1
|
Chen X, Huang R, Yang Z, Zhang J, Yang Y, Gao F, Liu M, Zhang S. Biological engineering approaches for modulating the pathological microenvironment and promoting axonal regeneration after spinal cord injury. Front Neurosci 2025; 19:1574763. [PMID: 40421136 PMCID: PMC12104303 DOI: 10.3389/fnins.2025.1574763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025] Open
Abstract
Functional recovery following spinal cord injury (SCI) presents significant challenges and imposes a substantial burden on society. Current research primarily focuses on minimizing damage and promoting regeneration to enhance functional recovery after SCI. Following SCI, secondary injuries such as mitochondrial dysfunction, vascular rupture, inflammatory responses, and glial scarring occur in the lesion area, forming the pathological microenvironment. These factors expand the extent of damage, exacerbate injury severity, and severely impede axonal regeneration after SCI. Modulating the pathological microenvironment through various interventions may facilitate axonal regeneration and promote functional recovery after SCI. This article reviews the influence and research advancements in axon regeneration concerning mitochondrial dysfunction, inflammatory response, and glial scar formation after SCI. Additionally, it integrates insights from bioengineering to improve the pathological microenvironment, summarizing the progress in axon regeneration research. The review concludes with novel strategies for enhancing axon regeneration, offering fresh perspectives for future investigations.
Collapse
Affiliation(s)
- Xiaohong Chen
- Department of Pathology, Yan'an Medical College of Yan'an University, Yan'an, Shaanxi Province, China
| | - Rong Huang
- Department of Pathology, Yan'an Medical College of Yan'an University, Yan'an, Shaanxi Province, China
- Department of General Surgery, Affiliated Hospital of Yan’an University, Yan'an, Shaanxi Province, China
| | - Zhe Yang
- Department of Pathology, Yan'an Medical College of Yan'an University, Yan'an, Shaanxi Province, China
- Department of General Surgery, Affiliated Hospital of Yan’an University, Yan'an, Shaanxi Province, China
| | - Jun Zhang
- Department of Pathology, Yan'an Medical College of Yan'an University, Yan'an, Shaanxi Province, China
- Department of General Surgery, Affiliated Hospital of Yan’an University, Yan'an, Shaanxi Province, China
| | - Yanling Yang
- Department of Pathology, Yan'an Medical College of Yan'an University, Yan'an, Shaanxi Province, China
| | - Feng Gao
- Department of Pathology, Yan'an Medical College of Yan'an University, Yan'an, Shaanxi Province, China
| | - Minli Liu
- Department of Pathology, Yan'an Medical College of Yan'an University, Yan'an, Shaanxi Province, China
| | - Shengjun Zhang
- Department of Pathology, Yan'an Medical College of Yan'an University, Yan'an, Shaanxi Province, China
- Department of General Surgery, Affiliated Hospital of Yan’an University, Yan'an, Shaanxi Province, China
| |
Collapse
|
2
|
Guerra San Juan I, Brunner JW, Eggan K, Toonen RF, Verhage M. KIF5A regulates axonal repair and time-dependent axonal transport of SFPQ granules and mitochondria in human motor neurons. Neurobiol Dis 2025; 204:106759. [PMID: 39644980 DOI: 10.1016/j.nbd.2024.106759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
Mutations in the microtubule-binding motor protein kinesin 5 A (KIF5A) are implicated in several adult-onset motor neuron diseases, including Amyotrophic Lateral Sclerosis, Spastic Paraplegia Type 10 and Charcot-Marie-Tooth Disease Type 2. While KIF5 family members transport a variety of cargos along axons, the specific cargos affected by KIF5A mutations remain poorly understood. Here, we generated KIF5Anull mutant human motor neurons and analyzed the impact on axonal transport and motor neuron outgrowth and regeneration in vitro. KIF5A deficiency caused reduced neurite complexity in young neurons (DIV14) and defects in axonal regeneration. KIF5A deficiency did not affect neurofilament transport but impaired mitochondrial motility and anterograde speed at DIV42. Notably, KIF5A deficiency strongly reduced anterograde transport of splicing factor proline/glutamine-rich (SFPQ)-associated RNA granules in DIV42 axons. Hence, KIF5A plays a critical role in promoting axonal regrowth after injury and in driving the anterograde transport of mitochondria and especially SFPQ-associated RNA granules in mature neurons.
