1
|
van den Dolder FW, Dinani R, Warnaar VAJ, Vučković S, Passadouro AS, Nassar AA, Ramsaroep AX, Burchell GB, Schoonmade LJ, van der Velden J, Goversen B. Experimental Models of Hypertrophic Cardiomyopathy: A Systematic Review. JACC Basic Transl Sci 2025; 10:511-546. [PMID: 40306862 DOI: 10.1016/j.jacbts.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 05/02/2025]
Abstract
To advance research in hypertrophic cardiomyopathy (HCM), and guide researchers in choosing the optimal model to answer their research questions, we performed a systematic review of all models investigating HCM induced by gene variants ranging from animal models to human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Our research question entailed: which experimental models of HCM have been created thus far, and which major hallmarks of HCM do they present? Out of the 603 included papers, the majority included animal models, though a clear transition to hiPSC-CM is visible since 2010. Our review showed that only 36 mouse models showed minimal 4 out of 6 HCM disease markers (cell/cardiac hypertrophy, disarray, fibrosis, diastolic dysfunction, and arrhythmias), while only 17 hiPSC-CM models showed 3 out of 4 HCM cell characteristics. Our review emphasizes the need to better report data on sample size, sex, age, and relevant disease-specific characteristics.
Collapse
Affiliation(s)
- Floor W van den Dolder
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Rafeeh Dinani
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Vincent A J Warnaar
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Sofija Vučković
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Adriana S Passadouro
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
| | - Ali A Nassar
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Azhaar X Ramsaroep
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands
| | - George B Burchell
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Linda J Schoonmade
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands.
| | - Birgit Goversen
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Obafemi OT, Ayeleso AO, Adewale OB, Unuofin J, Ekundayo BE, Ntwasa M, Lebelo SL. Animal models in biomedical research: Relevance of Drosophila melanogaster. Heliyon 2025; 11:e41605. [PMID: 39850441 PMCID: PMC11754520 DOI: 10.1016/j.heliyon.2024.e41605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Animal models have become veritable tools in gaining insight into the pathogenesis and progression of several human diseases. These models could range in complexity from Caenorhabditis elegans to non-human primates. With the aid of these animal models, a lot of new knowledge has been gained about several diseases which otherwise would not have been possible. Most times, the utilization of these animal models is predicated on the level of homology they share with humans, which suggests that outcomes of studies using them could be extrapolated to humans. However, this has not always been the case. Drosophila melanogaster is becoming increasingly relevant as preferred model for understanding the biochemical basis of several human diseases. Apart from its relatively short lifespan, high fecundity and ease of rearing, the simplicity of its genome and lower redundancy of its genes when compared with vertebrate models, as well as availability of genetic tool kit for easy manipulation of its genome, have all contributed to its emergence as a valid animal model of human diseases. This review aimed at highlighting the contributions of selected animal models in biomedical research with a focus on the relevance of Drosophila melanogaster in understanding the biochemical basis of some diseases that have continued to plague mankind.
Collapse
Affiliation(s)
- Olabisi Tajudeen Obafemi
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| | - Ademola Olabode Ayeleso
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
- Biochemistry Programme, College of Agriculture, Engineering and Science, Bowen University, PMB 284, Iwo, Osun State, Nigeria
| | | | - Jeremiah Unuofin
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| | | | - Monde Ntwasa
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 1710, Johannesburg, South Africa
| |
Collapse
|
3
|
Zhao J, Wang Y, Feng C, Yin M, Gao Y, Wei L, Song C, Ai B, Wang Q, Zhang J, Zhu J, Li C. SCInter: A comprehensive single-cell transcriptome integration database for human and mouse. Comput Struct Biotechnol J 2024; 23:77-86. [PMID: 38125297 PMCID: PMC10731004 DOI: 10.1016/j.csbj.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq), which profiles gene expression at the cellular level, has effectively explored cell heterogeneity and reconstructed developmental trajectories. With the increasing research on diseases and biological processes, scRNA-seq datasets are accumulating rapidly, highlighting the urgent need for collecting and processing these data to support comprehensive and effective annotation and analysis. Here, we have developed a comprehensive Single-Cell transcriptome integration database for human and mouse (SCInter, https://bio.liclab.net/SCInter/index.php), which aims to provide a manually curated database that supports the provision of gene expression profiles across various cell types at the sample level. The current version of SCInter includes 115 integrated datasets and 1016 samples, covering nearly 150 tissues/cell lines. It contains 8016,646 cell markers in 457 identified cell types. SCInter enabled comprehensive analysis of cataloged single-cell data encompassing quality control (QC), clustering, cell markers, multi-method cell type automatic annotation, predicting cell differentiation trajectories and so on. At the same time, SCInter provided a user-friendly interface to query, browse, analyze and visualize each integrated dataset and single cell sample, along with comprehensive QC reports and processing results. It will facilitate the identification of cell type in different cell subpopulations and explore developmental trajectories, enhancing the study of cell heterogeneity in the fields of immunology and oncology.
