1
|
Trigg AE, Sharma P, Grainger DC. Coordination of cell envelope biology by Escherichia coli MarA protein potentiates intrinsic antibiotic resistance. PLoS Genet 2025; 21:e1011639. [PMID: 40324004 PMCID: PMC12052159 DOI: 10.1371/journal.pgen.1011639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/26/2025] [Indexed: 05/07/2025] Open
Abstract
The multiple antibiotic resistance activator (MarA) protein is a transcription factor implicated in control of intrinsic antibiotic resistance in enteric bacterial pathogens. In this work, we screened the Escherichia coli genome computationally for MarA binding sites. By incorporating global maps of transcription initiation, and clustering predicted targets according to gene function, we were able to avoid widespread misidentification of MarA sites, which has hindered prior studies. Subsequent genetic and biochemical analyses identified direct activation of genes for lipopolysaccharide (LPS) biosynthesis and repression of a cell wall remodelling endopeptidase. Rewiring of the MarA regulon, by mutating subsets of MarA binding sites, reveals synergistic interactions between regulatory targets of MarA. Specifically, we show that uncoupling LPS production, or cell wall remodelling, from regulation by MarA, renders cells hypersensitive to mutations altering lipid trafficking by the MlaFEDCB system. Together, our findings demonstrate how MarA co-regulates different aspects of cell envelope biology to maximise antibiotic resistance.
Collapse
Affiliation(s)
- Alexandra E. Trigg
- School of Biosciences, University if Birmingham, Edgbaston, Birmingham, England
| | - Prateek Sharma
- School of Biosciences, University if Birmingham, Edgbaston, Birmingham, England
| | - David C. Grainger
- School of Biosciences, University if Birmingham, Edgbaston, Birmingham, England
| |
Collapse
|
2
|
Cooper C, Legood S, Wheat RL, Forrest D, Sharma P, Haycocks JRJ, Grainger DC. H-NS is a bacterial transposon capture protein. Nat Commun 2024; 15:7137. [PMID: 39164300 PMCID: PMC11335895 DOI: 10.1038/s41467-024-51407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
The histone-like nucleoid structuring (H-NS) protein is a DNA binding factor, found in gammaproteobacteria, with functional equivalents in diverse microbes. Universally, such proteins are understood to silence transcription of horizontally acquired genes. Here, we identify transposon capture as a major overlooked function of H-NS. Using genome-scale approaches, we show that H-NS bound regions are transposition "hotspots". Since H-NS often interacts with pathogenicity islands, such targeting creates clinically relevant phenotypic diversity. For example, in Acinetobacter baumannii, we identify altered motility, biofilm formation, and interactions with the human immune system. Transposon capture is mediated by the DNA bridging activity of H-NS and, if absent, more ubiquitous transposition results. Consequently, transcribed and essential genes are disrupted. Hence, H-NS directs transposition to favour evolutionary outcomes useful for the host cell.
Collapse
Affiliation(s)
- Charles Cooper
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Simon Legood
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Rachel L Wheat
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - David Forrest
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Prateek Sharma
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - David C Grainger
- School of Biosciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
3
|
Siemers M, Lippegaus A, Papenfort K. ChimericFragments: computation, analysis and visualization of global RNA networks. NAR Genom Bioinform 2024; 6:lqae035. [PMID: 38633425 PMCID: PMC11023125 DOI: 10.1093/nargab/lqae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/08/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
RNA-RNA interactions are a key feature of post-transcriptional gene regulation in all domains of life. While ever more experimental protocols are being developed to study RNA duplex formation on a genome-wide scale, computational methods for the analysis and interpretation of the underlying data are lagging behind. Here, we present ChimericFragments, an analysis framework for RNA-seq experiments that produce chimeric RNA molecules. ChimericFragments implements a novel statistical method based on the complementarity of the base-pairing RNAs around their ligation site and provides an interactive graph-based visualization for data exploration and interpretation. ChimericFragments detects true RNA-RNA interactions with high precision and is compatible with several widely used experimental procedures such as RIL-seq, LIGR-seq or CLASH. We further demonstrate that ChimericFragments enables the systematic detection of novel RNA regulators and RNA-target pairs with crucial roles in microbial physiology and virulence. ChimericFragments is written in Julia and available at: https://github.com/maltesie/ChimericFragments.
