1
|
Gan T, Liu Y, Qiao Y, Dong Y, Feng J, Chen X, Zhu L. Translation regulation in Bacillus subtilis and its applications in heterologous protein expression: A review. Int J Biol Macromol 2025; 311:143653. [PMID: 40311986 DOI: 10.1016/j.ijbiomac.2025.143653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/11/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Bacillus subtilis is widely used for industrial enzyme production due to its food safety and good capability of protein synthesis and secretion. However, the production of heterologous proteins is often inefficient, partly due to poor compatibility and versatility of genetic elements in B. subtilis. Recent study shows that transcription and translation is uncoupled in B. subtilis, which is quite different from general knowledge about the transcription-translation coupling mechanism in bacteria. The uncoupling mechanism in B. subtilis shows that the transcription rate is much faster than translation rate. Therefore, the translation regulation will play an important role in highly-effective synthesis of heterologous protein. To better understanding the different regulation strategies at the translation level in B. subtilis, this review will summarize the translation process in B. subtilis cell and its regulatory mechanisms as well as the differences in comparison to other bacteria. Besides, the genetic engineering strategies for engineering the translation regulatory elements are also summarized.
Collapse
Affiliation(s)
- Tian Gan
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yidi Liu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Qiao
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yangyang Dong
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiacheng Feng
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Linjiang Zhu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
de Crécy-Lagard V, Barahoglu Z, Yuan Y, Boël G, Babor J, Bacusmo JM, Dedon PC, Ho P, Hummels KR, Kearns D. Are Bacterial Processes Dependent on Global Ribosome Pausing Affected by tRNA Modification Defects? J Mol Biol 2025:169107. [PMID: 40210524 DOI: 10.1016/j.jmb.2025.169107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/12/2025]
Abstract
By integrating a literature review with transcriptomic, proteomic, and phenotypic data from two model bacteria, Escherichia coli and Vibrio cholerae, we put forward the hypothesis that defects in tRNA modification broadly impact processes that are evolutionarily tuned to be sensitive to translation speed. These include the translation of regulatory proteins associated with motility, iron homeostasis, and leader peptide-driven attenuation mechanisms. Some of these translation speed-dependent processes are influenced by the absence of a single modification, while others are affected by the absence of multiple modifications. Although further experiments are needed to clarify the mechanisms involved in each case, this work provides a foundational framework to guide future research.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Zeynep Barahoglu
- Institut Pasteur, Université Paris Cité, Epitranscriptomic and Translational Responses to Anti-bacterial Stress, 75015 Paris, France; Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, F-75005 Paris, France.
| | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
| | - Grégory Boël
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, F-75005 Paris, France.
| | - Jill Babor
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
| | - Jo Marie Bacusmo
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
| | - Peter C Dedon
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Singapore 138602 Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Peiying Ho
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Singapore 138602 Singapore
| | | | - Daniel Kearns
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
3
|
Hong HR, Prince CR, Wu L, Lin IN, Callan K, Feaga HA. YebC2 resolves ribosome stalling and increases fitness of cells lacking EF-P and the ABCF ATPase YfmR. PLoS Genet 2025; 21:e1011633. [PMID: 40215226 PMCID: PMC11990639 DOI: 10.1371/journal.pgen.1011633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/22/2025] [Indexed: 04/14/2025] Open
Abstract
Ribosome stalling is a major source of cellular stress. Therefore, many specialized elongation factors help prevent ribosome stalling. One of the best characterized of these factors is EF-P, which prevents ribosome stalling at polyproline tracts and other difficult-to-translate sequences. Recent evidence suggests that other factors also facilitate translation of polyproline motifs. For example, YfmR was recently identified as a protein that prevents ribosome stalling at proline-containing sequences in the absence of EF-P. Here, we show that YebC2 (formerly YeeI) functions as a translation factor in Bacillus subtilis that resolves ribosome stalling at polyprolines. YebC2 associates with the ribosome, supporting a direct role for YebC2 in translation. Moreover, YebC2 can reduce ribosome stalling and support cellular fitness in the absence of EF-P and YfmR. Finally, we present evidence that YebC2 is evolutionarily distinct from previously characterized YebC-family transcription factors and demonstrate that these paralogs have distinct physiological roles in B. subtilis. Altogether our work identifies YebC2 as a translation factor that resolves ribosome stalling in B. subtilis and provides crucial insight into the relationship between YebC2, EF-P, and YfmR, three factors that prevent ribosome stalling at polyprolines.