Collapse
Affiliation(s)
- Jun Zhao
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Yuezhu Wang
- School of Artificial Intelligence, Jilin University, Changchun 130012, China
| | - Chenchen Feng
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Mingxue Yin
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yu Gao
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Ling Wei
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Chao Song
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
| | - Bo Ai
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Qiuyu Wang
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jian Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Jiang Zhu
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Chunquan Li
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
4
|
Shu Z, Ji Y, Liu F, Jing Y, Jiao C, Li Y, Zhao Y, Wang G, Zhang J. Proteomics Analysis of the Protective Effect of Polydeoxyribonucleotide Extracted from Sea Cucumber ( Apostichopus japonicus) Sperm in a Hydrogen Peroxide-Induced RAW264.7 Cell Injury Model. Mar Drugs 2024; 22:325. [PMID: 39057434 PMCID: PMC11277713 DOI: 10.3390/md22070325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Sea cucumber viscera contain various naturally occurring active substances, but they are often underutilized during sea cucumber processing. Polydeoxyribonucleotide (PDRN) is an adenosine A2A receptor agonist that activates the A2A receptor to produce various biological effects. Currently, most studies on the activity of PDRN have focused on its anti-inflammatory, anti-apoptotic, and tissue repair properties, yet relatively few studies have investigated its antioxidant activity. In this study, we reported for the first time that PDRN was extracted from the sperm of Apostichopus japonicus (AJS-PDRN), and we evaluated its antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), and hydroxyl radical scavenging assays. An in vitro injury model was established using H2O2-induced oxidative damage in RAW264.7 cells, and we investigated the protective effect of AJS-PDRN on these cells. Additionally, we explored the potential mechanism by which AJS-PDRN protects RAW264.7 cells from damage using iTRAQ proteomics analysis. The results showed that AJS-PDRN possessed excellent antioxidant activity and could significantly scavenge DPPH, ABTS, and hydroxyl radicals. In vitro antioxidant assays demonstrated that AJS-PDRN was cytoprotective and significantly enhanced the antioxidant capacity of RAW264.7 cells. The results of GO enrichment and KEGG pathway analysis indicate that the protective effects of AJS-PDRN pretreatment on RAW264.7 cells are primarily achieved through the regulation of immune and inflammatory responses, modulation of the extracellular matrix and signal transduction pathways, promotion of membrane repair, and enhancement of cellular antioxidant capacity. The results of a protein-protein interaction (PPI) network analysis indicate that AJS-PDRN reduces cellular oxidative damage by upregulating the expression of intracellular selenoprotein family members. In summary, our findings reveal that AJS-PDRN mitigates H2O2-induced oxidative damage through multiple pathways, underscoring its significant potential in the prevention and treatment of diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Zhiqiang Shu
- Department of Food Science and Technology, Shanghai Ocean University, Shanghai 200120, China; (Z.S.)
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Yizhi Ji
- Department of Food Science and Technology, Shanghai Ocean University, Shanghai 200120, China; (Z.S.)
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Fang Liu
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Yuexin Jing
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Chunna Jiao
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Yue Li
- Department of Food Science and Technology, Shanghai Ocean University, Shanghai 200120, China; (Z.S.)