Collapse
Affiliation(s)
- Malte Siemers
- Friedrich Schiller University, Institute of Microbiology, 07745 Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Anne Lippegaus
- Friedrich Schiller University, Institute of Microbiology, 07745 Jena, Germany
| | - Kai Papenfort
- Friedrich Schiller University, Institute of Microbiology, 07745 Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
4
|
Maha Swetha BR, Saravanan M, Piruthivraj P. Emerging trends in the inhibition of bacterial molecular communication: An overview. Microb Pathog 2024; 186:106495. [PMID: 38070626 DOI: 10.1016/j.micpath.2023.106495] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/02/2024]
Abstract
Quorum sensing (QS) is a molecular cell-cell communication utilized by several bacteria and some fungi. It involves cell density dependent gene expression that includes extra polymeric substance production, sporulation, antibiotic production, motility, competence, symbiosis and conjugation. These expressions were carried out by different signaling molecules like acyl homo-serine lactone (AHL) and auto-inducing peptides (AIPs) which was effluxed by gram negative and gram positive bacteria. Pathogenic bacteria and biofilms often exhibit high resistance to antibiotics, attributed to the presence of antibiotic efflux pumps, reduced membrane permeability, and enzymes that deactivate quorum sensing (QS) inhibitors. To counteract virulence and multi-drug resistance (MDR), novel strategies such as employing quorum sensing (QS) inhibitors and quorum quenchers are employed. It targets signaling molecules with synthesis and prevents the signal from binding to receptors. In this present review, the mechanisms of QS along with inhibitors from different sources are described. These strategies potentially interfere with QS and it can be applied in different fields, mainly in hospitals and marine environments where the pathogenic infections and biofilm formation are highly involved.
Collapse
Affiliation(s)
- B R Maha Swetha
- Department of Biotechnoloy, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - M Saravanan
- Department of Physics, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirapalli, 620 024, Tamil Nadu, India
| | - Prakash Piruthivraj
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha Univerisy, Chennai, 600 077, Tamil Nadu, India; Department of Biotechnoloy, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
5
|
Kwun MJ, Ion AV, Oggioni MR, Bentley S, Croucher N. Diverse regulatory pathways modulate bet hedging of competence induction in epigenetically-differentiated phase variants of Streptococcus pneumoniae. Nucleic Acids Res 2023; 51:10375-10394. [PMID: 37757859 PMCID: PMC10602874 DOI: 10.1093/nar/gkad760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Despite enabling Streptococcus pneumoniae to acquire antibiotic resistance and evade vaccine-induced immunity, transformation occurs at variable rates across pneumococci. Phase variants of isolate RMV7, distinguished by altered methylation patterns driven by the translocating variable restriction-modification (tvr) locus, differed significantly in their transformation efficiencies and biofilm thicknesses. These differences were replicated when the corresponding tvr alleles were introduced into an RMV7 derivative lacking the locus. RNA-seq identified differential expression of the type 1 pilus, causing the variation in biofilm formation, and inhibition of competence induction in the less transformable variant, RMV7domi. This was partly attributable to RMV7domi's lower expression of ManLMN, which promoted competence induction through importing N-acetylglucosamine. This effect was potentiated by analogues of some proteobacterial competence regulatory machinery. Additionally, one of RMV7domi's phage-related chromosomal island was relatively active, which inhibited transformation by increasing expression of the stress response proteins ClpP and HrcA. However, HrcA increased competence induction in the other variant, with its effects depending on Ca2+ supplementation and heat shock. Hence the heterogeneity in transformation efficiency likely reflects the diverse signalling pathways by which it is affected. This regulatory complexity will modulate population-wide responses to synchronising quorum sensing signals to produce co-ordinated yet stochastic bet hedging behaviour.