Collapse
Affiliation(s)
- Hye-Rim Hong
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Cassidy R. Prince
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Letian Wu
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Isabella N. Lin
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Katrina Callan
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Heather A. Feaga
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
4
|
Hong HR, Prince CR, Wu L, Lin IN, Feaga HA. YebC2 resolves ribosome stalling at polyprolines independent of EF-P and the ABCF ATPase YfmR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.618948. [PMID: 39463947 PMCID: PMC11507958 DOI: 10.1101/2024.10.18.618948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Polyproline motifs are essential structural features of many proteins, and recent evidence suggests that EF-P is one of several factors that facilitate their translation. For example, YfmR was recently identified as a protein that prevents ribosome stalling at proline-containing sequences in the absence of EF-P. Here, we show that the YebC-family protein YebC2 (formerly YeeI) functions as a translation factor in B. subtilis that resolves ribosome stalling at polyprolines. We demonstrate that YebC2, EF-P and YfmR act independently to support cellular fitness. Moreover, we show that YebC2 interacts directly with the 70S ribosome, supporting a direct role for YebC2 in translation. Finally, we assess the evolutionary relationship between YebC2 and other characterized YebC family proteins, and present evidence that transcription and translation factors within the YebC family have evolved separately. Altogether our work identifies YebC2 as a translation factor that resolves ribosome stalling and provides crucial insight into the relationship between YebC2, EF-P, and YfmR, three factors that prevent ribosome stalling at prolines.
Collapse
Affiliation(s)
- Hye-Rim Hong
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | | | - Letian Wu
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Isabella N. Lin
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Heather A. Feaga
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
5
|
Takada H, Fujiwara K, Atkinson GC, Chiba S, Hauryliuk V. Resolution of ribosomal stalling by EF-P and ABCF ATPases YfmR and YkpA/YbiT. Nucleic Acids Res 2024; 52:9854-9866. [PMID: 38943426 PMCID: PMC11381351 DOI: 10.1093/nar/gkae556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024] Open
Abstract
Efficiency of protein synthesis on the ribosome is strongly affected by the amino acid composition of the assembled amino acid chain. Challenging sequences include proline-rich motifs as well as highly positively and negatively charged amino acid stretches. Members of the F subfamily of ABC ATPases (ABCFs) have been long hypothesised to promote translation of such problematic motifs. In this study we have applied genetics and reporter-based assays to characterise the four housekeeping ABCF ATPases of Bacillus subtilis: YdiF, YfmM, YfmR/Uup and YkpA/YbiT. We show that YfmR cooperates with the translation factor EF-P that promotes translation of Pro-rich motifs. Simultaneous loss of both YfmR and EF-P results in a dramatic growth defect. Surprisingly, this growth defect can be largely suppressed though overexpression of an EF-P variant lacking the otherwise crucial 5-amino-pentanolylated residue K32. Using in vivo reporter assays, we show that overexpression of YfmR can alleviate ribosomal stalling on Asp-Pro motifs. Finally, we demonstrate that YkpA/YbiT promotes translation of positively and negatively charged motifs but is inactive in resolving ribosomal stalls on proline-rich stretches. Collectively, our results provide insights into the function of ABCF translation factors in modulating protein synthesis in B. subtilis.
Collapse
Affiliation(s)
- Hiraku Takada
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
- Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Keigo Fujiwara
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Gemma C Atkinson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- Virus Centre, Lund University, Lund, Sweden
| | - Shinobu Chiba
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- Virus Centre, Lund University, Lund, Sweden
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
- Science for Life Laboratory, Lund, Sweden
| |
Collapse
|
6
|
Brewer TE, Wagner A. Horizontal Gene Transfer of a key Translation Factor and its Role in Polyproline Proteome Evolution. Mol Biol Evol 2024; 41:msae180. [PMID: 39189989 PMCID: PMC11388002 DOI: 10.1093/molbev/msae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Prolines cause ribosomes to stall during translation due to their rigid structure. This phenomenon occurs in all domains of life and is exacerbated at polyproline motifs. Such stalling can be eased by the elongation factor P (EF-P) in bacteria. We discovered a potential connection between the loss of ancestral EF-P, the appearance of horizontally transferred EF-P variants, and genomic signs of EF-P dysfunction. Horizontal transfer of the efp gene has occurred several times among bacteria and is associated with the loss of highly conserved polyproline motifs. In this study, we pinpoint cases of horizontal EF-P transfer among a diverse set of bacteria and examine genomic features associated with these events in the phyla Thermotogota and Planctomycetes. In these phyla, horizontal EF-P transfer is also associated with the loss of entire polyproline motif-containing proteins, whose expression is likely dependent on EF-P. In particular, three proteases (Lon, ClpC, and FtsH) and three tRNA synthetases (ValS, IleS1, and IleS2) appear highly sensitive to EF-P transfer. The conserved polyproline motifs within these proteins all reside within close proximity to ATP-binding-regions, some of which are crucial for their function. Our work shows that an ancient EF-P dysfunction has left genomic traces that persist to this day, although it remains unclear whether this dysfunction was strictly due to loss of ancestral EF-P or was related to the appearance of an exogenous variant. The latter possibility would imply that the process of "domesticating" a horizontally transferred efp gene can perturb the overall function of EF-P.
