1
|
Versoza CJ, Jensen JD, Pfeifer SP. The landscape of structural variation in aye-ayes ( Daubentonia madagascariensis). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622672. [PMID: 39605644 PMCID: PMC11601217 DOI: 10.1101/2024.11.08.622672] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Aye-ayes (Daubentonia madagascariensis) are one of the 25 most critically endangered primate species in the world. Endemic to Madagascar, their small and highly fragmented populations make them particularly vulnerable to both genetic disease and anthropogenic environmental changes. Over the past decade, conservation genomic efforts have largely focused on inferring and monitoring population structure based on single nucleotide variants to identify and protect critical areas of genetic diversity. However, the recent release of a highly contiguous genome assembly allows, for the first time, for the study of structural genomic variation (deletions, duplications, insertions, and inversions) which are likely to impact a substantial proportion of the species' genome. Based on whole-genome, short-read sequencing data from 14 individuals, >1,000 high-confidence autosomal structural variants were detected, affecting ~240 kb of the aye-aye genome. The majority of these variants (>85%) were deletions shorter than 200 bp, consistent with the notion that longer structural mutations are often associated with strongly deleterious fitness effects. For example, two deletions longer than 850 bp located within disease-linked genes were predicted to impose substantial fitness deficits owing to a resulting frameshift and gene fusion, respectively; whereas several other major effect variants outside of coding regions are likely to impact gene regulatory landscapes. Taken together, this first glimpse into the landscape of structural variation in aye-ayes will enable future opportunities to advance our understanding of the traits impacting the fitness of this endangered species, as well as allow for enhanced evolutionary comparisons across the full primate clade.
Collapse
Affiliation(s)
- Cyril J. Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jeffrey D. Jensen
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Susanne P. Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
2
|
Paulin LF, Raveendran M, Harris RA, Rogers J, von Haeseler A, Sedlazeck FJ. SVhound: detection of regions that harbor yet undetected structural variation. BMC Bioinformatics 2023; 24:23. [PMID: 36670361 PMCID: PMC9854228 DOI: 10.1186/s12859-022-05046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/08/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Recent population studies are ever growing in number of samples to investigate the diversity of a population or species. These studies reveal new polymorphism that lead to important insights into the mechanisms of evolution, but are also important for the interpretation of these variations. Nevertheless, while the full catalog of variations across entire species remains unknown, we can predict which regions harbor additional not yet detected variations and investigate their properties, thereby enhancing the analysis for potentially missed variants. RESULTS To achieve this we developed SVhound ( https://github.com/lfpaulin/SVhound ), which based on a population level SVs dataset can predict regions that harbor unseen SV alleles. We tested SVhound using subsets of the 1000 genomes project data and showed that its correlation (average correlation of 2800 tests r = 0.7136) is high to the full data set. Next, we utilized SVhound to investigate potentially missed or understudied regions across 1KGP and CCDG. Lastly we also apply SVhound on a small and novel SV call set for rhesus macaque (Macaca mulatta) and discuss the impact and choice of parameters for SVhound. CONCLUSIONS SVhound is a unique method to identify potential regions that harbor hidden diversity in model and non model organisms and can also be potentially used to ensure high quality of SV call sets.
Collapse
Affiliation(s)
- Luis F Paulin
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Medical University of Vienna, Vienna, Austria.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - R Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Medical University of Vienna, Vienna, Austria
- Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Brasó-Vives M, Marlétaz F, Echchiki A, Mantica F, Acemel RD, Gómez-Skarmeta JL, Hartasánchez DA, Le Targa L, Pontarotti P, Tena JJ, Maeso I, Escriva H, Irimia M, Robinson-Rechavi M. Parallel evolution of amphioxus and vertebrate small-scale gene duplications. Genome Biol 2022; 23:243. [PMID: 36401278 PMCID: PMC9673378 DOI: 10.1186/s13059-022-02808-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Amphioxus are non-vertebrate chordates characterized by a slow morphological and molecular evolution. They share the basic chordate body-plan and genome organization with vertebrates but lack their 2R whole-genome duplications and their developmental complexity. For these reasons, amphioxus are frequently used as an outgroup to study vertebrate genome evolution and Evo-Devo. Aside from whole-genome duplications, genes continuously duplicate on a smaller scale. Small-scale duplicated genes can be found in both amphioxus and vertebrate genomes, while only the vertebrate genomes have duplicated genes product of their 2R whole-genome duplications. Here, we explore the history of small-scale gene duplications in the amphioxus lineage and compare it to small- and large-scale gene duplication history in vertebrates. RESULTS We present a study of the European amphioxus (Branchiostoma lanceolatum) gene duplications thanks to a new, high-quality genome reference. We find that, despite its overall slow molecular evolution, the amphioxus lineage has had a history of small-scale duplications similar to the one observed in vertebrates. We find parallel gene duplication profiles between amphioxus and vertebrates and conserved functional constraints in gene duplication. Moreover, amphioxus gene duplicates show levels of expression and patterns of functional specialization similar to the ones observed in vertebrate duplicated genes. We also find strong conservation of gene synteny between two distant amphioxus species, B. lanceolatum and B. floridae, with two major chromosomal rearrangements. CONCLUSIONS In contrast to their slower molecular and morphological evolution, amphioxus' small-scale gene duplication history resembles that of the vertebrate lineage both in quantitative and in functional terms.