Collapse
Affiliation(s)
- Min Jung Kwun
- MRC Centre for Global Infectious Disease Analysis, Sir Michael Uren Hub, White City Campus, Imperial College London, London W12 0BZ, UK
| | - Alexandru V Ion
- MRC Centre for Global Infectious Disease Analysis, Sir Michael Uren Hub, White City Campus, Imperial College London, London W12 0BZ, UK
| | - Marco R Oggioni
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Stephen D Bentley
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Sir Michael Uren Hub, White City Campus, Imperial College London, London W12 0BZ, UK
| |
Collapse
|
6
|
Shin J, Rychel K, Palsson BO. Systems biology of competency in Vibrio natriegens is revealed by applying novel data analytics to the transcriptome. Cell Rep 2023; 42:112619. [PMID: 37285268 DOI: 10.1016/j.celrep.2023.112619] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Vibrio natriegens regulates natural competence through the TfoX and QstR transcription factors, which are involved in external DNA capture and transport. However, the extensive genetic and transcriptional regulatory basis for competency remains unknown. We used a machine-learning approach to decompose Vibrio natriegens's transcriptome into 45 groups of independently modulated sets of genes (iModulons). Our findings show that competency is associated with the repression of two housekeeping iModulons (iron metabolism and translation) and the activation of six iModulons; including TfoX and QstR, a novel iModulon of unknown function, and three housekeeping iModulons (representing motility, polycations, and reactive oxygen species [ROS] responses). Phenotypic screening of 83 gene deletion strains demonstrates that loss of iModulon function reduces or eliminates competency. This database-iModulon-discovery cycle unveils the transcriptomic basis for competency and its relationship to housekeeping functions. These results provide the genetic basis for systems biology of competency in this organism.
Collapse
Affiliation(s)
- Jongoh Shin
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Walker LM, Haycocks JR, van Kessel JC, Dalia TN, Dalia AB, Grainger DC. A simple mechanism for integration of quorum sensing and cAMP signalling in V. cholerae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527633. [PMID: 36798193 PMCID: PMC9934648 DOI: 10.1101/2023.02.08.527633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Many bacteria use quorum sensing to control changes in lifestyle. The process is regulated by microbially derived "autoinducer" signalling molecules, that accumulate in the local environment. Individual cells sense autoinducer abundance, to infer population density, and alter their behaviour accordingly. In Vibrio cholerae , quorum sensing signals are transduced by phosphorelay to the transcription factor LuxO. Unphosphorylated LuxO permits expression of HapR, which alters global gene expression patterns. In this work, we have mapped the genome-wide distribution of LuxO and HapR in V. cholerae . Whilst LuxO has a small regulon, HapR targets 32 loci. Many HapR targets coincide with sites for the cAMP receptor protein (CRP) that regulates the transcriptional response to carbon starvation. This overlap, also evident in other Vibrio species, results from similarities in the DNA sequence bound by each factor. At shared sites, HapR and CRP simultaneously contact the double helix and binding is stabilised by direct interaction of the two factors. Importantly, this involves a CRP surface that usually contacts RNA polymerase to stimulate transcription. As a result, HapR can block transcription activation by CRP. Thus, by interacting at shared sites, HapR and CRP integrate information from quorum sensing and cAMP signalling to control gene expression. This likely allows V. cholerae to regulate subsets of genes during the transition between aquatic environments and the human host.
Collapse
Affiliation(s)
- Lucas M. Walker
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | | | | | - Triana N. Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Ankur B. Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - David C. Grainger
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| |
Collapse
|
8
|
Walton MG, Cubillejo I, Nag D, Withey JH. Advances in cholera research: from molecular biology to public health initiatives. Front Microbiol 2023; 14:1178538. [PMID: 37283925 PMCID: PMC10239892 DOI: 10.3389/fmicb.2023.1178538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 06/08/2023] Open
Abstract
The aquatic bacterium Vibrio cholerae is the etiological agent of the diarrheal disease cholera, which has plagued the world for centuries. This pathogen has been the subject of studies in a vast array of fields, from molecular biology to animal models for virulence activity to epidemiological disease transmission modeling. V. cholerae genetics and the activity of virulence genes determine the pathogenic potential of different strains, as well as provide a model for genomic evolution in the natural environment. While animal models for V. cholerae infection have been used for decades, recent advances in this area provide a well-rounded picture of nearly all aspects of V. cholerae interaction with both mammalian and non-mammalian hosts, encompassing colonization dynamics, pathogenesis, immunological responses, and transmission to naïve populations. Microbiome studies have become increasingly common as access and affordability of sequencing has improved, and these studies have revealed key factors in V. cholerae communication and competition with members of the gut microbiota. Despite a wealth of knowledge surrounding V. cholerae, the pathogen remains endemic in numerous countries and causes sporadic outbreaks elsewhere. Public health initiatives aim to prevent cholera outbreaks and provide prompt, effective relief in cases where prevention is not feasible. In this review, we describe recent advancements in cholera research in these areas to provide a more complete illustration of V. cholerae evolution as a microbe and significant global health threat, as well as how researchers are working to improve understanding and minimize impact of this pathogen on vulnerable populations.