Collapse
Affiliation(s)
- Tess E Brewer
- Faculty of Biology, Microbiology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
7
|
Hong HR, Prince CR, Tetreault DD, Wu L, Feaga HA. YfmR is a translation factor that prevents ribosome stalling and cell death in the absence of EF-P. Proc Natl Acad Sci U S A 2024; 121:e2314437121. [PMID: 38349882 PMCID: PMC10895253 DOI: 10.1073/pnas.2314437121] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
Protein synthesis is performed by the ribosome and a host of highly conserved elongation factors. Elongation factor P (EF-P) prevents ribosome stalling at difficult-to-translate sequences, such as polyproline tracts. In bacteria, phenotypes associated with efp deletion range from modest to lethal, suggesting that some species encode an additional translation factor that has similar function to EF-P. Here we identify YfmR as a translation factor that is essential in the absence of EF-P in Bacillus subtilis. YfmR is an ABCF ATPase that is closely related to both Uup and EttA, ABCFs that bind the ribosomal E-site and are conserved in more than 50% of bacterial genomes. We show that YfmR associates with actively translating ribosomes and that depleting YfmR from Δefp cells causes severe ribosome stalling at a polyproline tract in vivo. YfmR depletion from Δefp cells was lethal and caused reduced levels of actively translating ribosomes. Our results therefore identify YfmR as an important translation factor that is essential in B. subtilis in the absence of EF-P.
Collapse
Affiliation(s)
- Hye-Rim Hong
- Department of Microbiology, Cornell University, Ithaca, NY14853
| | | | | | - Letian Wu
- Department of Microbiology, Cornell University, Ithaca, NY14853
| | | |
Collapse
|
8
|
Hong HR, Prince CR, Tetreault DD, Wu L, Feaga HA. YfmR is a translation factor that prevents ribosome stalling and cell death in the absence of EF-P. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552005. [PMID: 37577462 PMCID: PMC10418254 DOI: 10.1101/2023.08.04.552005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Protein synthesis is performed by the ribosome and a host of highly conserved elongation factors. Elongation factor P (EF-P) prevents ribosome stalling at difficult-to-translate sequences, particularly polyproline tracts. In bacteria, phenotypes associated with efp deletion range from modest to lethal, suggesting that some species encode an additional translation factor that has similar function to EF-P. Here we identify YfmR as a translation factor that is essential in the absence of EF-P in B. subtilis. YfmR is an ABCF ATPase that is closely related to both Uup and EttA, ABCFs that bind the ribosomal E-site and are conserved in more than 50% of bacterial genomes. We show that YfmR associates with actively translating ribosomes and that depleting YfmR from Δefp cells causes severe ribosome stalling at a polyproline tract in vivo. YfmR depletion from Δefp cells was lethal, and caused reduced levels of actively translating ribosomes. Our results therefore identify YfmR as an important translation factor that is essential in B. subtilis in the absence of EF-P.
