1
|
Fare CM, Rothstein JD. Nuclear pore dysfunction and disease: a complex opportunity. Nucleus 2024; 15:2314297. [PMID: 38383349 PMCID: PMC10883112 DOI: 10.1080/19491034.2024.2314297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The separation of genetic material from bulk cytoplasm has enabled the evolution of increasingly complex organisms, allowing for the development of sophisticated forms of life. However, this complexity has created new categories of dysfunction, including those related to the movement of material between cellular compartments. In eukaryotic cells, nucleocytoplasmic trafficking is a fundamental biological process, and cumulative disruptions to nuclear integrity and nucleocytoplasmic transport are detrimental to cell survival. This is particularly true in post-mitotic neurons, where nuclear pore injury and errors to nucleocytoplasmic trafficking are strongly associated with neurodegenerative disease. In this review, we summarize the current understanding of nuclear pore biology in physiological and pathological contexts and discuss potential therapeutic approaches for addressing nuclear pore injury and dysfunctional nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey D Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Tamhankar V, Patel SJ, Kachhadiya T, Vaniawala S, Patel J, Bhammar R, Patel S, Vaniawala S, Menon P, Tamhankar PM. The First Case Report of a Homozygous Consensus Acceptor Splice Variant in the NUP214 Gene Associated With Fetal Hydrops and Arthrogryposis Multiplex. Cureus 2024; 16:e73252. [PMID: 39650934 PMCID: PMC11625094 DOI: 10.7759/cureus.73252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 12/11/2024] Open
Abstract
The NUP214 gene encodes a nuclear pore complex protein (nucleoporin, 214 kilodaltons) which plays a critical role in messenger RNA export to the cytoplasm and import of substrates from the cytoplasm. Biallelic mutations in the NUP214 gene have been associated with susceptibility to acute infection-induced encephalopathy type 9 (ILAE9) (Online Mendelian Inheritance in Man (OMIM), 114350), an autosomal recessive disorder. Herein, we describe for the first time, a fetus with hydrops and arthrogryposis multiplex with a homozygous novel consensus splice site variant in the NUP214 gene, chr9:g.131127522A>G or c.46-2A>G (transcript ID NM_005085.4). Parents were heterozygous for the same variant. Mutations in either of 83 genes have been previously published to cause fetal arthrogryposis multiplex but mutations in NUP214 have not been previously reported as per our search in the available medical literature (PubMed/MEDLINE (Medical Literature Analysis and Retrieval System Online) and Google Scholar). STRING (Search Tool for Retrieval of Interacting Genes/Proteins) analysis showed close interactions between NUP214 and the other proteins GLE1, NUP88, NEK9, and THOC2. Thus, this case report expands the phenotype of NUP214 gene-related human disease.
Collapse
Affiliation(s)
- Vasundhara Tamhankar
- Genetics, Centre for Medical Genetics, Mumbai, IND
- Genetics, SN GeneLab Pvt Ltd, Surat, IND
| | - Smit J Patel
- Internal Medicine, Paaranu Women Super Specialties, Surat, IND
| | | | | | - Jayeshkumar Patel
- Obstetrics and Gynaecology, Paaranu Women Super Specialties, Surat, IND
| | | | | | | | - Pramila Menon
- Pediatrics, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Dr. D.Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Parag M Tamhankar
- Genetics, SN GeneLab Pvt Ltd, Surat, IND
- Genetics, Centre for Medical Genetics, Mumbai, IND
- Pediatrics, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Dr. D.Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| |
Collapse
|
3
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
4
|
Merigliano C, Ryu T, See CD, Caridi CP, Li X, Butova NL, Reynolds TW, Deng C, Chenoweth DM, Capelson M, Chiolo I. "Off-pore" nucleoporins relocalize heterochromatic breaks through phase separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.07.570729. [PMID: 39071440 PMCID: PMC11275802 DOI: 10.1101/2023.12.07.570729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Phase separation forms membraneless compartments in the nuclei, including by establishing heterochromatin "domains" and repair foci. Pericentromeric heterochromatin mostly comprises repeated sequences prone to aberrant recombination, and "safe" homologous recombination (HR) repair of these sequences requires the movement of repair sites to the nuclear periphery before Rad51 recruitment and strand invasion. How this mobilization initiates is unknown, and the contribution of phase separation to these dynamics is unclear. Here, we show that Nup98 nucleoporin is recruited to heterochromatic repair sites before relocalization through Sec13 or Nup88 nucleoporins, and downstream from the Smc5/6 complex and SUMOylation. Remarkably, the phase separation properties of Nup98 are required and sufficient to mobilize repair sites and exclude Rad51, thus preventing aberrant recombination while promoting HR repair. Disrupting this pathway results in heterochromatin repair defects and widespread chromosome rearrangements, revealing a novel "off-pore" role for nucleoporins and phase separation in nuclear dynamics and genome integrity in a multicellular eukaryote.