Collapse
Affiliation(s)
| | | | | | - Jeffrey H. Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
9
|
Silpe JE, Duddy OP, Papenfort K. Microbial Communication via Pyrazine Signaling: a New Class of Signaling Molecules Identified in
Vibrio cholerae. Isr J Chem 2022. [DOI: 10.1002/ijch.202200063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Justin E. Silpe
- Department of Molecular Biology Princeton University Princeton New Jersey USA
| | - Olivia P. Duddy
- Department of Molecular Biology Princeton University Princeton New Jersey USA
| | - Kai Papenfort
- Friedrich Schiller University Jena Institute of Microbiology, General Microbiology Winzerlaer Straße 2 07745 Jena Germany
- Microverse Cluster Friedrich Schiller University Jena Jena Germany
| |
Collapse
|
10
|
Bridges AA, Prentice JA, Wingreen NS, Bassler BL. Signal Transduction Network Principles Underlying Bacterial Collective Behaviors. Annu Rev Microbiol 2022; 76:235-257. [PMID: 35609948 PMCID: PMC9463083 DOI: 10.1146/annurev-micro-042922-122020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria orchestrate collective behaviors and accomplish feats that would be unsuccessful if carried out by a lone bacterium. Processes undertaken by groups of bacteria include bioluminescence, biofilm formation, virulence factor production, and release of public goods that are shared by the community. Collective behaviors are controlled by signal transduction networks that integrate sensory information and transduce the information internally. Here, we discuss network features and mechanisms that, even in the face of dramatically changing environments, drive precise execution of bacterial group behaviors. We focus on representative quorum-sensing and second-messenger cyclic dimeric GMP (c-di-GMP) signal relays. We highlight ligand specificity versus sensitivity, how small-molecule ligands drive discrimination of kin versus nonkin, signal integration mechanisms, single-input sensory systems versus coincidence detectors, and tuning of input-output dynamics via feedback regulation. We summarize how different features of signal transduction systems allow groups of bacteria to successfully interpret and collectively react to dynamically changing environments.
Collapse
Affiliation(s)
- Andrew A Bridges
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , , ,
| | - Jojo A Prentice
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , , ,
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , , ,
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , , ,
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
11
|
Expression of the AHPND Toxins PirA vp and PirB vp Is Regulated by Components of the Vibrio parahaemolyticus Quorum Sensing (QS) System. Int J Mol Sci 2022; 23:ijms23052889. [PMID: 35270031 PMCID: PMC8911003 DOI: 10.3390/ijms23052889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 12/20/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) in shrimp is caused by Vibrio strains that harbor a pVA1-like plasmid containing the pirA and pirB genes. It is also known that the production of the PirA and PirB proteins, which are the key factors that drive the observed symptoms of AHPND, can be influenced by environmental conditions and that this leads to changes in the virulence of the bacteria. However, to our knowledge, the mechanisms involved in regulating the expression of the pirA/pirB genes have not previously been investigated. In this study, we show that in the AHPND-causing Vibrio parahaemolyticus 3HP strain, the pirAvp and pirBvp genes are highly expressed in the early log phase of the growth curve. Subsequently, the expression of the PirAvp and PirBvp proteins continues throughout the log phase. When we compared mutant strains with a deletion or substitution in two of the quorum sensing (QS) master regulators, luxO and/or opaR (luxOD47E, ΔopaR, ΔluxO, and ΔopaRΔluxO), our results suggested that expression of the pirAvp and pirBvp genes was related to the QS system, with luxO acting as a negative regulator of pirAvp and pirBvp without any mediation by opaRvp. In the promoter region of the pirAvp/pirBvp operon, we also identified a putative consensus binding site for the QS transcriptional regulator AphB. Real-time PCR further showed that aphBvp was negatively controlled by LuxOvp, and that its expression paralleled the expression patterns of pirAvp and pirBvp. An electrophoretic mobility shift assay (EMSA) showed that AphBvp could bind to this predicted region, even though another QS transcriptional regulator, AphAvp, could not. Taken together, these findings suggest that the QS system may regulate pirAvp/pirBvp expression through AphBvp.
