1
|
Karbstein K, Kösters L, Hodač L, Hofmann M, Hörandl E, Tomasello S, Wagner ND, Emerson BC, Albach DC, Scheu S, Bradler S, de Vries J, Irisarri I, Li H, Soltis P, Mäder P, Wäldchen J. Species delimitation 4.0: integrative taxonomy meets artificial intelligence. Trends Ecol Evol 2024; 39:771-784. [PMID: 38849221 DOI: 10.1016/j.tree.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 06/09/2024]
Abstract
Although species are central units for biological research, recent findings in genomics are raising awareness that what we call species can be ill-founded entities due to solely morphology-based, regional species descriptions. This particularly applies to groups characterized by intricate evolutionary processes such as hybridization, polyploidy, or asexuality. Here, challenges of current integrative taxonomy (genetics/genomics + morphology + ecology, etc.) become apparent: different favored species concepts, lack of universal characters/markers, missing appropriate analytical tools for intricate evolutionary processes, and highly subjective ranking and fusion of datasets. Now, integrative taxonomy combined with artificial intelligence under a unified species concept can enable automated feature learning and data integration, and thus reduce subjectivity in species delimitation. This approach will likely accelerate revising and unraveling eukaryotic biodiversity.
Collapse
Affiliation(s)
- Kevin Karbstein
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany.
| | - Lara Kösters
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany
| | - Ladislav Hodač
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany
| | - Martin Hofmann
- Technical University of Ilmenau, Institute for Computer and Systems Engineering, 98693 Ilmenau, Germany
| | - Elvira Hörandl
- University of Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), 37073 Göttingen, Germany
| | - Salvatore Tomasello
- University of Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), 37073 Göttingen, Germany
| | - Natascha D Wagner
- University of Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), 37073 Göttingen, Germany
| | - Brent C Emerson
- Institute of Natural Products and Agrobiology (IPNA-CSIC), Island Ecology and Evolution Research Group, 38206 La Laguna, Tenerife, Canary Islands, Spain
| | - Dirk C Albach
- Carl von Ossietzky-Universität Oldenburg, Institute of Biology and Environmental Science, 26129 Oldenburg, Germany
| | - Stefan Scheu
- University of Göttingen, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, 37073 Göttingen, Germany; University of Göttingen, Centre of Biodiversity and Sustainable Land Use (CBL), 37073 Göttingen, Germany
| | - Sven Bradler
- University of Göttingen, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, 37073 Göttingen, Germany
| | - Jan de Vries
- University of Göttingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, 37077 Göttingen, Germany; University of Göttingen, Campus Institute Data Science (CIDAS), 37077 Göttingen, Germany; University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, 37077 Göttingen, Germany
| | - Iker Irisarri
- Leibniz Institute for the Analysis of Biodiversity Change (LIB), Centre for Molecular Biodiversity Research, Phylogenomics Section, Museum of Nature, 20146 Hamburg, Germany
| | - He Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Chenshan Botanical Garden, 201602 Shanghai, China
| | - Pamela Soltis
- University of Florida, Florida Museum of Natural History, 32611 Gainesville, USA
| | - Patrick Mäder
- Technical University of Ilmenau, Institute for Computer and Systems Engineering, 98693 Ilmenau, Germany; German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Friedrich Schiller University Jena, Faculty of Biological Sciences, Institute of Ecology and Evolution, Philosophenweg 16, 07743 Jena, Germany
| | - Jana Wäldchen
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Fyon F, Berbel-Filho WM, Schlupp I, Wild G, Úbeda F. Why do hybrids turn down sex? Evolution 2023; 77:2186-2199. [PMID: 37459230 DOI: 10.1093/evolut/qpad129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 10/05/2023]
Abstract
Asexual reproduction is ancestral in prokaryotes; the switch to sexuality in eukaryotes is one of the major transitions in the history of life. The study of the maintenance of sex in eukaryotes has raised considerable interest for decades and is still one of evolutionary biology's most prominent question. The observation that many asexual species are of hybrid origin has led some to propose that asexuality in hybrids results from sexual processes being disturbed because of incompatibilities between the two parental species' genomes. However, in some cases, failure to produce asexual F1s in the lab may indicate that this mechanism is not the only road to asexuality in hybrid species. Here, we present a mathematical model and propose an alternative, adaptive route for the evolution of asexuality from previously sexual hybrids. Under some reproductive alterations, we show that asexuality can evolve to rescue hybrids' reproduction. Importantly, we highlight that when incompatibilities only affect the fusion of sperm and egg's genomes, the two traits that characterize asexuality, namely unreduced meiosis and the initiation of embryogenesis without the incorporation of the sperm's pronucleus, can evolve separately, greatly facilitating the overall evolutionary route. Taken together, our results provide an alternative, potentially complementary explanation for the link between asexuality and hybridization.