Collapse
Affiliation(s)
- Chiara Merigliano
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Taehyun Ryu
- Harvard Medical School, Department of Genetics, Boston, MA, USA
| | - Colby D. See
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Christopher P. Caridi
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Xiao Li
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Nadejda L. Butova
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Trevor W. Reynolds
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Changfeng Deng
- University of Pennsylvania, Department of Chemistry, School of Arts and Sciences, Philadelphia, PA, USA
| | - David M. Chenoweth
- University of Pennsylvania, Department of Chemistry, School of Arts and Sciences, Philadelphia, PA, USA
| | - Maya Capelson
- San Diego State University, Department of Biology, San Diego, CA, USA
| | - Irene Chiolo
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| |
Collapse
|
5
|
Jühlen R, Grauer L, Martinelli V, Rencurel C, Fahrenkrog B. Alteration of actin cytoskeletal organisation in fetal akinesia deformation sequence. Sci Rep 2024; 14:1742. [PMID: 38242956 PMCID: PMC10799014 DOI: 10.1038/s41598-023-50615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024] Open
Abstract
Fetal akinesia deformation sequence (FADS) represents the severest form of congenital myasthenic syndrome (CMS), a diverse group of inherited disorders characterised by impaired neuromuscular transmission. Most CMS originate from defects in the muscle nicotinic acetylcholine receptor, but the underlying molecular pathogenesis is only poorly understood. Here we show that RNAi-mediated silencing of FADS-related proteins rapsyn and NUP88 in foetal fibroblasts alters organisation of the actin cytoskeleton. We show that fibroblasts from two independent FADS individuals have enhanced and shorter actin stress fibre bundles, alongside with an increased number and size of focal adhesions, with an otherwise normal overall connectivity and integrity of the actin-myosin cytoskeleton network. By proximity ligation assays and bimolecular fluorescence complementation, we show that rapsyn and NUP88 localise nearby adhesion plaques and that they interact with the focal adhesion protein paxillin. Based on these findings we propose that a respective deficiency in rapsyn and NUP88 in FADS alters the regulation of actin dynamics at focal adhesions, and thereby may also plausibly dictate myofibril contraction in skeletal muscle of FADS individuals.
Collapse
Affiliation(s)
- Ramona Jühlen
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany.
| | - Lukas Grauer
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Valérie Martinelli
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
- Laboratory of Neurovascular Signaling, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | | | - Birthe Fahrenkrog
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
- Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
6
|
Jühlen R, Fahrenkrog B. From the sideline: Tissue-specific nucleoporin function in health and disease, an update. FEBS Lett 2023; 597:2750-2768. [PMID: 37873737 DOI: 10.1002/1873-3468.14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
The subcellular compartmentalisation of eukaryotic cells requires selective exchange between the cytoplasm and the nucleus. Intact nucleocytoplasmic transport is vital for normal cell function and mutations in the executing machinery have been causally linked to human disease. Central players in nucleocytoplasmic exchange are nuclear pore complexes (NPCs), which are built from ~30 distinct proteins collectively termed nucleoporins. Aberrant nucleoporin expression was detected in human cancers and autoimmune diseases since quite some time, while it was through the increasing use of next generation sequencing that mutations in nucleoporin genes associated with mainly rare hereditary diseases were revealed. The number of newly identified mutations is steadily increasing, as is the number of diseases. Mutational hotspots have emerged: mutations in the scaffold nucleoporins seemingly affect primarily inner organs, such as heart, kidney, and ovaries, whereas genetic alterations in peripheral, cytoplasmic nucleoporins affect primarily the central nervous system and development. In this review, we summarise latest insights on altered nucleoporin function in the context of human hereditary disorders, with a focus on those where mechanistic insights are beginning to emerge.
Collapse
Affiliation(s)
- Ramona Jühlen
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
7
|
Liu Y. Zebrafish as a Model Organism for Studying Pathologic Mechanisms of Neurodegenerative Diseases and other Neural Disorders. Cell Mol Neurobiol 2023; 43:2603-2620. [PMID: 37004595 PMCID: PMC11410131 DOI: 10.1007/s10571-023-01340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/19/2023] [Indexed: 04/04/2023]
Abstract
Zebrafish are widely considered an excellent vertebrate model for studying the pathogenesis of human diseases because of their transparency of embryonic development, easy breeding, high similarity with human genes, and easy gene manipulation. Previous studies have shown that zebrafish as a model organism provides an ideal operating platform for clarifying the pathological and molecular mechanisms of neurodegenerative diseases and related human diseases. This review mainly summarizes the achievements and prospects of zebrafish used as model organisms in the research of neurodegenerative diseases and other human diseases related to the nervous system in recent years. In the future study of human disease mechanisms, the application of the zebrafish model will continue to provide a valuable operating platform and technical support for investigating and finding better prevention and treatment of these diseases, which has broad application prospects and practical significance. Zebrafish models used in neurodegenerative diseases and other diseases related to the nervous system.
Collapse
Affiliation(s)
- Yanying Liu
- Department of Basic Medicine, School of Nursing and Health, Qingdao Huanghai University, Qingdao, 266427, China.
| |
Collapse
|
8
|
Petrovic S, Mobbs GW, Bley CJ, Nie S, Patke A, Hoelz A. Structure and Function of the Nuclear Pore Complex. Cold Spring Harb Perspect Biol 2022; 14:a041264. [PMID: 36096637 PMCID: PMC9732903 DOI: 10.1101/cshperspect.a041264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nucleus, a genome-containing organelle eponymous of eukaryotes, is enclosed by a double membrane continuous with the endoplasmic reticulum. The nuclear pore complex (NPC) is an ∼110-MDa, ∼1000-protein channel that selectively transports macromolecules across the nuclear envelope and thus plays a central role in the regulated flow of genetic information from transcription to translation. Its size, complexity, and flexibility have hindered determination of atomistic structures of intact NPCs. Recent studies have overcome these hurdles by combining biochemical reconstitution and docking of high-resolution structures of NPC subcomplexes into cryo-electron tomographic reconstructions with biochemical and physiological validation. Here, we provide an overview of the near-atomic composite structure of the human NPC, a milestone toward unlocking a molecular understanding of mRNA export, NPC-associated diseases, and viral host-pathogen interactions, serving as a paradigm for studying similarly large complexes.