Collapse
Affiliation(s)
- Irune Guerra San Juan
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, the Netherlands; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands.
| | - Jessie W Brunner
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Guerra San Juan I, Brunner J, Eggan K, Toonen RF, Verhage M. KIF5A regulates axonal repair and time-dependent axonal transport of SFPQ granules and mitochondria in human motor neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611684. [PMID: 39314491 PMCID: PMC11418931 DOI: 10.1101/2024.09.06.611684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mutations in the microtubule binding motor protein, kinesin family member 5A (KIF5A), cause the fatal motor neuron disease, Amyotrophic Lateral Sclerosis. While KIF5 family members transport a variety of cargos along axons, it is still unclear which cargos are affected by KIF5A mutations. We generated KIF5A null mutant human motor neurons to investigate the impact of KIF5A loss on the transport of various cargoes and its effect on motor neuron function at two different timepoints in vitro. The absence of KIF5A resulted in reduced neurite complexity in young motor neurons (DIV14) and significant defects in axonal regeneration capacity at all developmental stages. KIF5A loss did not affect neurofilament transport but resulted in decreased mitochondria motility and anterograde speed at DIV42. More prominently, KIF5A depletion strongly reduced anterograde transport of SFPQ-associated RNA granules in DIV42 motor neuron axons. We conclude that KIF5A most prominently functions in human motor neurons to promote axonal regrowth after injury as well as to anterogradely transport mitochondria and, to a larger extent, SFPQ-associated RNA granules in a time-dependent manner.
Collapse
Affiliation(s)
- Irune Guerra San Juan
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jessie Brunner
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruud F. Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Rich KA, Pino MG, Yalvac ME, Fox A, Harris H, Balch MHH, Arnold WD, Kolb SJ. Impaired motor unit recovery and maintenance in a knock-in mouse model of ALS-associated Kif5a variant. Neurobiol Dis 2023; 182:106148. [PMID: 37164288 PMCID: PMC10874102 DOI: 10.1016/j.nbd.2023.106148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023] Open
Abstract
Kinesin family member 5A (KIF5A) is an essential, neuron-specific microtubule-associated motor protein responsible for the anterograde axonal transport of various cellular cargos. Loss of function variants in the N-terminal, microtubule-binding domain are associated with hereditary spastic paraplegia and hereditary motor neuropathy. These variants result in a loss of the ability of the mutant protein to process along microtubules. Contrastingly, gain of function splice-site variants in the C-terminal, cargo-binding domain of KIF5A are associated with amyotrophic lateral sclerosis (ALS), a neurodegenerative disease involving death of upper and lower motor neurons, ultimately leading to degradation of the motor unit (MU; an alpha motor neuron and all the myofibers it innervates) and death. These ALS-associated variants result in loss of autoinhibition, increased procession of the mutant protein along microtubules, and altered cargo binding. To study the molecular and cellular consequences of ALS-associated variants in vivo, we introduced the murine homolog of an ALS-associated KIF5A variant into C57BL/6 mice using CRISPR-Cas9 gene editing which produced mutant Kif5a mRNA and protein in neuronal tissues of heterozygous (Kif5a+/c.3005+1G>A; HET) and homozygous (Kif5ac.3005+1G>A/c.3005+1G>A; HOM) mice. HET and HOM mice appeared normal in behavioral and electrophysiological (compound muscle action potential [CMAP] and MU number estimation [MUNE]) outcome measures at one year of age. When subjected to sciatic nerve injury, HET and HOM mice have delayed and incomplete recovery of the MUNE compared to wildtype (WT) mice suggesting an impairment in MU repair. Moreover, aged mutant Kif5a mice (aged two years) had reduced MUNE independent of injury, and exacerbation of the delayed and incomplete recovery after injury compared to aged WT mice. These data suggest that ALS-associated variants may result in an impairment of the MU to respond to biological challenges such as injury and aging, leading to a failure of MU repair and maintenance. In this report, we present the behavioral, electrophysiological and pathological characterization of mice harboring an ALS-associated Kif5a variant to understand the functional consequences of KIF5A C-terminal variants in vivo.