Collapse
Affiliation(s)
- Frédéric Fyon
- Department of Biology, Royal Holloway University of London, Egham, United Kingdom
| | | | - Ingo Schlupp
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Geoff Wild
- Department of Applied Mathematics, University of Western Ontario, London, ON, Canada
| | - Francisco Úbeda
- Department of Biology, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
3
|
Lu M, Li Z, Zhu ZY, Peng F, Wang Y, Li XY, Wang ZW, Zhang XJ, Zhou L, Gui JF. Changes in Ploidy Drive Reproduction Transition and Genomic Diversity in a Polyploid Fish Complex. Mol Biol Evol 2022; 39:msac188. [PMID: 36056821 PMCID: PMC9486886 DOI: 10.1093/molbev/msac188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Unisexual animals are commonly found in some polyploid species complexes, and most of these species have had a long evolutionary history. However, their method for avoiding genomic decay remains unclear. The polyploid Carassius complex naturally comprises the sexual amphidiploid C. auratus (crucian carp or goldfish) (AABB) and the gynogenetic amphitriploid C. gibelio (gibel carp) (AAABBB). Recently, we developed a fertile synthetic amphitetraploid (AAAABBBB) male from C. gibelio by incorporating a C. auratus genome. In this study, we generated novel amphitriploids (AAABBB) by backcrossing the amphitetraploid male with the amphidiploid C. auratus. Whole-genome resequencing revealed the genomic changes, including recombination and independent assortment between homologs of C. gibelio and C. auratus. The fertility, sex determination system, oocyte development, and fertilization behaviors of the novel amphitriploids were investigated. Approximately 80% of the novel amphitriploid females recovered the unisexual gynogenesis ability. Intriguingly, two types of primary oocyte (with and without homolog synapsis) were discovered, and their distinct development fates were observed. Type I oocytes entered apoptosis due to improper synaptonemal complex assembly and incomplete double-strand break repair, whereas subsequent type II oocytes bypassed meiosis through an alternative ameiotic pathway to develop into mature eggs. Moreover, gynogenesis was stabilized in their offspring, and a new array of diverse gynogenetic amphitriploid clones was produced. These revealed genomic changes and detailed cytological data provide comprehensive evidence that changes in ploidy drive unisexual and sexual reproduction transition, thereby resulting in genomic diversity and allowing C. gibelio avoid genomic decay.
Collapse
Affiliation(s)
- Meng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Yu Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Velazco-Cruz L, Ross JA. Genetic architecture and temporal analysis of Caenorhabditis briggsae hybrid developmental delay. PLoS One 2022; 17:e0272843. [PMID: 35951524 PMCID: PMC9371335 DOI: 10.1371/journal.pone.0272843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
Identifying the alleles that reduce hybrid fitness is a major goal in the study of speciation genetics. It is rare to identify systems in which hybrid incompatibilities with minor phenotypic effects are segregating in genetically diverse populations of the same biological species. Such traits do not themselves cause reproductive isolation but might initiate the process. In the nematode Caenorhabditis briggsae, a small percent of F2 generation hybrids between two natural populations suffer from developmental delay, in which adulthood is reached after approximately 33% more time than their wild-type siblings. Prior efforts to identify the genetic basis for this hybrid incompatibility assessed linkage using one or two genetic markers on chromosome III and suggested that delay is caused by a toxin-antidote element. Here, we have genotyped F2 hybrids using multiple chromosome III markers to refine the developmental delay locus. Also, to better define the developmental delay phenotype, we measured the development rate of 66 F2 hybrids and found that delay is not restricted to a particular larval developmental stage. Deviation of the developmental delay frequency from hypothetical expectations for a toxin-antidote element adds support to the assertion that the epistatic interaction is not fully penetrant. Our mapping and refinement of the delay phenotype motivates future efforts to study the genetic architecture of hybrid dysfunction between genetically distinct populations of one species by identifying the underlying loci.