Collapse
|
12
|
Guest T, Haycocks JRJ, Warren GZL, Grainger DC. Genome-wide mapping of Vibrio cholerae VpsT binding identifies a mechanism for c-di-GMP homeostasis. Nucleic Acids Res 2021; 50:149-159. [PMID: 34908143 PMCID: PMC8754643 DOI: 10.1093/nar/gkab1194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Many bacteria use cyclic dimeric guanosine monophosphate (c-di-GMP) to control changes in lifestyle. The molecule, synthesized by proteins having diguanylate cyclase activity, is often a signal to transition from motile to sedentary behaviour. In Vibrio cholerae, c-di-GMP can exert its effects via the transcription factors VpsT and VpsR. Together, these proteins activate genes needed for V. cholerae to form biofilms. In this work, we have mapped the genome-wide distribution of VpsT in a search for further regulatory roles. We show that VpsT binds 23 loci and recognises a degenerate DNA palindrome having the consensus 5'-W-5R-4[CG]-3Y-2W-1W+1R+2[GC]+3Y+4W+5-3'. Most genes targeted by VpsT encode functions related to motility, biofilm formation, or c-di-GMP metabolism. Most notably, VpsT activates expression of the vpvABC operon that encodes a diguanylate cyclase. This creates a positive feedback loop needed to maintain intracellular levels of c-di-GMP. Mutation of the key VpsT binding site, upstream of vpvABC, severs the loop and c-di-GMP levels fall accordingly. Hence, as well as relaying the c-di-GMP signal, VpsT impacts c-di-GMP homeostasis.
Collapse
Affiliation(s)
- Thomas Guest
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - James R J Haycocks
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gemma Z L Warren
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - David C Grainger
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
13
|
Interplay between Sublethal Aminoglycosides and Quorum Sensing: Consequences on Survival in V. cholerae. Cells 2021; 10:cells10113227. [PMID: 34831448 PMCID: PMC8621022 DOI: 10.3390/cells10113227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Antibiotics are well known drugs which, when present above certain concentrations, are able to inhibit the growth of certain bacteria. However, a growing body of evidence shows that even when present at lower doses (subMIC, for sub-minimal inhibitory concentration), unable to inhibit or affect microbial growth, antibiotics work as signaling molecules, affect gene expression and trigger important bacterial stress responses. However, how subMIC antibiotic signaling interplays with other well-known signaling networks in bacteria (and the consequences of such interplay) is not well understood. In this work, through transcriptomic and genetic approaches, we have explored how quorum-sensing (QS) proficiency of V. cholerae affects this pathogen’s response to subMIC doses of the aminoglycoside tobramycin (TOB). We show that the transcriptomic signature of V. cholerae in response to subMIC TOB depends highly on the presence of QS master regulator HapR. In parallel, we show that subMIC doses of TOB are able to negatively interfere with the AI-2/LuxS QS network of V. cholerae, which seems critical for survival to aminoglycoside treatment and TOB-mediated induction of SOS response in this species. This interplay between QS and aminoglycosides suggests that targeting QS signaling may be a strategy to enhance aminoglycoside efficacy in V. cholerae.
Collapse
|
14
|
Tahir Ul Qamar M, Ahmad S, Khan A, Mirza MU, Ahmad S, Abro A, Chen LL, Almatroudi A, Wei DQ. Structural probing of HapR to identify potent phytochemicals to control Vibrio cholera through integrated computational approaches. Comput Biol Med 2021; 138:104929. [PMID: 34655900 DOI: 10.1016/j.compbiomed.2021.104929] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 01/01/2023]
Abstract
Cholera is a severe small intestine bacterial disease caused by consumption of water and food contaminated with Vibrio cholera. The disease causes watery diarrhea leading to severe dehydration and even death if left untreated. In the past few decades, V. cholerae has emerged as multidrug-resistant enteric pathogen due to its rapid ability to adapt in detrimental environmental conditions. This research study aimed to design inhibitors of a master virulence gene expression regulator, HapR. HapR is critical in regulating the expression of several set of V. cholera virulence genes, quorum-sensing circuits and biofilm formation. A blind docking strategy was employed to infer the natural binding tendency of diverse phytochemicals extracted from medicinal plants by exposing the whole HapR structure to the screening library. Scoring function criteria was applied to prioritize molecules with strong binding affinity (binding energy < -11 kcal/mol) and as such two compounds: Strychnogucine A and Galluflavanone were filtered. Both the compounds were found favourably binding to the conserved dimerization interface of HapR. One rare binding conformation of Strychnogucine A was noticed docked at the elongated cavity formed by α1, α4 and α6 (binding energy of -12.5 kcal/mol). The binding stability of both top leads at dimer interface and elongated cavity was further estimated using long run of molecular dynamics simulations, followed by MMGB/PBSA binding free energy calculations to define the dominance of different binding energies. In a nutshell, this study presents computational evidence on antibacterial potential of phytochemicals capable of directly targeting bacterial virulence and highlight their great capacity to be utilized in the future experimental studies to stop the evolution of antibiotic resistance evolution.