Collapse
Affiliation(s)
- Kelly A Rich
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Megan G Pino
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mehmet E Yalvac
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ashley Fox
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hallie Harris
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Maria H H Balch
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - W David Arnold
- NextGen Precision Health, University of Missouri, MO, USA; Department of Physical Medicine and Rehabilitation, University of Missouri, MO, USA
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
5
|
Assaying Optic Nerve Regeneration in Larval Zebrafish. Methods Mol Biol 2023; 2636:191-203. [PMID: 36881301 DOI: 10.1007/978-1-0716-3012-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Zebrafish have a remarkable capacity for spontaneously regenerating their central nervous system. Larval zebrafish are optically transparent and therefore are widely used to dynamically visualize cellular processes in vivo, such as nerve regeneration. Regeneration of retinal ganglion cell (RGC) axons within the optic nerve has been previously studied in adult zebrafish. In contrast, assays of optic nerve regeneration have previously not been established in larval zebrafish. In order to take advantage of the imaging capabilities in the larval zebrafish model, we recently developed an assay to physically transect RGC axons and monitor optic nerve regeneration in larval zebrafish. We found that RGC axons rapidly and robustly regrow to the optic tectum. Here, we describe the methods for performing the optic nerve transections, as well as methods for visualizing RGC regeneration in larval zebrafish.
Collapse
|
6
|
Comparative Proteomics Analysis of Growth-Primed Adult Dorsal Root Ganglia Reveals Key Molecular Mediators for Peripheral Nerve Regeneration. eNeuro 2023; 10:ENEURO.0168-22.2022. [PMID: 36526365 PMCID: PMC9829101 DOI: 10.1523/eneuro.0168-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Injuries to peripheral nerves are frequent, yet no drug therapies are available for effective nerve repair. The slow growth rate of axons and inadequate access to growth factors challenge natural repair of nerves. A better understanding of the molecules that can promote the rate of axon growth may reveal therapeutic opportunities. Molecular profiling of injured neurons at early intervals of injury, when regeneration is at the maximum, has been the gold standard for exploring growth promoters. A complementary in vitro regenerative priming model was recently shown to induce enhanced outgrowth in adult sensory neurons. In this work, we exploited the in vitro priming model to reveal novel candidates for adult nerve regeneration. We performed a whole-tissue proteomics analysis of the in vitro primed dorsal root ganglia (DRGs) from adult SD rats and compared their molecular profile with that of the in vivo primed, and control DRGs. The proteomics data generated are available via ProteomeXchange with identifier PXD031927. From the follow-up analysis, Bioinformatics interventions, and literature curation, we identified several molecules that were differentially expressed in the primed DRGs with a potential to modulate adult nerve regrowth. We then validated the growth promoting roles of mesencephalic astrocyte-derived neurotrophic factor (MANF), one of the hits we identified, in adult rat sensory neurons. Overall, in this study, we explored two growth priming paradigm and shortlisted several candidates, and validated MANF, as potential targets for adult nerve regeneration. We also demonstrate that the in vitro priming model is a valid tool for adult nerve regeneration studies.
Collapse
|
7
|
Colciago A, Audano M, Bonalume V, Melfi V, Mohamed T, Reid AJ, Faroni A, Greer PA, Mitro N, Magnaghi V. Transcriptomic Profile Reveals Deregulation of Hearing-Loss Related Genes in Vestibular Schwannoma Cells Following Electromagnetic Field Exposure. Cells 2021; 10:cells10071840. [PMID: 34360009 PMCID: PMC8307028 DOI: 10.3390/cells10071840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/23/2022] Open
Abstract
Hearing loss (HL) is the most common sensory disorder in the world population. One common cause of HL is the presence of vestibular schwannoma (VS), a benign tumor of the VIII cranial nerve, arising from Schwann cell (SC) transformation. In the last decade, the increasing incidence of VS has been correlated to electromagnetic field (EMF) exposure, which might be considered a pathogenic cause of VS development and HL. Here, we explore the molecular mechanisms underlying the biologic changes of human SCs and/or their oncogenic transformation following EMF exposure. Through NGS technology and RNA-Seq transcriptomic analysis, we investigated the genomic profile and the differential display of HL-related genes after chronic EMF. We found that chronic EMF exposure modified the cell proliferation, in parallel with intracellular signaling and metabolic pathways changes, mostly related to translation and mitochondrial activities. Importantly, the expression of HL-related genes such as NEFL, TPRN, OTOGL, GJB2, and REST appeared to be deregulated in chronic EMF exposure. In conclusion, we suggest that, at a preclinical stage, EMF exposure might promote the transformation of VS cells and contribute to HL.
