic instability, thereby accelerating disease progression. MYC, a major oncogene, encodes a transcription factor that regulates essential cellular processes, including cell cycle control, proliferation, and apoptosis. In CLL cases enriched with unmutated immunoglobulin heavy chain variable (IGHV) genes, MYC is significantly overexpressed and associated with active rearrangements in the IGH immunoglobulin heavy chain locus. This overexpression results in substantial DNA damage, including double-strand breaks, chromosomal translocations, and an increase in abnormal repair events. Consequently, c-MYC plays a dual role in CLL: it promotes aggressive cell proliferation while concurrently driving genomic instability through its involvement in genetic recombination. This dynamic contributes not only to CLL progression but also to the overall aggressiveness of the disease. Additionally, the review suggests that c-MYC's influence on genetic rearrangements makes it an attractive target for therapeutic strategies aimed at mitigating CLL malignancy. These findings underscore c-MYC's critical importance in advancing CLL progression, highlighting the need for further research to explore its potential as a target in future treatment approaches.
Collapse
Affiliation(s)
- Kenza Guiyedi
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
| | - Milène Parquet
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
| | - Said Aoufouchi
- Gustave Roussy, B-Cell and Genome Plasticity Team, CNRS UMR9019, Villejuif, France and Université Paris-Saclay, 91400 Orsay, France
| | - Jasmine Chauzeix
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
- Laboratoire d’Hématologie Biologique, Centre Hospitalier Universitaire de Limoges, 87000 Limoges, France
| | - David Rizzo
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
- Laboratoire d’Hématologie Biologique, Centre Hospitalier Universitaire de Limoges, 87000 Limoges, France
| | - Israa Al Jamal
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
- Faculty of Sciences, GSBT Genomic Surveillance and Biotherapy Team, Mont Michel Campus, Lebanese University, Tripoli 1300, Lebanon
| | - Jean Feuillard
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
- Laboratoire d’Hématologie Biologique, Centre Hospitalier Universitaire de Limoges, 87000 Limoges, France
| | - Nathalie Gachard
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
- Laboratoire d’Hématologie Biologique, Centre Hospitalier Universitaire de Limoges, 87000 Limoges, France
| | - Sophie Peron
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
| |
Collapse
|
2
|
Du L, Oksenych V, Wan H, Ye X, Dong J, Ye AY, Abolhassani H, Vlachiotis S, Zhang X, de la Rosa K, Hammarström L, van der Burg M, Alt FW, Pan-Hammarström Q. Orientation Regulation of Class-switch Recombination in Human B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1093-1104. [PMID: 39248600 PMCID: PMC11457721 DOI: 10.4049/jimmunol.2300842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
We developed a linear amplification-mediated high-throughput genome-wide translocation sequencing method to profile Ig class-switch recombination (CSR) in human B cells in an unbiased and quantitative manner. This enables us to characterize CSR junctions resulting from either deletional recombination or inversion for each Ig class/subclass. Our data showed that more than 90% of CSR junctions detected in peripheral blood in healthy control subjects were due to deletional recombination. We further identified two major CSR junction signatures/patterns in human B cells. Signature 1 consists of recombination junctions resulting from both IgG and IgA switching, with a dominance of Sµ-Sγ junctions (72%) and deletional recombination (87%). Signature 2 is contributed mainly by Sµ-Sα junctions (96%), and these junctions were almost all due to deletional recombination (99%) and were characterized by longer microhomologies. CSR junctions identified in healthy individuals can be assigned to both signatures but with a dominance of signature 1, whereas almost all CSR junctions found in patients with defects in DNA-PKcs or Artemis, two classical nonhomologous end joining (c-NHEJ) factors, align with signature 2. Thus, signature 1 may represent c-NHEJ activity during CSR, whereas signature 2 is associated with microhomology-mediated alternative end joining in the absence of the studied c-NHEJ factors. Our findings suggest that in human B cells, the efficiency of the c-NHEJ machinery and the features of switch regions are crucial for the regulation of CSR orientation. Finally, our high-throughput method can also be applied to study the mechanism of rare types of recombination, such as switching to IgD and locus suicide switching.
