1
|
Bérard M, Merlini L, Martin SG. Proteomic and phosphoproteomic analyses reveal that TORC1 is reactivated by pheromone signaling during sexual reproduction in fission yeast. PLoS Biol 2024; 22:e3002963. [PMID: 39705284 PMCID: PMC11750111 DOI: 10.1371/journal.pbio.3002963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/21/2025] [Accepted: 12/02/2024] [Indexed: 12/22/2024] Open
Abstract
Starvation, which is associated with inactivation of the growth-promoting TOR complex 1 (TORC1), is a strong environmental signal for cell differentiation. In the fission yeast Schizosaccharomyces pombe, nitrogen starvation has distinct physiological consequences depending on the presence of mating partners. In their absence, cells enter quiescence, and TORC1 inactivation prolongs their life. In presence of compatible mates, TORC1 inactivation is essential for sexual differentiation. Gametes engage in paracrine pheromone signaling, grow towards each other, fuse to form the diploid zygote, and form resistant, haploid spore progenies. To understand the signaling changes in the proteome and phospho-proteome during sexual reproduction, we developed cell synchronization strategies and present (phospho-)proteomic data sets that dissect pheromone from starvation signals over the sexual differentiation and cell-cell fusion processes. Unexpectedly, these data sets reveal phosphorylation of ribosomal protein S6 during sexual development, which we establish requires TORC1 activity. We demonstrate that TORC1 is re-activated by pheromone signaling, in a manner that does not require autophagy. Mutants with low TORC1 re-activation exhibit compromised mating and poorly viable spores. Thus, while inactivated to initiate the mating process, TORC1 is reactivated by pheromone signaling in starved cells to support sexual reproduction.
Collapse
Affiliation(s)
- Melvin Bérard
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Laura Merlini
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Alonso-Ramos P, Carballo JA. Decoding the Nucleolar Role in Meiotic Recombination and Cell Cycle Control: Insights into Cdc14 Function. Int J Mol Sci 2024; 25:12861. [PMID: 39684572 DOI: 10.3390/ijms252312861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
The cell cycle, essential for growth, reproduction, and genetic stability, is regulated by a complex network of cyclins, Cyclin-Dependent Kinases (CDKs), phosphatases, and checkpoints that ensure accurate cell division. CDKs and phosphatases are crucial for controlling cell cycle progression, with CDKs promoting it and phosphatases counteracting their activity to maintain balance. The nucleolus, as a biomolecular condensate, plays a key regulatory role by serving as a hub for ribosome biogenesis and the sequestration and release of various cell cycle regulators. This phase separation characteristic of the nucleolus is vital for the specific and timely release of Cdc14, required for most essential functions of phosphatase in the cell cycle. While mitosis distributes chromosomes to daughter cells, meiosis is a specialized division process that produces gametes and introduces genetic diversity. Central to meiosis is meiotic recombination, which enhances genetic diversity by generating crossover and non-crossover products. This process begins with the introduction of double-strand breaks, which are then processed by numerous repair enzymes. Meiotic recombination and progression are regulated by proteins and feedback mechanisms. CDKs and polo-like kinase Cdc5 drive recombination through positive feedback, while phosphatases like Cdc14 are crucial for activating Yen1, a Holliday junction resolvase involved in repairing unresolved recombination intermediates in both mitosis and meiosis. Cdc14 is released from the nucleolus in a regulated manner, especially during the transition between meiosis I and II, where it helps inactivate CDK activity and promote proper chromosome segregation. This review integrates current knowledge, providing a synthesis of these interconnected processes and an overview of the mechanisms governing cell cycle regulation and meiotic recombination.
Collapse
Affiliation(s)
- Paula Alonso-Ramos
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Jesús A Carballo
- Instituto de Biología Funcional y Genómica, IBFG, CSIC-USAL, 37007 Salamanca, Spain
| |
Collapse
|
3
|
Palacios-Blanco I, Gómez L, Bort M, Mayerová N, Bágeľová Poláková S, Martín-Castellanos C. CDK phosphorylation of Sfr1 downregulates Rad51 function in late-meiotic homolog invasions. EMBO J 2024; 43:4356-4383. [PMID: 39174851 PMCID: PMC11445502 DOI: 10.1038/s44318-024-00205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
Meiosis is the developmental program that generates gametes. To produce healthy gametes, meiotic recombination creates reciprocal exchanges between each pair of homologous chromosomes that facilitate faithful chromosome segregation. Using fission yeast and biochemical, genetic, and cytological approaches, we have studied the role of CDK (cyclin-dependent kinase) in the control of Swi5-Sfr1, a Rad51-recombinase auxiliary factor involved in homolog invasion during recombination. We show that Sfr1 is a CDK target, and its phosphorylation downregulates Swi5-Sfr1 function in the meiotic prophase. Expression of a phospho-mimetic sfr1-7D mutant inhibits Rad51 binding, its robust chromosome loading, and subsequently decreases interhomolog recombination. On the other hand, the non-phosphorylatable sfr1-7A mutant alters Rad51 dynamics at late prophase, and exacerbates chromatin segregation defects and Rad51 retention observed in dbl2 deletion mutants when combined with them. We propose Sfr1 phospho-inhibition as a novel cell-cycle-dependent mechanism, which ensures timely resolution of recombination intermediates and successful chromosome distribution into the gametes. Furthermore, the N-terminal disordered part of Sfr1, an evolutionarily conserved feature, serves as a regulatory platform coordinating this phospho-regulation, protein localization and stability, with several CDK sites and regulatory sequences being conserved.