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Yunping Zhao
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Gongming Wang
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Jian Zhang
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| |
Collapse
|
5
|
Yasuhara J, Manivannan SN, Majumdar U, Gordon DM, Lawrence PJ, Aljuhani M, Myers K, Stiver C, Bigelow AM, Galantowicz M, Yamagishi H, McBride KL, White P, Garg V. Novel pathogenic GATA6 variant associated with congenital heart disease, diabetes mellitus and necrotizing enterocolitis. Pediatr Res 2024; 95:146-155. [PMID: 37700164 PMCID: PMC11800323 DOI: 10.1038/s41390-023-02811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Pathogenic GATA6 variants have been associated with congenital heart disease (CHD) and a spectrum of extracardiac abnormalities, including pancreatic agenesis, congenital diaphragmatic hernia, and developmental delay. However, the comprehensive genotype-phenotype correlation of pathogenic GATA6 variation in humans remains to be fully understood. METHODS Exome sequencing was performed in a family where four members had CHD. In vitro functional analysis of the GATA6 variant was performed using immunofluorescence, western blot, and dual-luciferase reporter assay. RESULTS A novel, heterozygous missense variant in GATA6 (c.1403 G > A; p.Cys468Tyr) segregated with affected members in a family with CHD, including three with persistent truncus arteriosus. In addition, one member had childhood onset diabetes mellitus (DM), and another had necrotizing enterocolitis (NEC) with intestinal perforation. The p.Cys468Tyr variant was located in the c-terminal zinc finger domain encoded by exon 4. The mutant protein demonstrated an abnormal nuclear localization pattern with protein aggregation and decreased transcriptional activity. CONCLUSIONS We report a novel, familial GATA6 likely pathogenic variant associated with CHD, DM, and NEC with intestinal perforation. These findings expand the phenotypic spectrum of pathologic GATA6 variation to include intestinal abnormalities. IMPACT Exome sequencing identified a novel heterozygous GATA6 variant (p.Cys468Tyr) that segregated in a family with CHD including persistent truncus arteriosus, atrial septal defects and bicuspid aortic valve. Additionally, affected members displayed extracardiac findings including childhood-onset diabetes mellitus, and uniquely, necrotizing enterocolitis with intestinal perforation in the first four days of life. In vitro functional assays demonstrated that GATA6 p.Cys468Tyr variant leads to cellular localization defects and decreased transactivation activity. This work supports the importance of GATA6 as a causative gene for CHD and expands the phenotypic spectrum of pathogenic GATA6 variation, highlighting neonatal intestinal perforation as a novel extracardiac phenotype.
Collapse
Affiliation(s)
- Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sathiya N Manivannan
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Uddalak Majumdar
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - David M Gordon
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Patrick J Lawrence
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mona Aljuhani
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Katherine Myers
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Corey Stiver
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Amee M Bigelow
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Mark Galantowicz
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Hiroyuki Yamagishi
- Division of Pediatric Cardiology, Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kim L McBride
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Peter White
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Ishida H, Narita J, Ishii R, Suginobe H, Tsuru H, Wang R, Yoshihara C, Ueyama A, Ueda K, Hirose M, Hashimoto K, Nagano H, Kogaki S, Kuramoto Y, Miyashita Y, Asano Y, Ozono K. Clinical Outcomes and Genetic Analyses of Restrictive Cardiomyopathy in Children. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:382-389. [PMID: 37377035 DOI: 10.1161/circgen.122.004054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/02/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Restrictive cardiomyopathy in children is rare and outcomes are very poor. However, little information is available concerning genotype-outcome correlations. METHODS We analyzed the clinical characteristics and genetic testing, including whole exome sequencing, of 28 pediatric restrictive cardiomyopathy patients who were diagnosed from 1998 to 2021 at Osaka University Hospital in Japan. RESULTS The median age at diagnosis (interquartile range) was 6 (2.25-8.5) years. Eighteen patients received heart transplantations and 5 patients were on the waiting list. One patient died while waiting for transplantation. Pathologic or likely-pathogenic variants were identified in 14 of the 28 (50%) patients, including heterozygous TNNI3 missense variants in 8 patients. TNNT2, MYL2, and FLNC missense variants were also identified. No significant differences in clinical manifestations and hemodynamic parameters between positive and negative pathogenic variants were detected. However, 2- and 5-year survival rates were significantly lower in patients with pathogenic variants (50% and 22%) compared with survival in patients without pathogenic variants (62% and 54%; P=0.0496, log-rank test). No significant differences were detected in the ratio of patients diagnosed at nationwide school heart disease screening program between positive and negative pathogenic variants. Patients diagnosed by school screening showed better transplant-free survival compared with patients diagnosed by heart failure symptoms (P=0.0027 in log-rank test). CONCLUSIONS In this study, 50% of pediatric restrictive cardiomyopathy patients had pathogenic or likely-pathogenic gene variants, and TNNI3 missense variants were the most frequent. Patients with pathogenic variants showed significantly lower transplant-free survival compared with patients without pathogenic variants.