Collapse
Affiliation(s)
- Likun Du
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Valentyn Oksenych
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hui Wan
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xiaofei Ye
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Junchao Dong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Adam Yongxin Ye
- Department of Genetics, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stelios Vlachiotis
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xuefei Zhang
- Department of Genetics, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Kathrin de la Rosa
- Department of Cancer and Immunology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lennart Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frederick W. Alt
- Department of Genetics, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Al Jamal I, Parquet M, Guiyedi K, Aoufouchi S, Le Guillou M, Rizzo D, Pollet J, Dupont M, Boulin M, Faumont N, Boutouil H, Jardin F, Ruminy P, El Hamel C, Lerat J, Al Hamaoui S, Makdissy N, Feuillard J, Gachard N, Peron S. IGH 3'RR recombination uncovers a non-germinal center imprint and c-MYC-dependent IGH rearrangement in unmutated chronic lymphocytic leukemia. Haematologica 2024; 109:466-478. [PMID: 37496419 PMCID: PMC10828775 DOI: 10.3324/haematol.2023.282897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable indolent non-Hodgkin lymphoma characterized by tumor B cells that weakly express a B-cell receptor. The mutational status of the variable region (IGHV) within the immunoglobulin heavy chain (IGH) locus is an important prognosis indicator and raises the question of the CLL cell of origin. Mutated IGHV gene CLL are genetically imprinted by activation-induced cytidine deaminase (AID). AID is also required for IGH rearrangements: class switch recombination and recombination between switch Mu (Sμ) and the 3' regulatory region (3'RR) (Sμ-3'RRrec). The great majority of CLL B cells being unswitched led us to examine IGH rearrangement blockade in CLL. Our results separated CLL into two groups on the basis of Sμ-3'RRrec counts per sample: Sμ-3'RRrecHigh cases (mostly unmutated CLL) and Sμ-3'RRrecLow cases (mostly mutated CLL), but not based on the class switch recombination junction counts. Sμ-3'RRrec appeared to be ongoing in Sμ-3'RRrecHigh CLL cells and comparison of Sμ-3'RRrec junction structural features pointed to different B-cell origins for both groups. In accordance with IGHV mutational status and PIM1 mutation rate, Sμ-3'RRrecHigh CLL harbor a non-germinal center experienced B-cell imprint while Sμ-3'RRrecLow CLL are from AID-experienced B cells from a secondary lymphoid organ. In addition to the proposals already made concerning the CLL cell of origin, our study highlights that analysis of IGH recombinatory activity can identify CLL cases from different origins. Finally, on-going Sμ-3'RRrec in Sμ-3'RRrecHigh cells appeared to presumably be the consequence of high c-MYC expression, as c-MYC overexpression potentiated IGH rearrangements and Sμ-3'RRrec, even in the absence of AID for the latter.
Collapse
Affiliation(s)
- Israa Al Jamal
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges, France; Faculty of Sciences, GSBT Genomic Surveillance and Biotherapy Team, Mont Michel Campus, Lebanese University, Tripoli
| | - Milene Parquet
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges
| | - Kenza Guiyedi
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges
| | - Said Aoufouchi
- CNRS UMR9019, Gustave Roussy, B-cell and Genome Plasticity Team, Villejuif, France and Universite Paris-Saclay, Orsay
| | - Morwenna Le Guillou
- CNRS UMR9019, Gustave Roussy, B-cell and Genome Plasticity Team, Villejuif, France and Universite Paris-Saclay, Orsay
| | - David Rizzo
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges, France; Laboratoire d'Hematologie Biologique, Centre Hospitalier Universitaire de Limoges, Limoges
| | - Justine Pollet
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges
| | - Marine Dupont
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges, France; Laboratoire d'Hematologie Biologique, Centre Hospitalier Universitaire de Limoges, Limoges
| | - Melanie Boulin
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges, France; Laboratoire d'Hematologie Biologique, Centre Hospitalier Universitaire de Limoges, Limoges
| | - Nathalie Faumont
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges
| | - Hend Boutouil
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges
| | - Fabrice Jardin
- Inserm U1245 and Department of Henri-Becquerel Hematology Center and Normandie Univ UNIROUEN, Rouen
| | - Philippe Ruminy
- Inserm U1245 and Department of Henri-Becquerel Hematology Center and Normandie Univ UNIROUEN, Rouen
| | - Chahrazed El Hamel
- Collection Biologique Hopital de la Mere et de l'Enfant (CB-HME), Department of Pediatrics, Limoges University Hospital, Limoges
| | - Justine Lerat
- Department of Otorinolaryngology, Limoges University Hospital, Limoges
| | - Samar Al Hamaoui
- Faculty of Sciences, GSBT Genomic Surveillance and Biotherapy Team, Mont Michel Campus, Lebanese University, Tripoli
| | - Nehman Makdissy
- Faculty of Sciences, GSBT Genomic Surveillance and Biotherapy Team, Mont Michel Campus, Lebanese University, Tripoli
| | - Jean Feuillard
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges, France; Laboratoire d'Hematologie Biologique, Centre Hospitalier Universitaire de Limoges, Limoges
| | - Nathalie Gachard
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges, France; Laboratoire d'Hematologie Biologique, Centre Hospitalier Universitaire de Limoges, Limoges
| | - Sophie Peron
- Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7276/INSERM U1262, Universite de Limoges, Limoges.