Collapse
Affiliation(s)
- Leonardo Velazco-Cruz
- Department of Biology, California State University, Fresno, California, United States of America
| | - Joseph A. Ross
- Department of Biology, California State University, Fresno, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Freitas S, Westram AM, Schwander T, Arakelyan M, Ilgaz Ç, Kumlutas Y, Harris DJ, Carretero MA, Butlin RK. Parthenogenesis in Darevskia lizards: A rare outcome of common hybridization, not a common outcome of rare hybridization. Evolution 2022; 76:899-914. [PMID: 35323995 PMCID: PMC9324800 DOI: 10.1111/evo.14462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hybridization is a common evolutionary process with multiple possible outcomes. In vertebrates, interspecific hybridization has repeatedly generated parthenogenetic hybrid species. However, it is unknown whether the generation of parthenogenetic hybrids is a rare outcome of frequent hybridization between sexual species within a genus or the typical outcome of rare hybridization events. Darevskia is a genus of rock lizards with both hybrid parthenogenetic and sexual species. Using capture sequencing, we estimate phylogenetic relationships and gene flow among the sexual species, to determine how introgressive hybridization relates to the origins of parthenogenetic hybrids. We find evidence for widespread hybridization with gene flow, both between recently diverged species and deep branches. Surprisingly, we find no signal of gene flow between parental species of the parthenogenetic hybrids, suggesting that the parental pairs were either reproductively or geographically isolated early in their divergence. The generation of parthenogenetic hybrids in Darevskia is, then, a rare outcome of the total occurrence of hybridization within the genus, but the typical outcome when specific species pairs hybridize. Our results question the conventional view that parthenogenetic lineages are generated by hybridization in a window of divergence. Instead, they suggest that some lineages possess specific properties that underpin successful parthenogenetic reproduction.
Collapse
Affiliation(s)
- Susana Freitas
- Department of Ecology and EvolutionUniversity of LausanneLausanneCH‐1015Switzerland
| | - Anja Marie Westram
- IST AustriaKlosterneuburg3400Austria,Faculty of Biosciences and AquacultureNord UniversityBodøN‐8049Norway
| | - Tanja Schwander
- Department of Ecology and EvolutionUniversity of LausanneLausanneCH‐1015Switzerland
| | | | - Çetin Ilgaz
- Department of Biology, Faculty of ScienceDokuz Eylül Universityİzmir35400Turkey,Fauna and Flora Research CentreDokuz Eylül Universityİzmir35610Turkey
| | - Yusuf Kumlutas
- Department of Biology, Faculty of ScienceDokuz Eylül Universityİzmir35400Turkey,Fauna and Flora Research CentreDokuz Eylül Universityİzmir35610Turkey
| | - David James Harris
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIOUniversidade do PortoCampus de VairãoVairão4485–661Portugal
| | - Miguel A. Carretero
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIOUniversidade do PortoCampus de VairãoVairão4485–661Portugal,Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPorto4169‐007Portugal
| | - Roger K. Butlin
- Department of Animal and Plant SciencesThe University of SheffieldSheffieldS10 2TNUnited Kingdom,Department of Marine SciencesUniversity of GothenburgGothenburgSE‐40530Sweden
| |
Collapse
|
6
|
HODDA M. Phylum Nematoda: trends in species descriptions, the documentation of diversity, systematics, and the species concept. Zootaxa 2022; 5114:290-317. [DOI: 10.11646/zootaxa.5114.1.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 11/04/2022]
Abstract
This paper summarizes the trends in nematode species description and systematics emerging from a comparison of the latest comprehensive classification and census of Phylum Nematoda (Hodda 2022a, b) with earlier classifications (listed in Hodda 2007). It also offers some general observations on trends in nematode systematics emerging from the review of the voluminous literature used to produce the classification. The trends in nematodes can be compared with developments in the systematics of other organisms to shed light on many of the general issues confronting systematists now and into the future.