Collapse
Affiliation(s)
- Hidekazu Ishida
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Jun Narita
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Ryo Ishii
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Hidehiro Suginobe
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Hirofumi Tsuru
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
- Department of Pediatrics, Niigata University School of Medicine, Japan (H.T.)
| | - Renjie Wang
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Chika Yoshihara
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Atsuko Ueyama
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Kazutoshi Ueda
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Masaki Hirose
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Kazuhisa Hashimoto
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Hiroki Nagano
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| | - Shigetoyo Kogaki
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
- Department of Pediatrics and Neonatology, Osaka General Medical Center, Japan (S.K.)
| | - Yuki Kuramoto
- Department of Cardiology (Y.K., Y.M., Y.A.), Osaka University Graduate School of Medicine, Japan
| | - Yohei Miyashita
- Department of Cardiology (Y.K., Y.M., Y.A.), Osaka University Graduate School of Medicine, Japan
| | - Yoshihiro Asano
- Department of Cardiology (Y.K., Y.M., Y.A.), Osaka University Graduate School of Medicine, Japan
- Department of Genome Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (Y.A.)
| | - Keiichi Ozono
- Department of Pediatrics (H.I., J.N., R.I., H.S., H.T., R.W., C.Y., A.U., K.U., M.H., K.H., H.N., S.K., K.O.), Osaka University Graduate School of Medicine, Japan
| |
Collapse
|
7
|
Chumakova OS, Baulina NM. Advanced searching for hypertrophic cardiomyopathy heritability in real practice tomorrow. Front Cardiovasc Med 2023; 10:1236539. [PMID: 37583586 PMCID: PMC10425241 DOI: 10.3389/fcvm.2023.1236539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease associated with morbidity and mortality at any age. As studies in recent decades have shown, the genetic architecture of HCM is quite complex both in the entire population and in each patient. In the rapidly advancing era of gene therapy, we have to provide a detailed molecular diagnosis to our patients to give them the chance for better and more personalized treatment. In addition to emphasizing the importance of genetic testing in routine practice, this review aims to discuss the possibility to go a step further and create an expanded genetic panel that contains not only variants in core genes but also new candidate genes, including those located in deep intron regions, as well as structural variations. It also highlights the benefits of calculating polygenic risk scores based on a combination of rare and common genetic variants for each patient and of using non-genetic HCM markers, such as microRNAs that can enhance stratification of risk for HCM in unselected populations alongside rare genetic variants and clinical factors. While this review is focusing on HCM, the discussed issues are relevant to other cardiomyopathies.
Collapse
Affiliation(s)
- Olga S. Chumakova
- Laboratory of Functional Genomics of Cardiovascular Diseases, National Medical Research Centre of Cardiology Named After E.I. Chazov, Moscow, Russia
| | | |
Collapse
|
8
|
Zhao Y, van de Leemput J, Han Z. The opportunities and challenges of using Drosophila to model human cardiac diseases. Front Physiol 2023; 14:1182610. [PMID: 37123266 PMCID: PMC10130661 DOI: 10.3389/fphys.2023.1182610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
The Drosophila heart tube seems simple, yet it has notable anatomic complexity and contains highly specialized structures. In fact, the development of the fly heart tube much resembles that of the earliest stages of mammalian heart development, and the molecular-genetic mechanisms driving these processes are highly conserved between flies and humans. Combined with the fly's unmatched genetic tools and a wide variety of techniques to assay both structure and function in the living fly heart, these attributes have made Drosophila a valuable model system for studying human heart development and disease. This perspective focuses on the functional and physiological similarities between fly and human hearts. Further, it discusses current limitations in using the fly, as well as promising prospects to expand the capabilities of Drosophila as a research model for studying human cardiac diseases.
Collapse
Affiliation(s)
- Yunpo Zhao
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Borowczyk M, Dobosz P, Szczepanek-Parulska E, Budny B, Dębicki S, Filipowicz D, Wrotkowska E, Oszywa M, Verburg FA, Janicka-Jedyńska M, Ziemnicka K, Ruchała M. Follicular Thyroid Adenoma and Follicular Thyroid Carcinoma-A Common or Distinct Background? Loss of Heterozygosity in Comprehensive Microarray Study. Cancers (Basel) 2023; 15:638. [PMID: 36765597 PMCID: PMC9913827 DOI: 10.3390/cancers15030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Pre- and postsurgical differentiation between follicular thyroid adenoma (FTA) and follicular thyroid cancer (FTC) represents a significant diagnostic challenge. Furthermore, it remains unclear whether they share a common or distinct background and what the mechanisms underlying follicular thyroid lesions malignancy are. The study aimed to compare FTA and FTC by the comprehensive microarray and to identify recurrent regions of loss of heterozygosity (LOH). We analyzed formalin-fixed paraffin-embedded (FFPE) samples acquired from 32 Caucasian patients diagnosed with FTA (16) and FTC (16). We used the OncoScan™ microarray assay (Affymetrix, USA), using highly multiplexed molecular inversion probes for single nucleotide polymorphism (SNP). The total number of LOH was higher in FTC compared with FTA (18 vs. 15). The most common LOH present in 21 cases, in both FTA (10 cases) and FTC (11 cases), was 16p12.1, which encompasses many cancer-related genes, such as TP53, and was followed by 3p21.31. The only LOH present exclusively in FTA patients (56% vs. 0%) was 11p11.2-p11.12. The alteration which tended to be detected more often in FTC (6 vs. 1 in FTA) was 12q24.11-q24.13 overlapping FOXN4, MYL2, PTPN11 genes. FTA and FTC may share a common genetic background, even though differentiating rearrangements may also be detected.