Collapse
Affiliation(s)
- Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Veronica Bonalume
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Valentina Melfi
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Tasnim Mohamed
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Adam J. Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NQ, UK; (A.J.R.); (A.F.)
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Center, Manchester M13 9NQ, UK
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NQ, UK; (A.J.R.); (A.F.)
| | - Peter A. Greer
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
- Correspondence: ; Tel.: +39-0250318414
| |
Collapse
|
8
|
Li F, Lo TY, Miles L, Wang Q, Noristani HN, Li D, Niu J, Trombley S, Goldshteyn JI, Wang C, Wang S, Qiu J, Pogoda K, Mandal K, Brewster M, Rompolas P, He Y, Janmey PA, Thomas GM, Li S, Song Y. The Atr-Chek1 pathway inhibits axon regeneration in response to Piezo-dependent mechanosensation. Nat Commun 2021; 12:3845. [PMID: 34158506 PMCID: PMC8219705 DOI: 10.1038/s41467-021-24131-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Atr is a serine/threonine kinase, known to sense single-stranded DNA breaks and activate the DNA damage checkpoint by phosphorylating Chek1, which inhibits Cdc25, causing cell cycle arrest. This pathway has not been implicated in neuroregeneration. We show that in Drosophila sensory neurons removing Atr or Chek1, or overexpressing Cdc25 promotes regeneration, whereas Atr or Chek1 overexpression, or Cdc25 knockdown impedes regeneration. Inhibiting the Atr-associated checkpoint complex in neurons promotes regeneration and improves synapse/behavioral recovery after CNS injury. Independent of DNA damage, Atr responds to the mechanical stimulus elicited during regeneration, via the mechanosensitive ion channel Piezo and its downstream NO signaling. Sensory neuron-specific knockout of Atr in adult mice, or pharmacological inhibition of Atr-Chek1 in mammalian neurons in vitro and in flies in vivo enhances regeneration. Our findings reveal the Piezo-Atr-Chek1-Cdc25 axis as an evolutionarily conserved inhibitory mechanism for regeneration, and identify potential therapeutic targets for treating nervous system trauma.
Collapse
Affiliation(s)
- Feng Li
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tsz Y Lo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Leann Miles
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Qin Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harun N Noristani
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Temple University School of Medicine, Philadelphia, PA, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Dan Li
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jingwen Niu
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Temple University School of Medicine, Philadelphia, PA, USA
| | - Shannon Trombley
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica I Goldshteyn
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chuxi Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shuchao Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jingyun Qiu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Katarzyna Pogoda
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Kalpana Mandal
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan Brewster
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ye He
- The City University of New York, Graduate Center - Advanced Science Research Center, Neuroscience Initiative, New York, NY, USA
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Gareth M Thomas
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Temple University School of Medicine, Philadelphia, PA, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Temple University School of Medicine, Philadelphia, PA, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Li A, Pereira C, Hill EE, Vukcevich O, Wang A. In vitro, In vivo and Ex vivo Models for Peripheral Nerve Injury and Regeneration. Curr Neuropharmacol 2021; 20:344-361. [PMID: 33827409 PMCID: PMC9413794 DOI: 10.2174/1570159x19666210407155543] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/29/2021] [Accepted: 03/29/2021] [Indexed: 11/22/2022] Open
Abstract
Peripheral Nerve Injuries (PNI) frequently occur secondary to traumatic injuries. Recovery from these injuries can be expectedly poor, especially in proximal injuries. In order to study and improve peripheral nerve regeneration, scientists rely on peripheral nerve models to identify and test therapeutic interventions. In this review, we discuss the best described and most commonly used peripheral nerve models that scientists have and continue to use to study peripheral nerve physiology and function.