| |
Collapse
|
4
|
Dézé O, Ordanoska D, Rossille D, Miglierina E, Laffleur B, Cogné M. Unique repetitive nucleic acid structures mirror switch regions in the human IgH locus. Biochimie 2023; 214:167-175. [PMID: 37678746 DOI: 10.1016/j.biochi.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Immunoglobulin (Ig) genes carry the unique ability to be reshaped in peripheral B lymphocytes after these cells encounter a specific antigen. B cells can then further improve their affinity, acquire new functions as memory cells and eventually end up as antibody-secreting cells. Ig class switching is an important change that occurs in this context, thanks to local DNA lesions initiated by the enzyme activation-induced deaminase (AID). Several cis-acting elements of the Ig heavy (IgH) chain locus make it accessible to the AID-mediated lesions that promote class switch recombination (CSR). DNA repeats, with a non-template strand rich in G-quadruplexes (G4)-DNA, are prominent cis-targets of AID and define the so-called "switch" (S) regions specifically targeted for CSR. By analyzing the structure of the human IgH locus, we uncover that abundant DNA repeats, some with a putative G4-rich template strand, are additionally present in downstream portions of the IgH coding genes. These like-S (LS) regions stand as 3' mirror-images of S regions and also show analogies to some previously reported repeats associated with the IgH locus 3' super-enhancer. A regulatory role of LS repeats is strongly suggested by their specific localization close to exons encoding the membrane form of Ig molecules, and by their conservation during mammalian evolution.
Collapse
Affiliation(s)
- Ophélie Dézé
- Institut National de La Santé et de La Recherche Médicale, Unité Mixte de Recherche U1236, Université de Rennes, Etablissement Français Du Sang Bretagne, F-35000, Rennes, France
| | - Delfina Ordanoska
- Institut National de La Santé et de La Recherche Médicale, Unité Mixte de Recherche U1236, Université de Rennes, Etablissement Français Du Sang Bretagne, F-35000, Rennes, France
| | - Delphine Rossille
- Centre Hospitalier Universitaire de Rennes, SITI, Pôle Biologie, F-35033, Rennes, France
| | - Emma Miglierina
- Institut National de La Santé et de La Recherche Médicale, Unité Mixte de Recherche U1236, Université de Rennes, Etablissement Français Du Sang Bretagne, F-35000, Rennes, France
| | - Brice Laffleur
- Institut National de La Santé et de La Recherche Médicale, Unité Mixte de Recherche U1236, Université de Rennes, Etablissement Français Du Sang Bretagne, F-35000, Rennes, France
| | - Michel Cogné
- Institut National de La Santé et de La Recherche Médicale, Unité Mixte de Recherche U1236, Université de Rennes, Etablissement Français Du Sang Bretagne, F-35000, Rennes, France; Centre Hospitalier Universitaire de Rennes, SITI, Pôle Biologie, F-35033, Rennes, France.