Collapse
Affiliation(s)
- Martyna Borowczyk
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
- Department of Medical Simulation, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Paula Dobosz
- Department of Genetics and Genomics, Central Clinical Hospital of the Ministry of Interior Affairs and Administration, 02-507 Warsaw, Poland
| | - Ewelina Szczepanek-Parulska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Szymon Dębicki
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Dorota Filipowicz
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Elżbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Michalina Oszywa
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Frederik A. Verburg
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | | | - Katarzyna Ziemnicka
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
10
|
Zhou K, Cai C, He Y, Chen Z. Using machine learning to find genes associated with sudden death. Front Cardiovasc Med 2022; 9:1042842. [PMID: 36386347 PMCID: PMC9641215 DOI: 10.3389/fcvm.2022.1042842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/07/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To search for significant biomarkers associated with sudden death (SD). Methods Differential genes were screened by comparing the whole blood samples from 15 cases of accidental death (AD) and 88 cases of SD. The protein-protein interaction (PPI) network selects core genes that interact most frequently. Machine learning is applied to find characteristic genes related to SD. The CIBERSORT method was used to explore the immune-microenvironment changes. Results A total of 10 core genes (MYL1, TNNC2, TNNT3, TCAP, TNNC1, TPM2, MYL2, TNNI1, ACTA1, CKM) were obtained and they were mainly related to myocarditis, hypertrophic myocarditis and dilated cardiomyopathy (DCM). Characteristic genes of MYL2 and TNNT3 associated with SD were established by machine learning. There was no significant change in the immune-microenvironment before and after SD. Conclusion Detecting characteristic genes is helpful to identify patients at high risk of SD and speculate the cause of death.
Collapse
Affiliation(s)
- Kena Zhou
- Department of Gastroenterology, Ningbo No. 9 Hospital, Ningbo, China
| | - Congbo Cai
- Department of Emergency, Yinzhou No. 2 Hospital, Ningbo, China
| | - Yi He
- Department of Gastroenterology, Ningbo No. 9 Hospital, Ningbo, China
| | - Zhihua Chen
- Department of Emergency, Ningbo First Hospital, Ningbo, China
- *Correspondence: Zhihua Chen,
| |
Collapse
|
11
|
Kazmierczak K, Liang J, Gomez-Guevara M, Szczesna-Cordary D. Functional comparison of phosphomimetic S15D and T160D mutants of myosin regulatory light chain exchanged in cardiac muscle preparations of HCM and WT mice. Front Cardiovasc Med 2022; 9:988066. [PMID: 36204565 PMCID: PMC9530205 DOI: 10.3389/fcvm.2022.988066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 12/30/2022] Open
Abstract
In this study, we investigated the rescue potential of two phosphomimetic mutants of the myosin regulatory light chain (RLC, MYL2 gene), S15D, and T160D RLCs. S15D-RLC mimics phosphorylation of the established serine-15 site of the human cardiac RLC. T160D-RLC mimics the phosphorylation of threonine-160, identified by computational analysis as a high-score phosphorylation site of myosin RLC. Cardiac myosin and left ventricular papillary muscle (LVPM) fibers were isolated from a previously generated model of hypertrophic cardiomyopathy (HCM), Tg-R58Q, and Tg-wild-type (WT) mice. Muscle specimens were first depleted of endogenous RLC and then reconstituted with recombinant human cardiac S15D and T160D phosphomimetic RLCs. Preparations reconstituted with recombinant human cardiac WT-RLC and R58Q-RLC served as controls. Mouse myosins were then tested for the actin-activated myosin ATPase activity and LVPM fibers for the steady-state force development and Ca2+-sensitivity of force. The data showed that S15D-RLC significantly increased myosin ATPase activity compared with T160D-RLC or WT-RLC reconstituted preparations. The two S15D and T160D phosphomimetic RLCs were able to rescue Vmax of Tg-R58Q myosin reconstituted with recombinant R58Q-RLC, but the effect of S15D-RLC was more pronounced than T160D-RLC. Low tension observed for R58Q-RLC reconstituted LVPM from Tg-R58Q mice was equally rescued by both phosphomimetic RLCs. In the HCM Tg-R58Q myocardium, the S15D-RLC caused a shift from the super-relaxed (SRX) state to the disordered relaxed (DRX) state, and the number of heads readily available to interact with actin and produce force was increased. At the same time, T160D-RLC stabilized the SRX state at a level similar to R58Q-RLC reconstituted fibers. We report here on the functional superiority of the established S15 phospho-site of the human cardiac RLC vs. C-terminus T160-RLC, with S15D-RLC showing therapeutic potential in mitigating a non-canonical HCM behavior underlined by hypocontractile behavior of Tg-R58Q myocardium.