Collapse
Affiliation(s)
- Andrew Li
- University of California Davis Ringgold standard institution - Hand and Upper Extremity Surgery, Division of Plastic Surgery, Department of Surgery Sacramento, California. United States
| | - Clifford Pereira
- University of California Davis Ringgold standard institution - Hand and Upper Extremity Surgery, Division of Plastic Surgery, Department of Surgery Sacramento, California. United States
| | - Elise Eleanor Hill
- University of California Davis Ringgold standard institution - Department of Surgery Sacramento, California. United States
| | - Olivia Vukcevich
- University of California Davis Ringgold standard institution - Surgery & Biomedical Engineering Sacramento, California. United States
| | - Aijun Wang
- University of California Davis - Surgery & Biomedical Engineering 4625 2nd Ave., Suite 3005 Sacramento Sacramento California 95817. United States
| |
Collapse
|
10
|
Baxendale S, Asad A, Shahidan NO, Wiggin GR, Whitfield TT. The adhesion GPCR Adgrg6 (Gpr126): Insights from the zebrafish model. Genesis 2021; 59:e23417. [PMID: 33735533 PMCID: PMC11475505 DOI: 10.1002/dvg.23417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Adhesion GPCRs are important regulators of conserved developmental processes and represent an untapped pool of potential targets for drug discovery. The adhesion GPCR Adgrg6 (Gpr126) has critical developmental roles in Schwann cell maturation and inner ear morphogenesis in the zebrafish embryo. Mutations in the human ADGRG6 gene can result in severe deficits in peripheral myelination, and variants have been associated with many other disease conditions. Here, we review work on the zebrafish Adgrg6 signaling pathway and its potential as a disease model. Recent advances have been made in the analysis of the structure of the Adgrg6 receptor, demonstrating alternative structural conformations and the presence of a conserved calcium-binding site within the CUB domain of the extracellular region that is critical for receptor function. Homozygous zebrafish adgrg6 hypomorphic mutants have been used successfully as a whole-animal screening platform, identifying candidate molecules that can influence signaling activity and rescue mutant phenotypes. These compounds offer promise for further development as small molecule modulators of Adgrg6 pathway activity.
Collapse
Affiliation(s)
- Sarah Baxendale
- Department of Biomedical Science, Bateson Centre and Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Anzar Asad
- Department of Biomedical Science, Bateson Centre and Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Nahal O. Shahidan
- Department of Biomedical Science, Bateson Centre and Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | | | - Tanya T. Whitfield
- Department of Biomedical Science, Bateson Centre and Neuroscience InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
11
|
Current Advances in Comprehending Dynamics of Regenerating Axons and Axon-Glia Interactions after Peripheral Nerve Injury in Zebrafish. Int J Mol Sci 2021; 22:ijms22052484. [PMID: 33801205 PMCID: PMC7957880 DOI: 10.3390/ijms22052484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Following an injury, axons of both the central nervous system (CNS) and peripheral nervous system (PNS) degenerate through a coordinated and genetically conserved mechanism known as Wallerian degeneration (WD). Unlike central axons, severed peripheral axons have a higher capacity to regenerate and reinnervate their original targets, mainly because of the favorable environment that they inhabit and the presence of different cell types. Even though many aspects of regeneration in peripheral nerves have been studied, there is still a lack of understanding regarding the dynamics of axonal degeneration and regeneration, mostly due to the inherent limitations of most animal models. In this scenario, the use of zebrafish (Danio rerio) larvae combined with time-lapse microscopy currently offers a unique experimental opportunity to monitor the dynamics of the regenerative process in the PNS in vivo. This review summarizes the current knowledge and advances made in understanding the dynamics of the regenerative process of PNS axons. By using different tools available in zebrafish such as electroablation of the posterior lateral line nerve (pLLn), and laser-mediated transection of motor and sensory axons followed by time-lapse microscopy, researchers are beginning to unravel the complexity of the spatiotemporal interactions among different cell types during the regenerative process. Thus, understanding the cellular and molecular mechanisms underlying the degeneration and regeneration of peripheral nerves will open new avenues in the treatment of acute nerve trauma or chronic conditions such as neurodegenerative diseases.