Collapse
Affiliation(s)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| | - Sarfraz Ahmad
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Asma Abro
- Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology Engineering and Management Sciences, Quetta, Pakistan
| | - Ling-Ling Chen
- College of Life Science and Technology, Guangxi University, Nanning, PR China.
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
15
|
Carvalho A, Mazel D, Baharoglu Z. Deficiency in cytosine DNA methylation leads to high chaperonin expression and tolerance to aminoglycosides in Vibrio cholerae. PLoS Genet 2021; 17:e1009748. [PMID: 34669693 PMCID: PMC8559950 DOI: 10.1371/journal.pgen.1009748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/01/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Antibiotic resistance has become a major global issue. Understanding the molecular mechanisms underlying microbial adaptation to antibiotics is of keen importance to fight Antimicrobial Resistance (AMR). Aminoglycosides are a class of antibiotics that target the small subunit of the bacterial ribosome, disrupting translational fidelity and increasing the levels of misfolded proteins in the cell. In this work, we investigated the role of VchM, a DNA methyltransferase, in the response of the human pathogen Vibrio cholerae to aminoglycosides. VchM is a V. cholerae specific orphan m5C DNA methyltransferase that generates cytosine methylation at 5'-RCCGGY-3' motifs. We show that deletion of vchM, although causing a growth defect in absence of stress, allows V. cholerae cells to cope with aminoglycoside stress at both sub-lethal and lethal concentrations of these antibiotics. Through transcriptomic and genetic approaches, we show that groESL-2 (a specific set of chaperonin-encoding genes located on the second chromosome of V. cholerae), are upregulated in cells lacking vchM and are needed for the tolerance of vchM mutant to lethal aminoglycoside treatment, likely by fighting aminoglycoside-induced misfolded proteins. Interestingly, preventing VchM methylation of the four RCCGGY sites located in groESL-2 region, leads to a higher expression of these genes in WT cells, showing that the expression of these chaperonins is modulated in V. cholerae by DNA methylation.
Collapse
Affiliation(s)
- André Carvalho
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Didier Mazel
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, Paris, France
| | - Zeynep Baharoglu
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, Paris, France
| |
Collapse
|
16
|
Widespread divergent transcription from bacterial and archaeal promoters is a consequence of DNA-sequence symmetry. Nat Microbiol 2021; 6:746-756. [PMID: 33958766 PMCID: PMC7612053 DOI: 10.1038/s41564-021-00898-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 03/25/2021] [Indexed: 02/03/2023]
Abstract
Transcription initiates at promoters, DNA regions recognized by a DNA-dependent RNA polymerase. We previously identified horizontally acquired Escherichia coli promoters from which the direction of transcription was unclear. In the present study, we show that more than half of these promoters are bidirectional and drive divergent transcription. Using genome-scale approaches, we demonstrate that 19% of all transcription start sites detected in E. coli are associated with a bidirectional promoter. Bidirectional promoters are similarly common in diverse bacteria and archaea, and have inherent symmetry: specific bases required for transcription initiation are reciprocally co-located on opposite DNA strands. Bidirectional promoters enable co-regulation of divergent genes and are enriched in both intergenic and horizontally acquired regions. Divergent transcription is conserved among bacteria, archaea and eukaryotes, but the underlying mechanisms for bidirectionality are different.