Collapse
Affiliation(s)
- Stefan Petrovic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - George W Mobbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Christopher J Bley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Si Nie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Alina Patke
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
9
|
Spead O, Zaepfel BL, Rothstein JD. Nuclear Pore Dysfunction in Neurodegeneration. Neurotherapeutics 2022; 19:1050-1060. [PMID: 36070178 PMCID: PMC9587172 DOI: 10.1007/s13311-022-01293-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 10/14/2022] Open
Abstract
The nuclear pore complex (NPC) is a large multimeric structure that is interspersed throughout the membrane of the nucleus and consists of at least 33 protein components. Individual components cooperate within the nuclear pore to facilitate selective passage of materials between the nucleus and cytoplasm while simultaneously performing pore-independent roles throughout the cell. NPC dysfunction is a hallmark of neurodegenerative disorders including Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis (ALS). NPC components can become mislocalized or altered in expression in neurodegeneration. These alterations in NPC structure are often detrimental to the neuronal function and ultimately lead to neuronal loss. This review highlights the importance of nucleocytoplasmic transport and NPC integrity and how dysfunction of such may contribute to neurodegeneration.
Collapse
Affiliation(s)
- Olivia Spead
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Benjamin L Zaepfel
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
Bley CJ, Nie S, Mobbs GW, Petrovic S, Gres AT, Liu X, Mukherjee S, Harvey S, Huber FM, Lin DH, Brown B, Tang AW, Rundlet EJ, Correia AR, Chen S, Regmi SG, Stevens TA, Jette CA, Dasso M, Patke A, Palazzo AF, Kossiakoff AA, Hoelz A. Architecture of the cytoplasmic face of the nuclear pore. Science 2022; 376:eabm9129. [PMID: 35679405 DOI: 10.1126/science.abm9129] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The subcellular compartmentalization of eukaryotic cells requires selective transport of folded proteins and protein-nucleic acid complexes. Embedded in nuclear envelope pores, which are generated by the circumscribed fusion of the inner and outer nuclear membranes, nuclear pore complexes (NPCs) are the sole bidirectional gateways for nucleocytoplasmic transport. The ~110-MDa human NPC is an ~1000-protein assembly that comprises multiple copies of ~34 different proteins, collectively termed nucleoporins. The symmetric core of the NPC is composed of an inner ring encircling the central transport channel and outer rings formed by Y‑shaped coat nucleoporin complexes (CNCs) anchored atop both sides of the nuclear envelope. The outer rings are decorated with compartment‑specific asymmetric nuclear basket and cytoplasmic filament nucleoporins, which establish transport directionality and provide docking sites for transport factors and the small guanosine triphosphatase Ran. The cytoplasmic filament nucleoporins also play an essential role in the irreversible remodeling of messenger ribonucleoprotein particles (mRNPs) as they exit the central transport channel. Unsurprisingly, the NPC's cytoplasmic face represents a hotspot for disease‑associated mutations and is commonly targeted by viral virulence factors. RATIONALE Previous studies established a near-atomic composite structure of the human NPC's symmetric core by combining (i) biochemical reconstitution to elucidate the interaction network between symmetric nucleoporins, (ii) crystal and single-particle cryo-electron microscopy structure determination of nucleoporins and nucleoporin complexes to reveal their three-dimensional shape and the molecular details of their interactions, (iii) quantitative docking in cryo-electron tomography (cryo-ET) maps of the intact human NPC to uncover nucleoporin stoichiometry and positioning, and (iv) cell‑based assays to validate the physiological relevance of the biochemical and structural findings. In this work, we extended our approach to the cytoplasmic filament nucleoporins to reveal the near-atomic architecture of the cytoplasmic face of the human NPC. RESULTS Using biochemical reconstitution, we elucidated the protein-protein and protein-RNA interaction networks of the human and Chaetomium thermophilum cytoplasmic filament nucleoporins, establishing an evolutionarily conserved heterohexameric cytoplasmic filament nucleoporin complex (CFNC) held together by a central heterotrimeric coiled‑coil hub that tethers two separate mRNP‑remodeling complexes. Further biochemical analysis and determination of a series of crystal structures revealed that the metazoan‑specific cytoplasmic filament nucleoporin NUP358 is composed of 16 distinct domains, including an N‑terminal S‑shaped α‑helical solenoid followed by a coiled‑coil oligomerization element, numerous Ran‑interacting domains, an E3 ligase domain, and a C‑terminal prolyl‑isomerase domain. Physiologically validated quantitative docking into cryo-ET maps of the intact human NPC revealed that pentameric NUP358 bundles, conjoined by the oligomerization element, are anchored through their N‑terminal domains to the central stalk regions of the CNC, projecting flexibly attached domains as far as ~600 Å into the cytoplasm. Using cell‑based assays, we demonstrated that NUP358 is dispensable for the architectural integrity of the assembled interphase NPC and RNA export but is required for efficient translation. After NUP358 assignment, the remaining 4-shaped cryo‑ET density matched the dimensions of the CFNC coiled‑coil hub, in close proximity to an outer-ring NUP93. Whereas the N-terminal NUP93 assembly sensor motif anchors the properly assembled related coiled‑coil channel nucleoporin heterotrimer to the inner ring, biochemical reconstitution confirmed that the NUP93 assembly sensor is reused in anchoring the CFNC to the cytoplasmic face of the human NPC. By contrast, two C. thermophilum CFNCs are anchored by a divergent mechanism that involves assembly sensors located in unstructured portions of two CNC nucleoporins. Whereas unassigned cryo‑ET density occupies the NUP358 and CFNC binding sites on the nuclear face, docking of the nuclear basket component ELYS established that the equivalent position on the cytoplasmic face is unoccupied, suggesting that mechanisms other than steric competition promote asymmetric distribution of nucleoporins. CONCLUSION We have substantially advanced the biochemical and structural characterization of the asymmetric nucleoporins' architecture and attachment at the cytoplasmic and nuclear faces of the NPC. Our near‑atomic composite structure of the human NPC's cytoplasmic face provides a biochemical and structural framework for elucidating the molecular basis of mRNP remodeling, viral virulence factor interference with NPC function, and the underlying mechanisms of nucleoporin diseases at the cytoplasmic face of the NPC. [Figure: see text].