Collapse
Affiliation(s)
- Inés Palacios-Blanco
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, 37007, Spain
| | - Lucía Gómez
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, 37007, Spain
| | - María Bort
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, 37007, Spain
| | - Nina Mayerová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 841 04, Slovakia
| | - Silvia Bágeľová Poláková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 841 04, Slovakia
- Centre of Biosciences SAS, Institute of Animal Biochemistry and Genetics, Bratislava, 840 05, Slovakia
| | | |
Collapse
|
4
|
Kogo H, Kikuchi-Kokubo Y, Tajika Y, Iizuka-Kogo A, Yamamoto H, Ikezawa M, Kurahashi H, Matsuzaki T. Differential phosphorylation of two serine clusters in mouse HORMAD1 during meiotic prophase I progression. Exp Cell Res 2024; 440:114133. [PMID: 38897409 DOI: 10.1016/j.yexcr.2024.114133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Mouse HORMAD1 is a phospho-protein involved in multiple functions during meiotic prophase I. To obtain insight into the significance of its phosphorylation, we generated phospho-specific antibodies against two serine residues, Ser307 and Ser378, representing each of two serine clusters in mouse HORMAD1. The Ser307 phosphorylation is detectable from early leptotene substage in both wild-type and Spo11-/- spermatocytes, indicating that Ser307 is a primary and SPO11-independent phosphorylation site. In contrast, the Ser378 phosphorylation is negligible at earlier substages in wild-type and Spo11-/- spermatocytes. After mid-zygotene substage, the Ser378 phosphorylation is abundant on unsynapsed chromosome axes in wild-type spermatocytes and is detected only in a part of unsynapsed chromosome axes in Spo11-/- spermatocytes. We also generated a non-phosphorylated Ser307-specific antibody and found that Ser307 is phosphorylated on sex chromosome axes but is almost entirely unphosphorylated on desynapsed chromosome axes in diplotene spermatocytes. These results demonstrated a substage-specific phosphorylation status of mouse HORMAD1, which might be associated with multiple substage-specific functions.
Collapse
Affiliation(s)
- Hiroshi Kogo
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; Division of Molecular Genetics, Center for Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Yuka Kikuchi-Kokubo
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yukiko Tajika
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Akiko Iizuka-Kogo
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hanako Yamamoto
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Maiko Ikezawa
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Center for Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Toshiyuki Matsuzaki
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
5
|
Palacios-Blanco I, Martín-Castellanos C. Cyclins and CDKs in the regulation of meiosis-specific events. Front Cell Dev Biol 2022; 10:1069064. [PMID: 36523509 PMCID: PMC9745066 DOI: 10.3389/fcell.2022.1069064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 07/13/2024] Open
Abstract
How eukaryotic cells control their duplication is a fascinating example of how a biological system self-organizes specific activities to temporally order cellular events. During cell cycle progression, the cellular level of CDK (Cyclin-Dependent Kinase) activity temporally orders the different cell cycle phases, ensuring that DNA replication occurs prior to segregation into two daughter cells. CDK activity requires the binding of a regulatory subunit (cyclin) to the core kinase, and both CDKs and cyclins are well conserved throughout evolution from yeast to humans. As key regulators, they coordinate cell cycle progression with metabolism, DNA damage, and cell differentiation. In meiosis, the special cell division that ensures the transmission of genetic information from one generation to the next, cyclins and CDKs have acquired novel functions to coordinate meiosis-specific events such as chromosome architecture, recombination, and synapsis. Interestingly, meiosis-specific cyclins and CDKs are common in evolution, some cyclins seem to have evolved to acquire CDK-independent functions, and even some CDKs associate with a non-cyclin partner. We will review the functions of these key regulators in meiosis where variation has specially flourished.