Collapse
|
17
|
Mould DL, Hogan DA. Intraspecies heterogeneity in microbial interactions. Curr Opin Microbiol 2021; 62:14-20. [PMID: 34034081 DOI: 10.1016/j.mib.2021.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/18/2022]
Abstract
Microbial interactions are increasingly recognized as an integral part of microbial physiology. Cell-cell communication mediated by quorum sensing and metabolite exchange is a formative element of microbial interactions. However, loss-of-function mutations in quorum-sensing components are common across diverse species. Furthermore, quorum sensing is modulated by small molecules and environmental conditions that may be altered in the presence of other microbial species. Recent evidence highlights how strain heterogeneity impacts microbial interactions. There is great potential for microbial interactions to act as selective pressures that influence the emergence of common mutations in quorum-sensing genes across the bacterial and fungal domains.
Collapse
Affiliation(s)
- Dallas L Mould
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Deborah A Hogan
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
18
|
Wallace MJ, Fishbein SRS, Dantas G. Antimicrobial resistance in enteric bacteria: current state and next-generation solutions. Gut Microbes 2020; 12:1799654. [PMID: 32772817 PMCID: PMC7524338 DOI: 10.1080/19490976.2020.1799654] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 02/03/2023] Open
Abstract
Antimicrobial resistance is one of the largest threats to global health and imposes substantial burdens in terms of morbidity, mortality, and economic costs. The gut is a key conduit for the genesis and spread of antimicrobial resistance in enteric bacterial pathogens. Distinct bacterial species that cause enteric disease can exist as invasive enteropathogens that immediately evoke gastrointestinal distress, or pathobionts that can arise from established bacterial commensals to inflict dysbiosis and disease. Furthermore, various environmental reservoirs and stressors facilitate the evolution and transmission of resistance. In this review, we present a comprehensive discussion on circulating resistance profiles and gene mobilization strategies of the most problematic species of enteric bacterial pathogens. Importantly, we present emerging approaches toward surveillance of pathogens and their resistance elements as well as promising treatment strategies that can circumvent common resistance mechanisms.
Collapse
Affiliation(s)
- M. J. Wallace
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - S. R. S. Fishbein
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - G. Dantas
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
19
|
Kumar A, Das B, Kumar N. Vibrio Pathogenicity Island-1: The Master Determinant of Cholera Pathogenesis. Front Cell Infect Microbiol 2020; 10:561296. [PMID: 33123494 PMCID: PMC7574455 DOI: 10.3389/fcimb.2020.561296] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/11/2020] [Indexed: 11/13/2022] Open
Abstract
Cholera is an acute secretory diarrhoeal disease caused by the bacterium Vibrio cholerae. The key determinants of cholera pathogenicity, cholera toxin (CT), and toxin co-regulated pilus (TCP) are part of the genome of two horizontally acquired Mobile Genetic Elements (MGEs), CTXΦ, and Vibrio pathogenicity island 1 (VPI-1), respectively. Besides, V. cholerae genome harbors several others MGEs that provide antimicrobial resistance, metabolic functions, and other fitness traits. VPI-1, one of the most well characterized genomic island (GI), deserved a special attention, because (i) it encodes many of the virulence factors that facilitate development of cholera (ii) it is essential for the acquisition of CTXΦ and production of CT, and (iii) it is crucial for colonization of V. cholerae in the host intestine. Nevertheless, VPI-1 is ubiquitously present in all the epidemic V. cholerae strains. Therefore, to understand the role of MGEs in the evolution of cholera pathogen from a natural aquatic habitat, it is important to understand the VPI-1 encoded functions, their acquisition and possible mode of dissemination. In this review, we have therefore discussed our present understanding of the different functions of VPI-1 those are associated with virulence, important for toxin production and essential for the disease development.