Collapse
Affiliation(s)
- Christopher J Bley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Si Nie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - George W Mobbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Stefan Petrovic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Anna T Gres
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Xiaoyu Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sho Harvey
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ferdinand M Huber
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Daniel H Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Bonnie Brown
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Aaron W Tang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Emily J Rundlet
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ana R Correia
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Shane Chen
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saroj G Regmi
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Taylor A Stevens
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Claudia A Jette
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alina Patke
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
11
|
Coyne AN, Rothstein JD. Nuclear pore complexes - a doorway to neural injury in neurodegeneration. Nat Rev Neurol 2022; 18:348-362. [PMID: 35488039 PMCID: PMC10015220 DOI: 10.1038/s41582-022-00653-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/13/2022]
Abstract
The genetic underpinnings and end-stage pathological hallmarks of neurodegenerative diseases are increasingly well defined, but the cellular pathophysiology of disease initiation and propagation remains poorly understood, especially in sporadic forms of these diseases. Altered nucleocytoplasmic transport is emerging as a prominent pathomechanism of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer disease, frontotemporal dementia and Huntington disease. The nuclear pore complex (NPC) and interactions between its individual nucleoporin components and nuclear transport receptors regulate nucleocytoplasmic transport, as well as genome organization and gene expression. Specific nucleoporin abnormalities have been identified in sporadic and familial forms of neurodegenerative disease, and these alterations are thought to contribute to disrupted nucleocytoplasmic transport. The specific nucleoporins and nucleocytoplasmic transport proteins that have been linked to different neurodegenerative diseases are partially distinct, suggesting that NPC injury contributes to the cellular specificity of neurodegenerative disease and could be an early initiator of the pathophysiological cascades that underlie neurodegenerative disease. This concept is consistent with the fact that rare genetic mutations in some nucleoporins cause cell-type-specific neurological disease. In this Review, we discuss nucleoporin and NPC disruptions and consider their impact on cellular function and the pathophysiology of neurodegenerative disease.
Collapse
Affiliation(s)
- Alyssa N Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Latypova X, Creadore SG, Dahan-Oliel N, Gustafson AG, Wei-Hung Hwang S, Bedard T, Shazand K, van Bosse HJP, Giampietro PF, Dieterich K. A Genomic Approach to Delineating the Occurrence of Scoliosis in Arthrogryposis Multiplex Congenita. Genes (Basel) 2021; 12:genes12071052. [PMID: 34356068 PMCID: PMC8305424 DOI: 10.3390/genes12071052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Arthrogryposis multiplex congenita (AMC) describes a group of conditions characterized by the presence of non-progressive congenital contractures in multiple body areas. Scoliosis, defined as a coronal plane spine curvature of ≥10 degrees as measured radiographically, has been reported to occur in approximately 20% of children with AMC. To identify genes that are associated with both scoliosis as a clinical outcome and AMC, we first queried the DECIPHER database for copy number variations (CNVs). Upon query, we identified only two patients with both AMC and scoliosis (AMC-SC). The first patient contained CNVs in three genes (FBN2, MGF10, and PITX1), while the second case had a CNV in ZC4H2. Looking into small variants, using a combination of Human Phenotype Ontogeny and literature searching, 908 genes linked with scoliosis and 444 genes linked with AMC were identified. From these lists, 227 genes were associated with AMC-SC. Ingenuity Pathway Analysis (IPA) was performed on the final gene list to gain insight into the functional interactions of genes and various categories. To summarize, this group of genes encompasses a diverse group of cellular functions including transcription regulation, transmembrane receptor, growth factor, and ion channels. These results provide a focal point for further research using genomics and animal models to facilitate the identification of prognostic factors and therapeutic targets for AMC.
Collapse
Affiliation(s)
- Xenia Latypova
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, 38000 Grenoble, France;
| | | | - Noémi Dahan-Oliel
- Shriners Hospitals for Children, Montreal, QC H4A 0A9, Canada;
- School of Physical & Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | | | - Steven Wei-Hung Hwang
- Shriners Hospitals for Children, Philadelphia, PA 19140, USA; (S.W.-H.H.); (H.J.P.v.B.)
| | - Tanya Bedard
- Alberta Congenital Anomalies Surveillance System, Alberta Health Services, Edmonton, AB T5J 3E4, Canada;
| | - Kamran Shazand
- Shriners Hospitals for Children Headquarters, Tampa, FL 33607, USA; (S.G.C.); (A.G.G.); (K.S.)
| | | | - Philip F. Giampietro
- Department of Pediatrics, University of Illinois-Chicago, Chicago, IL 60607, USA
- Correspondence: (P.F.G.); (K.D.)
| | - Klaus Dieterich
- Institut of Advanced Biosciences, Université Grenoble Alpes, Inserm, U1209, CHU Grenoble Alpes, 38000 Grenoble, France
- Correspondence: (P.F.G.); (K.D.)
| |
Collapse
|
13
|
Kron NS, Fieber LA. Co-expression analysis identifies neuro-inflammation as a driver of sensory neuron aging in Aplysia californica. PLoS One 2021; 16:e0252647. [PMID: 34116561 PMCID: PMC8195618 DOI: 10.1371/journal.pone.0252647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Aging of the nervous system is typified by depressed metabolism, compromised proteostasis, and increased inflammation that results in cognitive impairment. Differential expression analysis is a popular technique for exploring the molecular underpinnings of neural aging, but technical drawbacks of the methodology often obscure larger expression patterns. Co-expression analysis offers a robust alternative that allows for identification of networks of genes and their putative central regulators. In an effort to expand upon previous work exploring neural aging in the marine model Aplysia californica, we used weighted gene correlation network analysis to identify co-expression networks in a targeted set of aging sensory neurons in these animals. We identified twelve modules, six of which were strongly positively or negatively associated with aging. Kyoto Encyclopedia of Genes analysis and investigation of central module transcripts identified signatures of metabolic impairment, increased reactive oxygen species, compromised proteostasis, disrupted signaling, and increased inflammation. Although modules with immune character were identified, there was no correlation between genes in Aplysia that increased in expression with aging and the orthologous genes in oyster displaying long-term increases in expression after a virus-like challenge. This suggests anti-viral response is not a driver of Aplysia sensory neuron aging.