| |
Collapse
|
5
|
Denis-Lagache N, Oblet C, Marchiol T, Baylet A, Têteau O, Dalloul I, Dalloul Z, Zawil L, Dézé O, Cook-Moreau J, Saintamand A, Boutouil H, Khamlichi AA, Carrion C, Péron S, Le Noir S, Laffleur B, Cogné M. Attempts to evaluate locus suicide recombination and its potential role in B cell negative selection in the mouse. Front Immunol 2023; 14:1155906. [PMID: 37359540 PMCID: PMC10288998 DOI: 10.3389/fimmu.2023.1155906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction In mature B cells, activation-induced deaminase reshapes Ig genes through somatic hypermutation and class switch recombination of the Ig heavy chain (IgH) locus under control of its 3' cis-regulatory region (3'RR). The 3'RR is itself transcribed and can undergo "locus suicide recombination" (LSR), then deleting the constant gene cluster and terminating IgH expression. The relative contribution of LSR to B cell negative selection remains to be determined. Methods Here, we set up a knock-in mouse reporter model for LSR events with the aim to get clearer insights into the circumstances triggering LSR. In order to explore the consequences of LSR defects, we reciprocally explored the presence of autoantibodies in various mutant mouse lines in which LSR was perturbed by the lack of Sµ or of the 3'RR. Results Evaluation of LSR events in a dedicated reporter mouse model showed their occurrence in various conditions of B cell activation, notably in antigen-experienced B cells Studies of mice with LSR defects evidenced increased amounts of self-reactive antibodies. Discussion While the activation pathways associated with LSR are diverse, in vivo as well as in vitro, this study suggests that LSR may contribute to the elimination of self-reactive B cells.
Collapse
Affiliation(s)
- Nicolas Denis-Lagache
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Christelle Oblet
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Tiffany Marchiol
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Audrey Baylet
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Ophélie Têteau
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Iman Dalloul
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Zeinab Dalloul
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Lina Zawil
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | | | - Jeanne Cook-Moreau
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Alexis Saintamand
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Hend Boutouil
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique (CNRS), Toulouse University, Toulouse, France
| | - Claire Carrion
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Sophie Péron
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | - Sandrine Le Noir
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
| | | | - Michel Cogné
- Limoges University, Centre National de la Recherche Scientifique (CNRS), Limoges, France
- Rennes University, Inserm, Rennes, France
| |
Collapse
|
6
|
Roles of G4-DNA and G4-RNA in Class Switch Recombination and Additional Regulations in B-Lymphocytes. Molecules 2023; 28:molecules28031159. [PMID: 36770824 PMCID: PMC9921937 DOI: 10.3390/molecules28031159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Mature B cells notably diversify immunoglobulin (Ig) production through class switch recombination (CSR), allowing the junction of distant "switch" (S) regions. CSR is initiated by activation-induced deaminase (AID), which targets cytosines adequately exposed within single-stranded DNA of transcribed targeted S regions, with a specific affinity for WRCY motifs. In mammals, G-rich sequences are additionally present in S regions, forming canonical G-quadruplexes (G4s) DNA structures, which favor CSR. Small molecules interacting with G4-DNA (G4 ligands), proved able to regulate CSR in B lymphocytes, either positively (such as for nucleoside diphosphate kinase isoforms) or negatively (such as for RHPS4). G4-DNA is also implicated in the control of transcription, and due to their impact on both CSR and transcriptional regulation, G4-rich sequences likely play a role in the natural history of B cell malignancies. Since G4-DNA stands at multiple locations in the genome, notably within oncogene promoters, it remains to be clarified how it can more specifically promote legitimate CSR in physiology, rather than pathogenic translocation. The specific regulatory role of G4 structures in transcribed DNA and/or in corresponding transcripts and recombination hereby appears as a major issue for understanding immune responses and lymphomagenesis.