Collapse
Affiliation(s)
- Ashok Kumar
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| | - Niraj Kumar
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
20
|
Abstract
Cholera is a devastating illness that kills tens of thousands of people annually. Vibrio cholerae, the causative agent of cholera, is an important model organism to investigate both bacterial pathogenesis and the impact of horizontal gene transfer on the emergence and dissemination of new virulent strains. Despite the importance of this pathogen, roughly one-third of V. cholerae genes are functionally unannotated, leaving large gaps in our understanding of this microbe. Through coexpression network analysis of existing RNA sequencing data, this work develops an approach to uncover novel gene-gene relationships and contextualize genes with no known function, which will advance our understanding of V. cholerae virulence and evolution. Research into the evolution and pathogenesis of Vibrio cholerae has benefited greatly from the generation of high-throughput sequencing data to drive molecular analyses. The steady accumulation of these data sets now provides a unique opportunity for in silico hypothesis generation via coexpression analysis. Here, we leverage all published V. cholerae RNA sequencing data, in combination with select data from other platforms, to generate a gene coexpression network that validates known gene interactions and identifies novel genetic partners across the entire V. cholerae genome. This network provides direct insights into genes influencing pathogenicity, metabolism, and transcriptional regulation, further clarifies results from previous sequencing experiments in V. cholerae (e.g., transposon insertion sequencing [Tn-seq] and chromatin immunoprecipitation sequencing [ChIP-seq]), and expands upon microarray-based findings in related Gram-negative bacteria. IMPORTANCE Cholera is a devastating illness that kills tens of thousands of people annually. Vibrio cholerae, the causative agent of cholera, is an important model organism to investigate both bacterial pathogenesis and the impact of horizontal gene transfer on the emergence and dissemination of new virulent strains. Despite the importance of this pathogen, roughly one-third of V. cholerae genes are functionally unannotated, leaving large gaps in our understanding of this microbe. Through coexpression network analysis of existing RNA sequencing data, this work develops an approach to uncover novel gene-gene relationships and contextualize genes with no known function, which will advance our understanding of V. cholerae virulence and evolution.
Collapse
|
21
|
Huang Z, Yu K, Fang Y, Dai H, Cai H, Li Z, Kan B, Wei Q, Wang D. Comparative Genomics and Transcriptomics Analyses Reveal a Unique Environmental Adaptability of Vibrio fujianensis. Microorganisms 2020; 8:microorganisms8040555. [PMID: 32294952 PMCID: PMC7232310 DOI: 10.3390/microorganisms8040555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
The genus Vibrio is ubiquitous in marine environments and uses numerous evolutionary characteristics and survival strategies in order to occupy its niche. Here, a newly identified species, Vibrio fujianensis, was deeply explored to reveal a unique environmental adaptability. V. fujianensis type strain FJ201301T shared 817 core genes with the Vibrio species in the population genomic analysis, but possessed unique genes of its own. In addition, V. fujianensis FJ201301T was predicated to carry 106 virulence-related factors, several of which were mostly found in other pathogenic Vibrio species. Moreover, a comparative transcriptome analysis between the low-salt (1% NaCl) and high-salt (8% NaCl) condition was conducted to identify the genes involved in salt tolerance. A total of 913 unigenes were found to be differentially expressed. In a high-salt condition, 577 genes were significantly upregulated, whereas 336 unigenes were significantly downregulated. Notably, differentially expressed genes have a significant association with ribosome structural component and ribosome metabolism, which may play a role in salt tolerance. Transcriptional changes in ribosome genes indicate that V. fujianensis may have gained a predominant advantage in order to adapt to the changing environment. In conclusion, to survive in adversity, V. fujianensis has enhanced its environmental adaptability and developed various strategies to fill its niche.
Collapse
Affiliation(s)
- Zhenzhou Huang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
| | - Keyi Yu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
| | - Yujie Fang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Hang Dai
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
| | - Hongyan Cai
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
| | - Zhenpeng Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
| | - Qiang Wei
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
- Office of Laboratory Management, China CDC, Beijing 102206, China
- Correspondence: (Q.W.); (D.W.)
| | - Duochun Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
- Correspondence: (Q.W.); (D.W.)
| |
Collapse
|
22
|
O'Boyle N, Turner NCA, Roe AJ, Connolly JPR. Plastic Circuits: Regulatory Flexibility in Fine Tuning Pathogen Success. Trends Microbiol 2020; 28:360-371. [PMID: 32298614 DOI: 10.1016/j.tim.2020.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/30/2022]
Abstract
Bacterial pathogens employ diverse fitness and virulence mechanisms to gain an advantage in competitive niches. These lifestyle-specific traits require integration into the regulatory network of the cell and are often controlled by pre-existing transcription factors. In this review, we highlight recent advances that have been made in characterizing this regulatory flexibility in prominent members of the Enterobacteriaceae. We focus on the direct global interactions between transcription factors and their target genes in pathogenic Escherichia coli and Salmonella revealed using chromatin immunoprecipitation coupled with next-generation sequencing. Furthermore, the implications and advantages of such regulatory adaptations in benefiting distinct pathogenic lifestyles are discussed.
Collapse
Affiliation(s)
- Nicky O'Boyle
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Natasha C A Turner
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Andrew J Roe
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK.
| | - James P R Connolly
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK.
| |
Collapse
|