Collapse
|
12
|
Zhang Y, Peng R, Wang H. Identification and genetic analysis of rare variants in myosin family genes in 412 Han Chinese congenital heart disease patients. Mol Genet Genomic Med 2022; 10:e2041. [PMID: 35993536 PMCID: PMC9544220 DOI: 10.1002/mgg3.2041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background Myosin family genes, including those encoding myosin heavy chain 6, myosin heavy chain 7, myosin light chain 3, and myosin light chain 2 (MYL2), are important genetic factors in congenital heart disease (CHD). However, how these genes contribute to CHD in the Han Chinese population remains unclear. Methods We sequenced myosin family genes in a Han Chinese cohort comprising 412 CHD patients and 213 matched controls in the present study. A zebrafish model was used to evaluate the pathogenicity of rare mutations in MYL2. Results We identified 30 known mutations and 12 novel mutations. Furthermore, the contributions of two novel mutations, MYL2 p.Ile158Thr and p.Val146Met, to CHD were analyzed. The p.Ile158Thr mutation increased MYL2 expression. In zebrafish embryos, injection of myl2b‐targeting morpholinos led to aberrant cardiac structures, an effect that was reversed by expression of wild‐type MYL2 but not MYL2 p.Ile158Thr and pVal146Met. Conclusions Overall, our findings suggest that MYL2 p.Ile158Thr and p.Val146Met contribute to the etiology of CHD. The results also indicate the importance of MYL2 in heart formation.
Collapse
Affiliation(s)
- Yunqian Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering at School of Life Sciences, Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Rui Peng
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering at School of Life Sciences, Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,NHC Key Lab of Reproduction (Shanghai Institute of Planned Parenthood Research), Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China
| | - Hongyan Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering at School of Life Sciences, Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,NHC Key Lab of Reproduction (Shanghai Institute of Planned Parenthood Research), Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China.,Children's Hospital, Fudan University, Shanghai, China.,The Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Ecovoiu AA, Ratiu AC, Micheu MM, Chifiriuc MC. Inter-Species Rescue of Mutant Phenotype-The Standard for Genetic Analysis of Human Genetic Disorders in Drosophila melanogaster Model. Int J Mol Sci 2022; 23:2613. [PMID: 35269756 PMCID: PMC8909942 DOI: 10.3390/ijms23052613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Drosophila melanogaster (the fruit fly) is arguably a superstar of genetics, an astonishing versatile experimental model which fueled no less than six Nobel prizes in medicine. Nowadays, an evolving research endeavor is to simulate and investigate human genetic diseases in the powerful D. melanogaster platform. Such a translational experimental strategy is expected to allow scientists not only to understand the molecular mechanisms of the respective disorders but also to alleviate or even cure them. In this regard, functional gene orthology should be initially confirmed in vivo by transferring human or vertebrate orthologous transgenes in specific mutant backgrounds of D. melanogaster. If such a transgene rescues, at least partially, the mutant phenotype, then it qualifies as a strong candidate for modeling the respective genetic disorder in the fruit fly. Herein, we review various examples of inter-species rescue of relevant mutant phenotypes of the fruit fly and discuss how these results recommend several human genes as candidates to study and validate genetic variants associated with human diseases. We also consider that a wider implementation of this evolutionist exploratory approach as a standard for the medicine of genetic disorders would allow this particular field of human health to advance at a faster pace.