Collapse
|
7
|
Cogné M, Fest T, Aoufouchi S. Editorial: Germinal Centers in Lymphoid and Non-Lymphoid Tissues: Adaptive and Evolving Structures. Front Immunol 2022; 13:880733. [PMID: 35422815 PMCID: PMC9002005 DOI: 10.3389/fimmu.2022.880733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Michel Cogné
- University of Limoges, Limoges, France.,University of Rennes 1, Rennes, France
| | - Thierry Fest
- University of Rennes 1, Rennes, France.,INSERM UMR1236 Microenvironnement, Différenciation cellulaire, Immunologie et Cancer, Rennes, France
| | - Said Aoufouchi
- UMR 9019 Intégrité du Génome et Cancers, Centre National de la Recherche Scientifique, Villejuif, France.,Université Paris-Saclay, Saint Aubin, France.,Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
8
|
Gullickson P, Xu YW, Niedernhofer LJ, Thompson EL, Yousefzadeh MJ. The Role of DNA Repair in Immunological Diversity: From Molecular Mechanisms to Clinical Ramifications. Front Immunol 2022; 13:834889. [PMID: 35432317 PMCID: PMC9010869 DOI: 10.3389/fimmu.2022.834889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/02/2022] [Indexed: 12/18/2022] Open
Abstract
An effective humoral immune response necessitates the generation of diverse and high-affinity antibodies to neutralize pathogens and their products. To generate this assorted immune repertoire, DNA damage is introduced at specific regions of the genome. Purposeful genotoxic insults are needed for the successful completion of multiple immunological diversity processes: V(D)J recombination, class-switch recombination, and somatic hypermutation. These three processes, in concert, yield a broad but highly specific immune response. This review highlights the importance of DNA repair mechanisms involved in each of these processes and the catastrophic diseases that arise from DNA repair deficiencies impacting immune system function. These DNA repair disorders underline not only the importance of maintaining genomic integrity for preventing disease but also for robust adaptive immunity.
Collapse
|
9
|
Aksenova AY, Zhuk AS, Lada AG, Zotova IV, Stepchenkova EI, Kostroma II, Gritsaev SV, Pavlov YI. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers (Basel) 2021; 13:5949. [PMID: 34885058 PMCID: PMC8656811 DOI: 10.3390/cancers13235949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm of terminally differentiated immunoglobulin-producing B lymphocytes called plasma cells. MM is the second most common hematologic malignancy, and it poses a heavy economic and social burden because it remains incurable and confers a profound disability to patients. Despite current progress in MM treatment, the disease invariably recurs, even after the transplantation of autologous hematopoietic stem cells (ASCT). Biological processes leading to a pathological myeloma clone and the mechanisms of further evolution of the disease are far from complete understanding. Genetically, MM is a complex disease that demonstrates a high level of heterogeneity. Myeloma genomes carry numerous genetic changes, including structural genome variations and chromosomal gains and losses, and these changes occur in combinations with point mutations affecting various cellular pathways, including genome maintenance. MM genome instability in its extreme is manifested in mutation kataegis and complex genomic rearrangements: chromothripsis, templated insertions, and chromoplexy. Chemotherapeutic agents used to treat MM add another level of complexity because many of them exacerbate genome instability. Genome abnormalities are driver events and deciphering their mechanisms will help understand the causes of MM and play a pivotal role in developing new therapies.
Collapse
Affiliation(s)
- Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna S. Zhuk
- International Laboratory “Computer Technologies”, ITMO University, 197101 St. Petersburg, Russia;
| | - Artem G. Lada
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA;
| | - Irina V. Zotova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Ivan I. Kostroma
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Sergey V. Gritsaev
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
10
|
Dalloul I, Laffleur B, Dalloul Z, Wehbi B, Jouan F, Brauge B, Derouault P, Moreau J, Kracker S, Fischer A, Durandy A, Le Noir S, Cogné M. UnAIDed Class Switching in Activated B-Cells Reveals Intrinsic Features of a Self-Cleaving IgH Locus. Front Immunol 2021; 12:737427. [PMID: 34777346 PMCID: PMC8581400 DOI: 10.3389/fimmu.2021.737427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Activation-induced deaminase (AID) is the major actor of immunoglobulin (Ig) gene diversification in germinal center B-cells. From its first description, it was considered as mandatory for class switch recombination (CSR), and this discovery initiated a long quest for all of the AID-interacting factors controlling its activity. The mechanisms focusing AID-mediated DNA lesions to given target sequences remain incompletely understood with regards the detailed characterization of optimal substrates in which cytidine deamination will lead to double strand breaks (DSBs) and chromosomal cleavage. In an effort to reconsider whether such CSR breaks absolutely require AID, we herein provide evidence, based on deep-sequencing approaches, showing that this dogma is not absolute in both human and mouse B lymphocytes. In activated B-cells from either AID-deficient mice or human AID-deficient patients, we report an intrinsic ability of the IgH locus to undergo "on-target" cleavage and subsequent synapsis of broken regions in conditions able to yield low-level CSR. DNA breaks occur in such conditions within the same repetitive S regions usually targeted by AID, but their repair follows a specific pathway with increased usage of microhomology-mediated repair. These data further demonstrate the role of AID machinery as not initiating de novo chromosomal cleavage but rather catalyzing a process which spontaneously initiates at low levels in an appropriately conformed IgH locus.