Collapse
|
12
|
Rodemer W, Gallo G, Selzer ME. Mechanisms of Axon Elongation Following CNS Injury: What Is Happening at the Axon Tip? Front Cell Neurosci 2020; 14:177. [PMID: 32719586 PMCID: PMC7347967 DOI: 10.3389/fncel.2020.00177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
After an injury to the central nervous system (CNS), functional recovery is limited by the inability of severed axons to regenerate and form functional connections with appropriate target neurons beyond the injury. Despite tremendous advances in our understanding of the mechanisms of axon growth, and of the inhibitory factors in the injured CNS that prevent it, disappointingly little progress has been made in restoring function to human patients with CNS injuries, such as spinal cord injury (SCI), through regenerative therapies. Clearly, the large number of overlapping neuron-intrinsic and -extrinsic growth-inhibitory factors attenuates the benefit of neutralizing any one target. More daunting is the distances human axons would have to regenerate to reach some threshold number of target neurons, e.g., those that occupy one complete spinal segment, compared to the distances required in most experimental models, such as mice and rats. However, the difficulties inherent in studying mechanisms of axon regeneration in the mature CNS in vivo have caused researchers to rely heavily on extrapolation from studies of axon regeneration in peripheral nerve, or of growth cone-mediated axon development in vitro and in vivo. Unfortunately, evidence from several animal models, including the transected lamprey spinal cord, has suggested important differences between regeneration of mature CNS axons and growth of axons in peripheral nerve, or during embryonic development. Specifically, long-distance regeneration of severed axons may not involve the actin-myosin molecular motors that guide embryonic growth cones in developing axons. Rather, non-growth cone-mediated axon elongation may be required to propel injured axons in the mature CNS. If so, it may be necessary to use other experimental models to promote regeneration that is sufficient to contact a critical number of target neurons distal to a CNS lesion. This review examines the cytoskeletal underpinnings of axon growth, focusing on the elongating axon tip, to gain insights into how CNS axons respond to injury, and how this might affect the development of regenerative therapies for SCI and other CNS injuries.
Collapse
Affiliation(s)
- William Rodemer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Gianluca Gallo
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
13
|
Bremer J, Marsden KC, Miller A, Granato M. The ubiquitin ligase PHR promotes directional regrowth of spinal zebrafish axons. Commun Biol 2019; 2:195. [PMID: 31149640 PMCID: PMC6531543 DOI: 10.1038/s42003-019-0434-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/16/2019] [Indexed: 01/05/2023] Open
Abstract
To reconnect with their synaptic targets, severed axons need to regrow robustly and directionally along the pre-lesional trajectory. While mechanisms directing axonal regrowth are poorly understood, several proteins direct developmental axon outgrowth, including the ubiquitin ligase PHR (Mycbp2). Invertebrate PHR also limits regrowth of injured axons, whereas its role in vertebrate axonal regrowth remains elusive. Here we took advantage of the high regrowth capacity of spinal zebrafish axons and observed robust and directional regrowth following laser transection of spinal Mauthner axons. We found that PHR directs regrowing axons along the pre-lesional trajectory and across the transection site. At the transection site, initial regrowth of wild-type axons was multidirectional. Over time, misdirected sprouts were corrected in a PHR-dependent manner. Ablation of cyfip2, known to promote F-actin-polymerization and pharmacological inhibition of JNK reduced misdirected regrowth of PHR-deficient axons, suggesting that PHR controls directional Mauthner axonal regrowth through cyfip2- and JNK-dependent pathways.
Collapse
Affiliation(s)
- Juliane Bremer
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA USA
| | - Kurt C. Marsden
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA USA
- Present Address: Department of Biological Sciences, North Carolina State University, Raleigh, 27607 NC USA
| | - Adam Miller
- Institute of Neuroscience, University of Oregon, Eugene, 97405 OR USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA USA
| |
Collapse
|