Collapse
Affiliation(s)
- N. S. Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| | - L. A. Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| |
Collapse
|
14
|
Age-dependent changes in nuclear-cytoplasmic signaling in skeletal muscle. Exp Gerontol 2021; 150:111338. [PMID: 33862137 DOI: 10.1016/j.exger.2021.111338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/28/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
Mechanical forces are conducted through myofibers and into nuclei to regulate muscle development, hypertrophy, and homeostasis. We hypothesized that nuclei in aged muscle have changes in the nuclear envelope and associated proteins, resulting in altered markers of mechano-signaling. METHODS YAP/TAZ protein expression and gene expression of downstream targets, Ankrd1 and Cyr61, were evaluated as mechanotransduction indicators. Expression of proteins in the nuclear lamina and the nuclear pore complex (NPC) were assessed, and nuclear morphology was characterized by electron microscopy. Nuclear envelope permeability was assessed by uptake of 70 kDa fluorescent dextran. RESULTS Nuclear changes with aging included a relative decrease of lamin β1 and Nup107, and a relative increase in Nup93, which could underlie the aberrant nuclear morphology, increased nuclear leakiness, and elevated YAP/TAZ signaling. CONCLUSION Aged muscles have hyperactive nuclear-cytoplasmic signaling, indicative of altered nuclear mechanotransduction. These data highlight a possible role for the nucleus in aging-related aberrant mechano-sensing.
Collapse
|
15
|
Jühlen R, Martinelli V, Vinci C, Breckpot J, Fahrenkrog B. Centrosome and ciliary abnormalities in fetal akinesia deformation sequence human fibroblasts. Sci Rep 2020; 10:19301. [PMID: 33168876 PMCID: PMC7652866 DOI: 10.1038/s41598-020-76192-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ciliopathies are clinical disorders of the primary cilium with widely recognised phenotypic and genetic heterogeneity. Here, we found impaired ciliogenesis in fibroblasts derived from individuals with fetal akinesia deformation sequence (FADS), a broad spectrum of neuromuscular disorders arising from compromised foetal movement. We show that cells derived from FADS individuals have shorter and less primary cilia (PC), in association with alterations in post-translational modifications in α-tubulin. Similarly, siRNA-mediated depletion of two known FADS proteins, the scaffold protein rapsyn and the nucleoporin NUP88, resulted in defective PC formation. Consistent with a role in ciliogenesis, rapsyn and NUP88 localised to centrosomes and PC. Furthermore, proximity-ligation assays confirm the respective vicinity of rapsyn and NUP88 to γ-tubulin. Proximity-ligation assays moreover show that rapsyn and NUP88 are adjacent to each other and that the rapsyn-NUP88 interface is perturbed in the examined FADS cells. We suggest that the perturbed rapsyn-NUP88 interface leads to defects in PC formation and that defective ciliogenesis contributes to the pleiotropic defects seen in FADS.
Collapse
Affiliation(s)
- Ramona Jühlen
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium.,Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Valérie Martinelli
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | - Chiara Vinci
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium. .,Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
16
|
Ravenscroft G, Clayton JS, Faiz F, Sivadorai P, Milnes D, Cincotta R, Moon P, Kamien B, Edwards M, Delatycki M, Lamont PJ, Chan SH, Colley A, Ma A, Collins F, Hennington L, Zhao T, McGillivray G, Ghedia S, Chao K, O'Donnell-Luria A, Laing NG, Davis MR. Neurogenetic fetal akinesia and arthrogryposis: genetics, expanding genotype-phenotypes and functional genomics. J Med Genet 2020; 58:609-618. [PMID: 33060286 DOI: 10.1136/jmedgenet-2020-106901] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/16/2020] [Accepted: 07/05/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Fetal akinesia and arthrogryposis are clinically and genetically heterogeneous and have traditionally been refractive to genetic diagnosis. The widespread availability of affordable genome-wide sequencing has facilitated accurate genetic diagnosis and gene discovery in these conditions. METHODS We performed next generation sequencing (NGS) in 190 probands with a diagnosis of arthrogryposis multiplex congenita, distal arthrogryposis, fetal akinesia deformation sequence or multiple pterygium syndrome. This sequencing was a combination of bespoke neurogenetic disease gene panels and whole exome sequencing. Only class 4 and 5 variants were reported, except for two cases where the identified variants of unknown significance (VUS) are most likely to be causative for the observed phenotype. Co-segregation studies and confirmation of variants identified by NGS were performed where possible. Functional genomics was performed as required. RESULTS Of the 190 probands, 81 received an accurate genetic diagnosis. All except two of these cases harboured class 4 and/or 5 variants based on the American College of Medical Genetics and Genomics guidelines. We identified phenotypic expansions associated with CACNA1S, CHRNB1, GMPPB and STAC3. We describe a total of 50 novel variants, including a novel missense variant in the recently identified gene for arthrogryposis with brain malformations-SMPD4. CONCLUSIONS Comprehensive gene panels give a diagnosis for a substantial proportion (42%) of fetal akinesia and arthrogryposis cases, even in an unselected cohort. Recently identified genes account for a relatively large proportion, 32%, of the diagnoses. Diagnostic-research collaboration was critical to the diagnosis and variant interpretation in many cases, facilitated genotype-phenotype expansions and reclassified VUS through functional genomics.