Collapse
Affiliation(s)
- Alexandru Al. Ecovoiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Attila Cristian Ratiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest and Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| |
Collapse
|
14
|
Pradeep R, Akram A, Proute MC, Kothur NR, Georgiou P, Serhiyenia T, Shi W, Kerolos ME, Mostafa JA. Understanding the Genetic and Molecular Basis of Familial Hypertrophic Cardiomyopathy and the Current Trends in Gene Therapy for Its Management. Cureus 2021; 13:e17548. [PMID: 34646605 PMCID: PMC8481153 DOI: 10.7759/cureus.17548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/28/2021] [Indexed: 01/16/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetically acquired disease of cardiac myocytes. Studies show that 70% of this disease is a result of different mutations in various sarcomere genes. This review aims to discuss several genetic mutations, epigenetic factors, and signal transduction pathways leading to the development of HCM. In addition, this article elaborates on recent advances in gene therapies and their implications for managing this condition. We start by discussing the founding mutations in HCM and their effect on power stroke generation. The less explored field of epigenetics including methylation, acetylation, and the role of different micro RNAs in the development of cardiac muscle hypertrophy has been highlighted in this article. The signal transduction pathways that lead to gene transcription, which in turn lead to increased protein synthesis of cardiac muscle fibers are elaborated. Finally, the microscopic events leading to the pathophysiologic macro events of cardiac failure, and the current experimental trials of gene therapy models, and the clustered regularly interspaced short palindromic repeats (CRISPR) type 2 system proteins, are discussed. We have concluded our discussion by emphasizing the need for more studies on epigenomics and experimental designs for gene therapy in HCM patients. This review focuses on the process of HCM from initial mutation to the development of phenotypic expression and various points of intervention in cardiac myocardial hypertrophy development.
Collapse
Affiliation(s)
- Roshini Pradeep
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aqsa Akram
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Matthew C Proute
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nageshwar R Kothur
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Petros Georgiou
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Tatsiana Serhiyenia
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Wangpan Shi
- Pathology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mina E Kerolos
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jihan A Mostafa
- Psychiatry/Cognitive Behavioural Psychotherapy, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
15
|
Tamamitsu AM, Nakagama Y, Domoto Y, Yoshida K, Ogawa S, Hirono K, Shindo T, Ogawa Y, Nakano K, Asakai H, Hirata Y, Matsui H, Inuzuka R. Poor Myocardial Compaction in a Patient with Recessive MYL2 Myopathy. Int Heart J 2021; 62:445-447. [PMID: 33731536 DOI: 10.1536/ihj.20-639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recessive mutations in the Myosin regulatory light chain 2 (MYL2) gene are the cause of an infantile-onset myopathy, associated with fatal myocardial disease of variable macromorphology. We here present the first Japanese family affected with recessive MYL2 myopathy. Affected siblings manifested typical features and the proband's autopsy findings were compatible with the diagnosis of noncompaction cardiomyopathy. The rapidly progressive clinical course of this recessive MYL2 cardiomyopathy highlights the crucial role of c-terminal tails in MYL2 protein in maintaining cardiac morphology and function.
Collapse
Affiliation(s)
| | - Yu Nakagama
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo.,Department of Parasitology, Graduate School of Medicine, Osaka City University
| | - Yukako Domoto
- Department of Pathology, Graduate School of Medicine, The University of Tokyo
| | - Kenichi Yoshida
- Department of Pathology, Graduate School of Medicine, The University of Tokyo
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University
| | - Keiichi Hirono
- Department of Pediatrics, Graduate School of Medicine, University of Toyama
| | - Takahiro Shindo
- Division of Cardiology, National Center for Child Health and Development
| | - Yosuke Ogawa
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo
| | - Katsutoshi Nakano
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo
| | - Hiroko Asakai
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo
| | - Yoichiro Hirata
- Department of Pediatrics, Kitasato University School of Medicine
| | - Hikoro Matsui
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo
| | - Ryo Inuzuka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
16
|
Tallo CA, Duncan LH, Yamamoto AH, Slaydon JD, Arya GH, Turlapati L, Mackay TFC, Carbone MA. Heat shock proteins and small nucleolar RNAs are dysregulated in a Drosophila model for feline hypertrophic cardiomyopathy. G3 (BETHESDA, MD.) 2021; 11:jkaa014. [PMID: 33561224 PMCID: PMC7849908 DOI: 10.1093/g3journal/jkaa014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022]
Abstract
In cats, mutations in myosin binding protein C (encoded by the MYBPC3 gene) have been associated with hypertrophic cardiomyopathy (HCM). However, the molecular mechanisms linking these mutations to HCM remain unknown. Here, we establish Drosophila melanogaster as a model to understand this connection by generating flies harboring MYBPC3 missense mutations (A31P and R820W) associated with feline HCM. The A31P and R820W flies displayed cardiovascular defects in their heart rates and exercise endurance. We used RNA-seq to determine which processes are misregulated in the presence of mutant MYBPC3 alleles. Transcriptome analysis revealed significant downregulation of genes encoding small nucleolar RNA (snoRNAs) in exercised female flies harboring the mutant alleles compared to flies that harbor the wild-type allele. Other processes that were affected included the unfolded protein response and immune/defense responses. These data show that mutant MYBPC3 proteins have widespread effects on the transcriptome of co-regulated genes. Transcriptionally differentially expressed genes are also candidate genes for future evaluation as genetic modifiers of HCM as well as candidate genes for genotype by exercise environment interaction effects on the manifestation of HCM; in cats as well as humans.