Collapse
|
6
|
Bustamante-Jaramillo LF, Ramos C, Martín-Castellanos C. The Meiosis-Specific Crs1 Cyclin Is Required for Efficient S-Phase Progression and Stable Nuclear Architecture. Int J Mol Sci 2021; 22:ijms22115483. [PMID: 34067465 PMCID: PMC8196990 DOI: 10.3390/ijms22115483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022] Open
Abstract
Cyclins and CDKs (Cyclin Dependent Kinases) are key players in the biology of eukaryotic cells, representing hubs for the orchestration of physiological conditions with cell cycle progression. Furthermore, as in the case of meiosis, cyclins and CDKs have acquired novel functions unrelated to this primal role in driving the division cycle. Meiosis is a specialized developmental program that ensures proper propagation of the genetic information to the next generation by the production of gametes with accurate chromosome content, and meiosis-specific cyclins are widespread in evolution. We have explored the diversification of CDK functions studying the meiosis-specific Crs1 cyclin in fission yeast. In addition to the reported role in DSB (Double Strand Break) formation, this cyclin is required for meiotic S-phase progression, a canonical role, and to maintain the architecture of the meiotic chromosomes. Crs1 localizes at the SPB (Spindle Pole Body) and is required to stabilize the cluster of telomeres at this location (bouquet configuration), as well as for normal SPB motion. In addition, Crs1 exhibits CDK(Cdc2)-dependent kinase activity in a biphasic manner during meiosis, in contrast to a single wave of protein expression, suggesting a post-translational control of its activity. Thus, Crs1 displays multiple functions, acting both in cell cycle progression and in several key meiosis-specific events.
Collapse
|
7
|
The S. pombe CDK5 Orthologue Pef1 Cooperates with Three Cyclins, Clg1, Pas1 and Psl1, to Promote Pre-Meiotic DNA Replication. Biomolecules 2021; 11:biom11010089. [PMID: 33445784 PMCID: PMC7828282 DOI: 10.3390/biom11010089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Meiosis is a specialized cell division process that mediates genetic information transfer to the next generation. Meiotic chromosomal segregation occurs when DNA replication is completed during the pre-meiotic S phase. Here, we show that Schizosaccharomyces pombe Pef1, an orthologue of mammalian cyclin-dependent kinase 5 (CDK5), is required to promote pre-meiotic DNA replication. We examined the efficiency of meiotic initiation using pat1-114 mutants and found that, meiotic nuclear divisions did not occur in the pef1Δ pat1-114 strain. Deletion of pef1 also suppressed the expression of DNA replication factors and the phosphorylation of Cdc2 Tyr-15. The double deletion of clg1 and psl1 arrested meiotic initiation in pat1-114 mutant cells, similar to that of pef1-deficient cells. Meiotic progression was also slightly delayed in the pas1-deficient strain. Our results reveal that Pef1 regulates cyclin-coordinated meiotic progression.
Collapse
|
8
|
CDK Regulation of Meiosis: Lessons from S. cerevisiae and S. pombe. Genes (Basel) 2020; 11:genes11070723. [PMID: 32610611 PMCID: PMC7397238 DOI: 10.3390/genes11070723] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Meiotic progression requires precise orchestration, such that one round of DNA replication is followed by two meiotic divisions. The order and timing of meiotic events is controlled through the modulation of the phosphorylation state of proteins. Key components of this phospho-regulatory system include cyclin-dependent kinase (CDK) and its cyclin regulatory subunits. Over the past two decades, studies in budding and fission yeast have greatly informed our understanding of the role of CDK in meiotic regulation. In this review, we provide an overview of how CDK controls meiotic events in both budding and fission yeast. We discuss mechanisms of CDK regulation through post-translational modifications and changes in the levels of cyclins. Finally, we highlight the similarities and differences in CDK regulation between the two yeast species. Since CDK and many meiotic regulators are highly conserved, the findings in budding and fission yeasts have revealed conserved mechanisms of meiotic regulation among eukaryotes.
Collapse
|
9
|
Advances Towards How Meiotic Recombination Is Initiated: A Comparative View and Perspectives for Plant Meiosis Research. Int J Mol Sci 2019; 20:ijms20194718. [PMID: 31547623 PMCID: PMC6801837 DOI: 10.3390/ijms20194718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Meiosis is an essential cell-division process for ensuring genetic diversity across generations. Meiotic recombination ensures the accuracy of genetic interchange between homolous chromosomes and segregation of parental alleles. Programmed DNA double-strand breaks (DSBs), catalyzed by the evolutionarily conserved topoisomerase VIA (a subunit of the archaeal type II DNA topoisomerase)-like enzyme Spo11 and several other factors, is a distinctive feature of meiotic recombination initiation. The meiotic DSB formation and its regulatory mechanisms are similar among species, but certain aspects are distinct. In this review, we introduced the cumulative knowledge of the plant proteins crucial for meiotic DSB formation and technical advances in DSB detection. We also summarized the genome-wide DSB hotspot profiles for different model organisms. Moreover, we highlighted the classical views and recent advances in our knowledge of the regulatory mechanisms that ensure the fidelity of DSB formation, such as multifaceted kinase-mediated phosphorylation and the consequent high-dimensional changes in chromosome structure. We provided an overview of recent findings concerning DSB formation, distribution and regulation, all of which will help us to determine whether meiotic DSB formation is evolutionarily conserved or varies between plants and other organisms.
Collapse
|