Collapse
Affiliation(s)
- Gina Ravenscroft
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia .,Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Joshua S Clayton
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.,Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Fathimath Faiz
- PathWest Diagnostic Genomics, Nedlands, Western Australia, Australia
| | - Padma Sivadorai
- PathWest Diagnostic Genomics, Nedlands, Western Australia, Australia
| | - Di Milnes
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Rob Cincotta
- Maternal and Fetal Medicine, Mater Mothers' Hospital, Brisbane, Queensland, Australia
| | - Phillip Moon
- Department of Obstetrics, Redland Hospital, Cleveland, Queensland, Australia
| | - Ben Kamien
- Genetic Services WA, Women and Newborn Heath Service, Subiaco, Western Australia, Australia.,Hunter Genetics, Hunter New England Health, New Lambton, New South Wales, Australia
| | - Matthew Edwards
- Hunter Genetics, Hunter New England Health, New Lambton, New South Wales, Australia
| | - Martin Delatycki
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Phillipa J Lamont
- Neurology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Sophelia Hs Chan
- Paediatric Neurology Division, Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Alison Colley
- Clinical Genetics Services SWSLHD, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Alan Ma
- Department of Clinical Genetics, Children's Hospital Westmead, Sydney, New South Wales, Australia
| | - Felicity Collins
- Clinical Genetics Department, Western Sydney Genetics Program, Children's Hospitalat Westmead, Westmead, New South Wales, Australia
| | - Lucinda Hennington
- Mercy Health, Mercy Hospital for Women, Heidelberg, Victoria, Australia.,Austin Health, Melbourne, Victoria, Australia.,Alfred Health, Melbourne, Victoria, Australia
| | - Teresa Zhao
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - George McGillivray
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sondhya Ghedia
- Department of Clinical Genetics, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Katherine Chao
- Center for Mendelian Genomics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Anne O'Donnell-Luria
- Center for Mendelian Genomics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Nigel G Laing
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.,Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, Western Australia, Australia.,PathWest Diagnostic Genomics, Nedlands, Western Australia, Australia
| | - Mark R Davis
- PathWest Diagnostic Genomics, Nedlands, Western Australia, Australia
| |
Collapse
|
17
|
Mis EK, Al-Ali S, Ji W, Spencer-Manzon M, Konstantino M, Khokha MK, Jeffries L, Lakhani SA. The latest FADS: Functional analysis of GLDN patient variants and classification of GLDN-associated AMC as a type of viable fetal akinesia deformation sequence. Am J Med Genet A 2020; 182:2291-2296. [PMID: 32812332 DOI: 10.1002/ajmg.a.61783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022]
Abstract
Recessive variants in the GLDN gene, which encodes the gliomedin protein and is involved in nervous system development, have recently been associated with Arthrogryposis Multiplex Congenita (AMC), a heterogenous condition characterized by congenital contractures of more than one joint. Two cohorts of patients with GLDN-associated AMC have previously been described, evolving the understanding of the condition from lethal to survivable with the provision of significant neonatal support. Here, we describe one additional patient currently living with the syndrome, having one novel variant, p.Leu365Phe, for which we provide functional data supporting its pathogenicity. We additionally provide experimental data for four other previously reported variants lacking functional evidence, including p.Arg393Lys, the second variant present in our patient. We discuss unique and defining clinical features, adding calcium-related findings which appear to be recurrent in the GLDN cohort. Finally, we compare all previously reported patients and draw new conclusions about scope of illness, with emphasis on the finding of pulmonary hypoplasia, suggesting that AMC secondary to GLDN variants may be best fitted under the umbrella of fetal akinesia deformation sequence (FADS).
Collapse
Affiliation(s)
- Emily K Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Samir Al-Ali
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michele Spencer-Manzon
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Monica Konstantino
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lauren Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Saquib A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
18
|
Castro VL, Reyes JF, Reyes-Nava NG, Paz D, Quintana AM. Hcfc1a regulates neural precursor proliferation and asxl1 expression in the developing brain. BMC Neurosci 2020; 21:27. [PMID: 32522152 PMCID: PMC7288482 DOI: 10.1186/s12868-020-00577-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background Precise regulation of neural precursor cell (NPC) proliferation and differentiation is essential to ensure proper brain development and function. The HCFC1 gene encodes a transcriptional co-factor that regulates cell proliferation, and previous studies suggest that HCFC1 regulates NPC number and differentiation. However, the molecular mechanism underlying these cellular deficits has not been completely characterized. Methods Here we created a zebrafish harboring mutations in the hcfc1a gene (the hcfc1aco60/+ allele), one ortholog of HCFC1, and utilized immunohistochemistry and RNA-sequencing technology to understand the function of hcfc1a during neural development. Results The hcfc1aco60/+ allele results in an increased number of NPCs and increased expression of neuronal and glial markers. These neural developmental deficits are associated with larval hypomotility and the abnormal expression of asxl1, a polycomb transcription factor, which we identified as a downstream effector of hcfc1a. Inhibition of asxl1 activity and/or expression in larvae harboring the hcfc1aco60/+ allele completely restored the number of NPCs to normal levels. Conclusion Collectively, our data demonstrate that hcfc1a regulates NPC number, NPC proliferation, motor behavior, and brain development.