Collapse
Affiliation(s)
- Hye-Rim Hong
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | | | | | - Letian Wu
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Heather A. Feaga
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
9
|
Abstract
The universally conserved protein elongation factor P (EF-P) facilitates translation at amino acids that form peptide bonds with low efficiency, particularly polyproline tracts. Despite its wide conservation, it is not essential in most bacteria and its physiological role remains unclear. Here, we show that EF-P affects the process of sporulation initiation in the bacterium Bacillus subtilis. We observe that the lack of EF-P delays expression of sporulation-specific genes. Using ribosome profiling, we observe that expression of spo0A, encoding a transcription factor that functions as the master regulator of sporulation, is lower in a Δefp strain than the wild type. Ectopic expression of Spo0A rescues the sporulation initiation phenotype, indicating that reduced spo0A expression explains the sporulation defect in Δefp cells. Since Spo0A is the earliest sporulation transcription factor, these data suggest that sporulation initiation can be delayed when protein synthesis is impaired. IMPORTANCE Elongation factor P (EF-P) is a universally conserved translation factor that prevents ribosome stalling at amino acids that form peptide bonds with low efficiency, particularly polyproline tracts. Phenotypes associated with EF-P deletion are pleiotropic, and the mechanistic basis underlying many of these phenotypes is unclear. Here, we show that the absence of EF-P affects the ability of B. subtilis to initiate sporulation by preventing normal expression of Spo0A, the key transcriptional regulator of this process. These data illustrate a mechanism that accounts for the sporulation delay and further suggest that cells are capable of sensing translation stress before committing to sporulation.
Collapse
|
10
|
Xu S, Cao Q, Liu Z, Chen J, Yan P, Li B, Xu Y. Transcriptomic Analysis Reveals the Role of tmRNA on Biofilm Formation in Bacillus subtilis. Microorganisms 2022; 10:microorganisms10071338. [PMID: 35889057 PMCID: PMC9319509 DOI: 10.3390/microorganisms10071338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Bacillus strains are widely distributed in terrestrial and marine environments, and some of them are used as biocontrol organisms for their biofilm-formation ability. In Bacillus subtilis, biofilm formation is fine-tuned by a complex network, a clear understanding of which still requires study. In bacteria, tmRNA, encoded by the ssrA gene, catalyzes trans-translation that can rescue ribosomes stalled on mRNA transcripts lacking a functional stop codon. tmRNA also affects physiological bioprocesses in some bacteria. In this study, we constructed a ssrA mutant in B. subtilis and found that the biofilm formation in the ssrA mutant was largely impaired. Moreover, we isolated a biofilm-formation suppressor of ssrA, in which the biofilm formation was restored to a level even stronger than that in the wild type. We further performed RNAseq assays with the wild type, ssrA mutant, and suppressor of ssrA for comparisons of their transcriptomes. By analyzing the transcriptomic data, we predicted the possible functions of some differentially expressed genes (DEGs) in the tmRNA regulation of biofilm formation in B. subtilis. Finally, we found that the overexpression of two DEGs, acoA and yhjR, could restore the biofilm formation in the ssrA mutant, indicating that AcoA and YhjR were immediate regulators involved in the tmRNA regulatory web controlling biofilm formation in B. subtilis. Our data can improve the knowledge about the molecular network involved in Bacillus biofilm formation and provide new targets for manipulation of Bacillus biofilms for future investigation.
Collapse
Affiliation(s)
- Shanshan Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (S.X.); (Q.C.); (Z.L.); (J.C.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Qianqian Cao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (S.X.); (Q.C.); (Z.L.); (J.C.)
| | - Zengzhi Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (S.X.); (Q.C.); (Z.L.); (J.C.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Junpeng Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (S.X.); (Q.C.); (Z.L.); (J.C.)
| | - Peiguang Yan
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Bingyu Li
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Health Science Center, Shenzhen University, Shenzhen 518055, China
- Correspondence: (B.L.); (Y.X.)
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (S.X.); (Q.C.); (Z.L.); (J.C.)
- Correspondence: (B.L.); (Y.X.)
| |
Collapse
|
11
|
Identification of Genes Required for Swarming Motility in Bacillus subtilis Using Transposon Mutagenesis and High-Throughput Sequencing (TnSeq). J Bacteriol 2022; 204:e0008922. [PMID: 35638827 DOI: 10.1128/jb.00089-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis exhibits swarming motility, a flagellar-mediated form of surface motility. Here, we use transposon mutagenesis and sequencing (TnSeq) to perform a high-throughput screen for candidate genes required for swarming. The TnSeq approach identified all of the known genes required for flagellar biosynthesis and nearly all of the previously reported regulators that promote swarming. Moreover, we identified an additional 36 genes that improve swarming and validated them individually. Among these, two mutants with severe defects were recovered, including fliT, required for flagellar biosynthesis, and a gene of unknown function, yolB, whose defect could not be attributed to a lack of flagella. In addition to discovering additional genes required for B. subtilis swarming, our work validates TnSeq as a powerful approach for comprehensively identifying genes important for nonessential processes such as colony expansion on plates. IMPORTANCE In TnSeq, transposons are randomly inserted throughout the chromosome at a population level, but insertions that disrupt genes of essential function cause strains that carry them to fall out of the population and appear underrepresented at the sequence level. Here, we apply TnSeq to the nonessential phenotype of motility in B. subtilis and spatially select for cells proficient in swarming. We find that insertions in nearly all genes previously identified as required for swarming are underrepresented in TnSeq analysis, and we identify 36 additional genes that enhance swarming. We demonstrate that TnSeq is a powerful tool for the genetic analysis of motility and likely other nonlethal screens for which enrichment is strong.