Collapse
|
7
|
Ye Z, Jiang X, Pfrender ME, Lynch M. Genome-Wide Allele-Specific Expression in Obligately Asexual Daphnia pulex and the Implications for the Genetic Basis of Asexuality. Genome Biol Evol 2021; 13:6415829. [PMID: 34726699 PMCID: PMC8598174 DOI: 10.1093/gbe/evab243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2021] [Indexed: 01/17/2023] Open
Abstract
Although obligately asexual lineages are thought to experience selective disadvantages associated with reduced efficiency of fixing beneficial mutations and purging deleterious mutations, such lineages are phylogenetically and geographically widespread. However, despite several genome-wide association studies, little is known about the genetic elements underlying the origin of obligate asexuality and how they spread. Because many obligately asexual lineages have hybrid origins, it has been suggested that asexuality is caused by the unbalanced expression of alleles from the hybridizing species. Here, we investigate this idea by identifying genes with allele-specific expression (ASE) in a Daphnia pulex population, in which obligate parthenogens (OP) and cyclical parthenogens (CP) coexist, with the OP clones having been originally derived from hybridization between CP D. pulex and its sister species, Daphnia pulicaria. OP D. pulex have significantly more ASE genes (ASEGs) than do CP D. pulex. Whole-genomic comparison of OP and CP clones revealed ∼15,000 OP-specific markers and 42 consistent ASEGs enriched in marker-defined regions. Ten of the 42 ASEGs have alleles coding for different protein sequences, suggesting functional differences between the products of the two parental alleles. At least three of these ten genes appear to be directly involved in meiosis-related processes, for example, RanBP2 can cause abnormal chromosome segregation in anaphase I, and the presence of Wee1 in immature oocytes leads to failure to enter meiosis II. These results provide a guide for future molecular resolution of the genetic basis of the transition to ameiotic parthenogenesis.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona
| | | | - Michael E Pfrender
- Department of Biological Sciences and Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana
| | - Michael Lynch
- Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona
| |
Collapse
|
8
|
Van Goor J, Shakes DC, Haag ES. Fisher vs. the Worms: Extraordinary Sex Ratios in Nematodes and the Mechanisms that Produce Them. Cells 2021; 10:1793. [PMID: 34359962 PMCID: PMC8303164 DOI: 10.3390/cells10071793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 01/20/2023] Open
Abstract
Parker, Baker, and Smith provided the first robust theory explaining why anisogamy evolves in parallel in multicellular organisms. Anisogamy sets the stage for the emergence of separate sexes, and for another phenomenon with which Parker is associated: sperm competition. In outcrossing taxa with separate sexes, Fisher proposed that the sex ratio will tend towards unity in large, randomly mating populations due to a fitness advantage that accrues in individuals of the rarer sex. This creates a vast excess of sperm over that required to fertilize all available eggs, and intense competition as a result. However, small, inbred populations can experience selection for skewed sex ratios. This is widely appreciated in haplodiploid organisms, in which females can control the sex ratio behaviorally. In this review, we discuss recent research in nematodes that has characterized the mechanisms underlying highly skewed sex ratios in fully diploid systems. These include self-fertile hermaphroditism and the adaptive elimination of sperm competition factors, facultative parthenogenesis, non-Mendelian meiotic oddities involving the sex chromosomes, and environmental sex determination. By connecting sex ratio evolution and sperm biology in surprising ways, these phenomena link two "seminal" contributions of G. A. Parker.
Collapse
Affiliation(s)
- Justin Van Goor
- Department of Biology, University of Maryland, College Park, MD 20742, USA;
| | - Diane C. Shakes
- Department of Biology, William and Mary, Williamsburg, VA 23187, USA;
| | - Eric S. Haag
- Department of Biology, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|