Collapse
Affiliation(s)
- Victoria L Castro
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Joel F Reyes
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Nayeli G Reyes-Nava
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - David Paz
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Anita M Quintana
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
19
|
Muir AM, Cohen JL, Sheppard SE, Guttipatti P, Lo TY, Weed N, Doherty D, DeMarzo D, Fagerberg CR, Kjærsgaard L, Larsen MJ, Rump P, Löhner K, Hirsch Y, Zeevi DA, Zackai EH, Bhoj E, Song Y, Mefford HC. Bi-allelic Loss-of-Function Variants in NUP188 Cause a Recognizable Syndrome Characterized by Neurologic, Ocular, and Cardiac Abnormalities. Am J Hum Genet 2020; 106:623-631. [PMID: 32275884 PMCID: PMC7212259 DOI: 10.1016/j.ajhg.2020.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/11/2020] [Indexed: 02/08/2023] Open
Abstract
Nucleoporins (NUPs) are an essential component of the nuclear-pore complex, which regulates nucleocytoplasmic transport of macromolecules. Pathogenic variants in NUP genes have been linked to several inherited human diseases, including a number with progressive neurological degeneration. We present six affected individuals with bi-allelic truncating variants in NUP188 and strikingly similar phenotypes and clinical courses, representing a recognizable genetic syndrome; the individuals are from four unrelated families. Key clinical features include congenital cataracts, hypotonia, prenatal-onset ventriculomegaly, white-matter abnormalities, hypoplastic corpus callosum, congenital heart defects, and central hypoventilation. Characteristic dysmorphic features include small palpebral fissures, a wide nasal bridge and nose, micrognathia, and digital anomalies. All affected individuals died as a result of respiratory failure, and five of them died within the first year of life. Nuclear import of proteins was decreased in affected individuals' fibroblasts, supporting a possible disease mechanism. CRISPR-mediated knockout of NUP188 in Drosophila revealed motor deficits and seizure susceptibility, partially recapitulating the neurological phenotype seen in affected individuals. Removal of NUP188 also resulted in aberrant dendrite tiling, suggesting a potential role of NUP188 in dendritic development. Two of the NUP188 pathogenic variants are enriched in the Ashkenazi Jewish population in gnomAD, a finding we confirmed with a separate targeted population screen of an international sampling of 3,225 healthy Ashkenazi Jewish individuals. Taken together, our results implicate bi-allelic loss-of-function NUP188 variants in a recessive syndrome characterized by a distinct neurologic, ophthalmologic, and facial phenotype.
Collapse
Affiliation(s)
- Alison M Muir
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jennifer L Cohen
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sarah E Sheppard
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Pavithran Guttipatti
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tsz Y Lo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natalie Weed
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Dan Doherty
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Seattle Children's Hospital, Seattle, WA 98105, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Danielle DeMarzo
- Department of Pediatrics, University of Oklahoma, Oklahoma City, OK 73104, USA
| | | | - Lars Kjærsgaard
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Denmark
| | - Martin J Larsen
- Department of Clinical Genetics, Odense University Hospital, Denmark
| | - Patrick Rump
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Katharina Löhner
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Yoel Hirsch
- The Committee for Prevention of Jewish Genetic Diseases, Dor Yeshorim, Jerusalem, Israel
| | - David A Zeevi
- The Committee for Prevention of Jewish Genetic Diseases, Dor Yeshorim, Jerusalem, Israel
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elizabeth Bhoj
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Seattle Children's Hospital, Seattle, WA 98105, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
20
|
Poot M. Mutated NUP188 and Other Nucleoporins as Gateways to Developmental Syndromes. Mol Syndromol 2020; 11:1-3. [PMID: 32256295 DOI: 10.1159/000506410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2020] [Indexed: 11/19/2022] Open
|
21
|
Sandestig A, Engström K, Pepler A, Danielsson I, Odelberg-Johnsson P, Biskup S, Holz A, Stefanova M. NUP188 Biallelic Loss of Function May Underlie a New Syndrome: Nucleoporin 188 Insufficiency Syndrome? Mol Syndromol 2019; 10:313-319. [PMID: 32021605 DOI: 10.1159/000504818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2019] [Indexed: 01/09/2023] Open
Abstract
There is no clearly established association between the gene NUP188 and human pathology. Only a few reports of patients with different clinical presentation and different heterozygous or compound heterozygous missense or splice region variants have been identified in several sequencing projects; however, a causative association between the clinical features and the identified variants has not been established. For the first time, we report 2 unrelated patients with 2 different homozygous nonsense gene variants of NUP188, p.Tyr96* and p.Gln113*, respectively. Although having different supposedly truncating mutations, the patients presented with strikingly comparable phenotypes including pre- and postnatal microcephaly, trigonocephaly, congenital bilateral cataract, microphthalmia, cleft lip and palate or high-arched palate, camptodactyly, rocker-bottom feet, heart anomalies, specific brain changes (such as loss of periventricular white matter), thin corpus callosum, and delayed myelinization. Both patients showed very similar facial features such as laterally extended arched eyebrows, wide convex nose with a wide prominent nasal bridge, and prominent angulated antihelix. They were both born small for gestational age and died shortly after birth at the age of 67 and 140 days, respectively, as a result of central respiratory failure. Our findings strongly suggest a correlation between the homozygous nonsense gene variants of NUP188 and a severe phenotype of a new developmental syndrome with poor prognosis resulting from nucleoporin 188 homolog protein insufficiency.