Collapse
|
12
|
Translation stalling proline motifs are enriched in slow-growing, thermophilic, and multicellular bacteria. THE ISME JOURNAL 2022; 16:1065-1073. [PMID: 34824398 DOI: 10.1038/s41396-021-01154-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
Rapid bacterial growth depends on the speed at which ribosomes can translate mRNA into proteins. mRNAs that encode successive stretches of proline can cause ribosomes to stall, substantially reducing translation speed. Such stalling is especially detrimental for species that must grow and divide rapidly. Here, we focus on di-prolyl motifs (XXPPX) and ask whether their prevalence varies with growth rate. To find out we conducted a broad survey of such motifs in >3000 bacterial genomes across 35 phyla. Indeed, fast-growing species encode fewer motifs than slow-growing species, especially in highly expressed proteins. We also found many di-prolyl motifs within thermophiles, where prolines can help maintain proteome stability. Moreover, bacteria with complex, multicellular lifecycles also encode many di-prolyl motifs. This is especially evident in the slow-growing phylum Myxococcota. Bacteria in this phylum encode many serine-threonine kinases, and many di-prolyl motifs at potential phosphorylation sites within these kinases. Serine-threonine kinases are involved in cell signaling and help regulate developmental processes linked to multicellularity in the Myxococcota. Altogether, our observations suggest that weakened selection on translational rate, whether due to slow or thermophilic growth, may allow di-prolyl motifs to take on new roles in biological processes that are unrelated to translational rate.
Collapse
|
13
|
McDonnell CM, Ghanim M, Mike Southern J, Kelly VP, Connon SJ. De-novo designed β-lysine derivatives can both augment and diminish the proliferation rates of E. coli through the action of Elongation Factor P. Bioorg Med Chem Lett 2022; 59:128545. [PMID: 35032607 DOI: 10.1016/j.bmcl.2022.128545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 12/20/2022]
Abstract
An investigation into the effect of modified β -lysines on the growth rates of eubacterial cells is reported. It is shown that the effects observed are due to the post translational modification of Elongation Factor P (EFP) with these compounds catalysed by PoxA. PoxA was found to be remarkably promiscuous, which allowed the activity of a wide range of exogenous β -lysines to be examined. Two chain-elongated β -lysine derivatives which differ in aminoalkyl chain length by only 2 carbon units exhibited opposing biological activities - one promoting growth and the other retarding it. Both compounds were shown to operate through modification of EFP.
Collapse
Affiliation(s)
- Ciara M McDonnell
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse Street, Dublin 2, Ireland
| | - Magda Ghanim
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse Street, Dublin 2, Ireland
| | - J Mike Southern
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse Street, Dublin 2, Ireland.
| | - Vincent P Kelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse Street, Dublin 2, Ireland.