Collapse
Affiliation(s)
- Iman Dalloul
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
| | - Brice Laffleur
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1236, Rennes1 University, Rennes, France
| | - Zeinab Dalloul
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
| | - Batoul Wehbi
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
| | - Florence Jouan
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1236, Rennes1 University, Rennes, France
| | - Baptiste Brauge
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1236, Rennes1 University, Rennes, France
| | - Paco Derouault
- Centre Hospitalier Universitaire (CHU) Dupuytren, Limoges, France
| | - Jeanne Moreau
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
| | - Sven Kracker
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1163, Laboratory of Human Lympho-hematopoiesis, Imagine Institute, Université de Paris, Paris, France
| | - Alain Fischer
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1163, Laboratory of Human Lympho-hematopoiesis, Imagine Institute, Université de Paris, Paris, France
| | - Anne Durandy
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1163, Laboratory of Human Lympho-hematopoiesis, Imagine Institute, Université de Paris, Paris, France
| | - Sandrine Le Noir
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
| | - Michel Cogné
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1236, Rennes1 University, Rennes, France
| |
Collapse
|
11
|
Dauba A, Khamlichi AA. Long-Range Control of Class Switch Recombination by Transcriptional Regulatory Elements. Front Immunol 2021; 12:738216. [PMID: 34594340 PMCID: PMC8477019 DOI: 10.3389/fimmu.2021.738216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
Immunoglobulin class switch recombination (CSR) plays a crucial role in adaptive immune responses through a change of the effector functions of antibodies and is triggered by T-cell-dependent as well as T-cell-independent antigens. Signals generated following encounter with each type of antigen direct CSR to different isotypes. At the genomic level, CSR occurs between highly repetitive switch sequences located upstream of the constant gene exons of the immunoglobulin heavy chain locus. Transcription of switch sequences is mandatory for CSR and is induced in a stimulation-dependent manner. Switch transcription takes place within dynamic chromatin domains and is regulated by long-range regulatory elements which promote alignment of partner switch regions in CSR centers. Here, we review recent work and models that account for the function of long-range transcriptional regulatory elements and the chromatin-based mechanisms involved in the control of CSR.
Collapse
Affiliation(s)
- Audrey Dauba
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
12
|
Plasmablasts derive from CD23- activated B cells after the extinction of IL-4/STAT6 signaling and IRF4 induction. Blood 2021; 137:1166-1180. [PMID: 33150420 DOI: 10.1182/blood.2020005083] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
The terminal differentiation of B cells into antibody-secreting cells (ASCs) is a critical component of adaptive immune responses. However, it is a very sensitive process, and dysfunctions lead to a variety of lymphoproliferative neoplasias including germinal center-derived lymphomas. To better characterize the late genomic events that drive the ASC differentiation of human primary naive B cells, we used our in vitro differentiation system and a combination of RNA sequencing and Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC sequencing). We discovered 2 mechanisms that drive human terminal B-cell differentiation. First, after an initial response to interleukin-4 (IL-4), cells that were committed to an ASC fate downregulated the CD23 marker and IL-4 signaling, whereas cells that maintained IL-4 signaling did not differentiate. Second, human CD23- cells also increased IRF4 protein to levels required for ASC differentiation, but they did that independently of the ubiquitin-mediated degradation process previously described in mice. Finally, we showed that CD23- cells carried the imprint of their previous activated B-cell status, were precursors of plasmablasts, and had a phenotype similar to that of in vivo preplasmablasts. Altogether, our results provide an unprecedented genomic characterization of the fate decision between activated B cells and plasmablasts, which provides new insights into the pathological mechanisms that drive lymphoma biology.