Collapse
Affiliation(s)
- Anna Sandestig
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| | - Karolina Engström
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| | | | - Ingela Danielsson
- Department of Neonatology, Linköping University Hospital, Linköping, Sweden
| | | | - Saskia Biskup
- CeGaT GmbH, and Praxis für Humangenetik, Tübingen, Germany
| | - Anja Holz
- CeGaT GmbH, and Praxis für Humangenetik, Tübingen, Germany
| | - Margarita Stefanova
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| |
Collapse
|
22
|
Niles KM, Blaser S, Shannon P, Chitayat D. Fetal arthrogryposis multiplex congenita/fetal akinesia deformation sequence (FADS)-Aetiology, diagnosis, and management. Prenat Diagn 2019; 39:720-731. [PMID: 31218730 DOI: 10.1002/pd.5505] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/21/2019] [Accepted: 06/04/2019] [Indexed: 01/01/2023]
Abstract
Arthrogryposis multiplex congenita (AMC) refers to an aetiologically heterogenous condition, which consists of joint contractures affecting two or more joints starting prenatally. The incidence is approximately one in 3000 live births; however, the prenatal incidence is higher, indicating a high intrauterine mortality. Over 320 genes have been implicated showing the genetic heterogeneity of the condition. AMC can be of extrinsic aetiology resulting from intrauterine crowding secondary to congenital structural uterine abnormalities (eg, bicornuate or septate uterus), uterine tumors (eg, fibroid), or multifetal pregnancy or intrinsic/primary/fetal aetiology, due to functional abnormalities in the brain, spinal cord, peripheral nerves, neuromuscular junction, muscles, bones, restrictive dermopathies, tendons and joints. Unlike many of the intrinsic/primary/fetal causes which are difficult to treat, secondary AMC can be treated by physiotherapy with good response. Primary cases may present prenatally with fetal akinesia associated with joint contractures and occasionally brain abnormalities, decreased muscle bulk, polyhydramnios, and nonvertex presentation while the secondary cases usually present with isolated contractures. Complete prenatal and postnatal investigations are needed to identify an underlying aetiology and provide information regarding its prognosis and inheritance, which is critical for the obstetrical care providers and families to optimize the pregnancy management and address future reproductive plans.
Collapse
Affiliation(s)
- Kirsten M Niles
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Susan Blaser
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - David Chitayat
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.,The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.,Division of Clinical and Metabolic Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Fichtman B, Harel T, Biran N, Zagairy F, Applegate CD, Salzberg Y, Gilboa T, Salah S, Shaag A, Simanovsky N, Ayoubieh H, Sobreira N, Punzi G, Pierri CL, Hamosh A, Elpeleg O, Harel A, Edvardson S. Pathogenic Variants in NUP214 Cause "Plugged" Nuclear Pore Channels and Acute Febrile Encephalopathy. Am J Hum Genet 2019; 105:48-64. [PMID: 31178128 DOI: 10.1016/j.ajhg.2019.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/06/2019] [Indexed: 12/15/2022] Open
Abstract
We report biallelic missense and frameshift pathogenic variants in the gene encoding human nucleoporin NUP214 causing acute febrile encephalopathy. Clinical symptoms include neurodevelopmental regression, seizures, myoclonic jerks, progressive microcephaly, and cerebellar atrophy. NUP214 and NUP88 protein levels were reduced in primary skin fibroblasts derived from affected individuals, while the total number and density of nuclear pore complexes remained normal. Nuclear transport assays exhibited defects in the classical protein import and mRNA export pathways in affected cells. Direct surface imaging of fibroblast nuclei by scanning electron microscopy revealed a large increase in the presence of central particles (known as "plugs") in the nuclear pore channels of affected cells. This observation suggests that large transport cargoes may be delayed in passage through the nuclear pore channel, affecting its selective barrier function. Exposure of fibroblasts from affected individuals to heat shock resulted in a marked delay in their stress response, followed by a surge in apoptotic cell death. This suggests a mechanistic link between decreased cell survival in cell culture and severe fever-induced brain damage in affected individuals. Our study provides evidence by direct imaging at the single nuclear pore level of functional changes linked to a human disease.
Collapse
Affiliation(s)
- Boris Fichtman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Tamar Harel
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Nitzan Biran
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Fadia Zagairy
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Carolyn D Applegate
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yuval Salzberg
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Tal Gilboa
- Pediatric Neurology Unit, Hadassah-Hebrew University Medical Center, Jerusalem 91240, Israel
| | - Somaya Salah
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Avraham Shaag
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Natalia Simanovsky
- Department of Medical Imaging, Hadassah Medical Center, Jerusalem 91240, Israel
| | - Houriya Ayoubieh
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Baylor-Hopkins Center for Mendelian Genomics, Jerusalem 91240, Israel, Jerusalem 91240, Israel
| | - Nara Sobreira
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Baylor-Hopkins Center for Mendelian Genomics, Jerusalem 91240, Israel, Jerusalem 91240, Israel
| | - Giuseppe Punzi
- Laboratory of Biochemistry, Molecular and Computational Biology; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Molecular and Computational Biology; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Ada Hamosh
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Baylor-Hopkins Center for Mendelian Genomics, Jerusalem 91240, Israel, Jerusalem 91240, Israel
| | - Orly Elpeleg
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Amnon Harel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| | - Simon Edvardson
- Pediatric Neurology Unit, Hadassah-Hebrew University Medical Center, Jerusalem 91240, Israel; Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| |
Collapse
|
24
|
Ferreira PA. The coming-of-age of nucleocytoplasmic transport in motor neuron disease and neurodegeneration. Cell Mol Life Sci 2019; 76:2247-2273. [PMID: 30742233 PMCID: PMC6531325 DOI: 10.1007/s00018-019-03029-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
The nuclear pore is the gatekeeper of nucleocytoplasmic transport and signaling through which a vast flux of information is continuously exchanged between the nuclear and cytoplasmic compartments to maintain cellular homeostasis. A unifying and organizing principle has recently emerged that cements the notion that several forms of amyotrophic lateral sclerosis (ALS), and growing number of other neurodegenerative diseases, co-opt the dysregulation of nucleocytoplasmic transport and that this impairment is a pathogenic driver of neurodegeneration. The understanding of shared pathomechanisms that underpin neurodegenerative diseases with impairments in nucleocytoplasmic transport and how these interface with current concepts of nucleocytoplasmic transport is bound to illuminate this fundamental biological process in a yet more physiological context. Here, I summarize unresolved questions and evidence and extend basic and critical concepts and challenges of nucleocytoplasmic transport and its role in the pathogenesis of neurodegenerative diseases, such as ALS. These principles will help to appreciate the roles of nucleocytoplasmic transport in the pathogenesis of ALS and other neurodegenerative diseases, and generate a framework for new ideas of the susceptibility of motoneurons, and possibly other neurons, to degeneration by dysregulation of nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA.
| |
Collapse
|