| | - Stephen J Connon
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
14
|
CwlQ Is Required for Swarming Motility but Not Flagellar Assembly in Bacillus subtilis. J Bacteriol 2021; 203:JB.00029-21. [PMID: 33649146 DOI: 10.1128/jb.00029-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
Lytic enzymes play an essential role in the remodeling of bacterial peptidoglycan (PG), an extracellular mesh-like structure that retains the membrane in the context of high internal osmotic pressure. Peptidoglycan must be unfailingly stable to preserve cell integrity, but must also be dynamically remodeled for the cell to grow, divide, and insert macromolecular machines. The flagellum is one such macromolecular machine that transits the PG, and flagellar insertion is aided by localized activity of a dedicated PG lyase in Gram-negative bacteria. To date, there is no known dedicated lyase in Gram-positive bacteria for the insertion of flagella. Here, we take a reverse-genetic candidate-gene approach and find that cells mutated for the lytic transglycosylase CwlQ exhibit a severe defect in flagellum-dependent swarming motility. We further show that CwlQ is expressed by the motility sigma factor SigD and is secreted by the type III secretion system housed inside the flagellum. Nonetheless, cells with mutations of CwlQ remain proficient for flagellar biosynthesis even when mutated in combination with four other lyases related to motility (LytC, LytD, LytF, and CwlO). The PG lyase (or lyases) essential for flagellar synthesis in B. subtilis, if any, remains unknown.IMPORTANCE Bacteria are surrounded by a wall of peptidoglycan and early work in Bacillus subtilis was the first to suggest that bacteria needed to enzymatically remodel the wall to permit insertion of the flagellum. No PG remodeling enzyme alone or in combination, however, has been found to be essential for flagellar assembly in B. subtilis Here, we take a reverse-genetic candidate-gene approach and find that the PG lytic transglycosylase CwlQ is required for swarming motility. Subsequent characterization determined that while CwlQ was coexpressed with motility genes and is secreted by the flagellar secretion apparatus, it was not required for flagellar synthesis. The PG lyase needed for flagellar assembly in B. subtilis remains unknown.
Collapse
|
15
|
Hummels KR, Kearns DB. Translation elongation factor P (EF-P). FEMS Microbiol Rev 2020; 44:208-218. [PMID: 32011712 DOI: 10.1093/femsre/fuaa003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/30/2020] [Indexed: 01/01/2023] Open
Abstract
Translation elongation factor P (EF-P) is conserved in all three domains of life (called eIF5A and aIF5A in eukaryotes and archaea, respectively) and functions to alleviate ribosome pausing during the translation of specific sequences, including consecutive proline residues. EF-P was identified in 1975 as a factor that stimulated the peptidyltransferase reaction in vitro but its involvement in the translation of tandem proline residues was not uncovered until 2013. Throughout the four decades of EF-P research, perceptions of EF-P function have changed dramatically. In particular, while EF-P was thought to potentiate the formation of the first peptide bond in a protein, it is now broadly accepted to act throughout translation elongation. Further, EF-P was initially reported to be essential, but recent work has shown that the requirement of EF-P for growth is conditional. Finally, it is thought that post-translational modification of EF-P is strictly required for its function but recent studies suggest that EF-P modification may play a more nuanced role in EF-P activity. Here, we review the history of EF-P research, with an emphasis on its initial isolation and characterization as well as the discoveries that altered our perceptions of its function.
Collapse
Affiliation(s)
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN USA
| |
Collapse
|
16
|
Pinheiro B, Petrov DP, Guo L, Martins GB, Bramkamp M, Jung K. Elongation factor P is required for EII Glc translation in Corynebacterium glutamicum due to an essential polyproline motif. Mol Microbiol 2020; 115:320-331. [PMID: 33012080 DOI: 10.1111/mmi.14618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/25/2020] [Indexed: 12/22/2022]
Abstract
Translating ribosomes require elongation factor P (EF-P) to incorporate consecutive prolines (XPPX) into nascent peptide chains. The proteome of Corynebacterium glutamicum ATCC 13032 contains a total of 1,468 XPPX motifs, many of which are found in proteins involved in primary and secondary metabolism. We show here that synthesis of EIIGlc , the glucose-specific permease of the phosphoenolpyruvate (PEP): sugar phosphotransferase system (PTS) encoded by ptsG, is strongly dependent on EF-P, as an efp deletion mutant grows poorly on glucose as sole carbon source. The amount of EIIGlc is strongly reduced in this mutant, which consequently results in a lower rate of glucose uptake. Strikingly, the XPPX motif is essential for the activity of EIIGlc , and substitution of the prolines leads to inactivation of the protein. Finally, translation of GntR2, a transcriptional activator of ptsG, is also dependent on EF-P. However, its reduced amount in the efp mutant can be compensated for by other regulators. These results reveal for the first time a translational bottleneck involving production of the major glucose transporter EIIGlc , which has implications for future strain engineering strategies.
Collapse
Affiliation(s)
- Bruno Pinheiro
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Dimitar Plamenov Petrov
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Lingyun Guo
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | - Marc Bramkamp
- Institute for General Microbiology, Faculty of Mathematics and Natural Sciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Kirsten Jung
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|