Collapse
|
13
|
Lemarié M, Chatonnet F, Caron G, Fest T. Early Emergence of Adaptive Mechanisms Sustaining Ig Production: Application to Antibody Therapy. Front Immunol 2021; 12:671998. [PMID: 33995412 PMCID: PMC8117215 DOI: 10.3389/fimmu.2021.671998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/12/2021] [Indexed: 01/13/2023] Open
Abstract
Antibody therapy, where artificially-produced immunoglobulins (Ig) are used to treat pathological conditions such as auto-immune diseases and cancers, is a very innovative and competitive field. Although substantial efforts have been made in recent years to obtain specific and efficient antibodies, there is still room for improvement especially when considering a precise tissular targeting or increasing antigen affinity. A better understanding of the cellular and molecular steps of terminal B cell differentiation, in which an antigen-activated B cell becomes an antibody secreting cell, may improve antibody therapy. In this review, we use our recently published data about human B cell differentiation, to show that the mechanisms necessary to adapt a metamorphosing B cell to its new secretory function appear quite early in the differentiation process i.e., at the pre-plasmablast stage. After characterizing the molecular pathways appearing at this stage, we will focus on recent findings about two main processes involved in antibody production: unfolded protein response (UPR) and endoplasmic reticulum (ER) stress. We’ll show that many genes coding for factors involved in UPR and ER stress are induced at the pre-plasmablast stage, sustaining our hypothesis. Finally, we propose to use this recently acquired knowledge to improve productivity of industrialized therapeutic antibodies.
Collapse
Affiliation(s)
- Maud Lemarié
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, UMR_S1236, Rennes, France
| | - Fabrice Chatonnet
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, UMR_S1236, Rennes, France.,Laboratoire d'Hématologie, Pôle de Biologie, Centre Hospitalier Universitaire, Rennes, France
| | - Gersende Caron
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, UMR_S1236, Rennes, France.,Laboratoire d'Hématologie, Pôle de Biologie, Centre Hospitalier Universitaire, Rennes, France
| | - Thierry Fest
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, UMR_S1236, Rennes, France.,Laboratoire d'Hématologie, Pôle de Biologie, Centre Hospitalier Universitaire, Rennes, France
| |
Collapse
|
14
|
Adam L, Rosenbaum P, Bonduelle O, Combadière B. Strategies for Immunomonitoring after Vaccination and during Infection. Vaccines (Basel) 2021; 9:365. [PMID: 33918841 PMCID: PMC8070333 DOI: 10.3390/vaccines9040365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/08/2023] Open
Abstract
Immunomonitoring is the study of an individual's immune responses over the course of vaccination or infection. In the infectious context, exploring the innate and adaptive immune responses will help to investigate their contribution to viral control or toxicity. After vaccination, immunomonitoring of the correlate(s) and surrogate(s) of protection is a major asset for measuring vaccine immune efficacy. Conventional immunomonitoring methods include antibody-based technologies that are easy to use. However, promising sensitive high-throughput technologies allowed the emergence of holistic approaches. This raises the question of data integration methods and tools. These approaches allow us to increase our knowledge on immune mechanisms as well as the identification of key effectors of the immune response. However, the depiction of relevant findings requires a well-rounded consideration beforehand about the hypotheses, conception, organization and objectives of the immunomonitoring. Therefore, well-standardized and comprehensive studies fuel insight to design more efficient, rationale-based vaccines and therapeutics to fight against infectious diseases. Hence, we will illustrate this review with examples of the immunomonitoring approaches used during vaccination and the COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | | | - Behazine Combadière
- Inserm, Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, 75013 Paris, France; (L.A.); (P.R.); (O.B.)
| |
Collapse
|
15
|
Oudinet C, Braikia FZ, Dauba A, Khamlichi AA. Mechanism and regulation of class switch recombination by IgH transcriptional control elements. Adv Immunol 2020; 147:89-137. [PMID: 32981636 DOI: 10.1016/bs.ai.2020.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Class switch recombination (CSR) plays an important role in humoral immunity by generating antibodies with different effector functions. CSR to a particular antibody isotype is induced by external stimuli, and occurs between highly repetitive switch (S) sequences. CSR requires transcription across S regions, which generates long non-coding RNAs and secondary structures that promote accessibility of S sequences to activation-induced cytidine deaminase (AID). AID initiates DNA double-strand breaks (DSBs) intermediates that are repaired by general DNA repair pathways. Switch transcription is controlled by various regulatory elements, including enhancers and insulators. The current paradigm posits that transcriptional control of CSR involves long-range chromatin interactions between regulatory elements and chromatin loops-stabilizing factors, which promote alignment of partner S regions in a CSR centre (CSRC) and initiation of CSR. In this review, we focus on the role of IgH transcriptional control elements in CSR and the chromatin-based mechanisms underlying this control.