Collapse
Affiliation(s)
- Christian A Tallo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Laura H Duncan
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Akihiko H Yamamoto
- The Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA
| | - Joshua D Slaydon
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Gunjan H Arya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Lavanya Turlapati
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Trudy F C Mackay
- The Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, Greenwood, SC 29646, USA
| | - Mary A Carbone
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
- The Center for Integrated Fungal Research and Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695-7244, USA
| |
Collapse
|
17
|
Tallo CA, Duncan LH, Yamamoto AH, Slaydon JD, Arya GH, Turlapati L, Mackay TFC, Carbone MA. Heat shock proteins and small nucleolar RNAs are dysregulated in a Drosophila model for feline hypertrophic cardiomyopathy. G3 (BETHESDA, MD.) 2021. [PMID: 33561224 DOI: 10.1093/g3journal/jkaa014.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In cats, mutations in myosin binding protein C (encoded by the MYBPC3 gene) have been associated with hypertrophic cardiomyopathy (HCM). However, the molecular mechanisms linking these mutations to HCM remain unknown. Here, we establish Drosophila melanogaster as a model to understand this connection by generating flies harboring MYBPC3 missense mutations (A31P and R820W) associated with feline HCM. The A31P and R820W flies displayed cardiovascular defects in their heart rates and exercise endurance. We used RNA-seq to determine which processes are misregulated in the presence of mutant MYBPC3 alleles. Transcriptome analysis revealed significant downregulation of genes encoding small nucleolar RNA (snoRNAs) in exercised female flies harboring the mutant alleles compared to flies that harbor the wild-type allele. Other processes that were affected included the unfolded protein response and immune/defense responses. These data show that mutant MYBPC3 proteins have widespread effects on the transcriptome of co-regulated genes. Transcriptionally differentially expressed genes are also candidate genes for future evaluation as genetic modifiers of HCM as well as candidate genes for genotype by exercise environment interaction effects on the manifestation of HCM; in cats as well as humans.
Collapse
Affiliation(s)
- Christian A Tallo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Laura H Duncan
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Akihiko H Yamamoto
- The Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA
| | - Joshua D Slaydon
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Gunjan H Arya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Lavanya Turlapati
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Trudy F C Mackay
- The Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, Greenwood, SC 29646, USA
| | - Mary A Carbone
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA.,The Center for Integrated Fungal Research and Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695-7244, USA
| |
Collapse
|
18
|
Age and Sex-Dependent ADNP Regulation of Muscle Gene Expression Is Correlated with Motor Behavior: Possible Feedback Mechanism with PACAP. Int J Mol Sci 2020; 21:ijms21186715. [PMID: 32937737 PMCID: PMC7555576 DOI: 10.3390/ijms21186715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
The activity-dependent neuroprotective protein (ADNP), a double-edged sword, sex-dependently regulates multiple genes and was previously associated with the control of early muscle development and aging. Here we aimed to decipher the involvement of ADNP in versatile muscle gene expression patterns in correlation with motor function throughout life. Using quantitative RT-PCR we showed that Adnp+/− heterozygous deficiency in mice resulted in aberrant gastrocnemius (GC) muscle, tongue and bladder gene expression, which was corrected by the Adnp snippet, drug candidate, NAP (CP201). A significant sexual dichotomy was discovered, coupled to muscle and age-specific gene regulation. As such, Adnp was shown to regulate myosin light chain (Myl) in the gastrocnemius (GC) muscle, the language acquisition gene forkhead box protein P2 (Foxp2) in the tongue and the pituitary-adenylate cyclase activating polypeptide (PACAP) receptor PAC1 mRNA (Adcyap1r1) in the bladder, with PACAP linked to bladder function. A tight age regulation was observed, coupled to an extensive correlation to muscle function (gait analysis), placing ADNP as a muscle-regulating gene/protein.
Collapse
|