Collapse
Affiliation(s)
- Chloé Oudinet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Fatima-Zohra Braikia
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Audrey Dauba
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
16
|
Chi X, Li Y, Qiu X. V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation. Immunology 2020; 160:233-247. [PMID: 32031242 DOI: 10.1111/imm.13176] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulins emerging from B lymphocytes and capable of recognizing almost all kinds of antigens owing to the extreme diversity of their antigen-binding portions, known as variable (V) regions, play an important role in immune responses. The exons encoding the V regions are known as V (variable), D (diversity), or J (joining) genes. V, D, J segments exist as multiple copy arrays on the chromosome. The recombination of the V(D)J gene is the key mechanism to produce antibody diversity. The recombinational process, including randomly choosing a pair of V, D, J segments, introducing double-strand breaks adjacent to each segment, deleting (or inverting in some cases) the intervening DNA and ligating the segments together, is defined as V(D)J recombination, which contributes to surprising immunoglobulin diversity in vertebrate immune systems. To enhance both the ability of immunoglobulins to recognize and bind to foreign antigens and the effector capacities of the expressed antibodies, naive B cells will undergo class switching recombination (CSR) and somatic hypermutation (SHM). However, the genetics mechanisms of V(D)J recombination, CSR and SHM are not clear. In this review, we summarize the major progress in mechanism studies of immunoglobulin V(D)J gene recombination and CSR as well as SHM, and their regulatory mechanisms.
Collapse
Affiliation(s)
- Xiying Chi
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yue Li
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| |
Collapse
|
17
|
Frezza D, Martinez-Labarga C, Giambra V, Serone E, Scano G, Rickards O, D'Addabbo P, Novelletto A. Concerted variation of the 3' regulatory region of Ig heavy chain and Gm haplotypes across human continental populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 171:671-682. [PMID: 31957883 DOI: 10.1002/ajpa.24011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/29/2019] [Accepted: 01/02/2020] [Indexed: 01/18/2023]
Abstract
OBJECTIVES The 3' regulatory region of the immunoglobulin heavy chain gene (IGH) includes the HS1.2 enhancer displaying length polymorphism with four known variants. The goal of the research was to provide an overview of this variability and of its evolutionary significance across human populations. MATERIALS AND METHODS We compiled published and original data on HS1.2 polymorphism in 3,100 subjects from 26 human populations. Moreover, we imputed the haplotypic arrangement of the HS1.2 region in the 1000 Genomes Project (1KGP). In this dataset, imputation could also be obtained for the G1m-G3m allotype by virtue of the precise correspondence between serological types and amino acid (and DNA) substitutions in IGHG1 and IGHG3. RESULTS HS1.2 variant frequencies displayed similar patterns of continental partitioning as those reported in the literature for the physically neighboring IGHG1-IGHG3 system. The 1KGP data revealed that linkage disequilibrium (LD) can explain the spread of joint HS1.2-IGHG1-IGHG3 associations across continents and within continental populations, with stronger LD out of Africa and the features of an evolutionarily stable genomic block with differential expression in lymphoblastoid cell lines. DISCUSSION Strong population structuring involves at least the entire 70 kb genomic region here considered, due to the tight LD which maintained HS1.2, IGHG1, and IGHG3 in nonrandom arrangements. This might be key to better understand the evolutionary path of the entire genomic region driven by immune response capabilities, during the formation of continental gene pools.
Collapse
Affiliation(s)
- Domenico Frezza
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Vincenzo Giambra
- Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Eliseo Serone
- Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | - Giuseppina Scano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Olga Rickards
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | |
Collapse
|