Collapse
Affiliation(s)
- Marina Brasó-Vives
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| | - Ferdinand Marlétaz
- Department of Genetics, Evolution and Environment (GEE), University College London, London, UK
| | - Amina Echchiki
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Federica Mantica
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rafael D Acemel
- Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo Olavide University, Sevilla, Spain
| | - José L Gómez-Skarmeta
- Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo Olavide University, Sevilla, Spain
| | - Diego A Hartasánchez
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Lorlane Le Targa
- IRD, APHM, MEPHI, Aix Marseille Université, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Pierre Pontarotti
- IRD, APHM, MEPHI, Aix Marseille Université, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- CNRS, Paris, France
| | - Juan J Tena
- Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo Olavide University, Sevilla, Spain
| | - Ignacio Maeso
- Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo Olavide University, Sevilla, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Hector Escriva
- Biologie Intégrative des Organismes Marins, BIOM, CNRS-Sorbonne University, Banyuls-sur-Mer, France
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Pompeu Fabra University (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
4
|
Liang W, He J, Mao C, Yu C, Meng Q, Xue J, Wu X, Li S, Wang Y, Yi H. Gene editing monkeys: Retrospect and outlook. Front Cell Dev Biol 2022; 10:913996. [PMID: 36158194 PMCID: PMC9493099 DOI: 10.3389/fcell.2022.913996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Animal models play a key role in life science research, especially in the study of human disease pathogenesis and drug screening. Because of the closer proximity to humans in terms of genetic evolution, physiology, immunology, biochemistry, and pathology, nonhuman primates (NHPs) have outstanding advantages in model construction for disease mechanism study and drug development. In terms of animal model construction, gene editing technology has been widely applied to this area in recent years. This review summarizes the current progress in the establishment of NHPs using gene editing technology, which mainly focuses on rhesus and cynomolgus monkeys. In addition, we discuss the limiting factors in the applications of genetically modified NHP models as well as the possible solutions and improvements. Furthermore, we highlight the prospects and challenges of the gene-edited NHP models.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
- *Correspondence: Weizheng Liang, ; Shanliang Li, ; Yukai Wang, ; Hongyang Yi,
| | - Junli He
- Department of Pediatrics, Shenzhen University General Hospital, Shenzhen, China
| | - Chenyu Mao
- University of Pennsylvania, Philadelphia, PA, United States
| | - Chengwei Yu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Qingxue Meng
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Shanliang Li
- Department of Pharmacology, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- *Correspondence: Weizheng Liang, ; Shanliang Li, ; Yukai Wang, ; Hongyang Yi,
| | - Yukai Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Weizheng Liang, ; Shanliang Li, ; Yukai Wang, ; Hongyang Yi,
| | - Hongyang Yi
- National Clinical Research Centre for Infectious Diseases, The Third People’s Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Weizheng Liang, ; Shanliang Li, ; Yukai Wang, ; Hongyang Yi,
| |
Collapse
|
5
|
Genomic resources for rhesus macaques (Macaca mulatta). Mamm Genome 2022; 33:91-99. [PMID: 34999909 PMCID: PMC8742695 DOI: 10.1007/s00335-021-09922-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 11/10/2022]
Abstract
Rhesus macaques (Macaca mulatta) are among the most extensively studied of nonhuman primates. This species has been the subject of many investigations concerning basic primate biology and behavior, including studies of social organization, developmental psychology, physiology, endocrinology, and neurodevelopment. Rhesus macaques are also critically important as a nonhuman primate model of human health and disease, including use in studies of infectious diseases, metabolic diseases, aging, and drug or alcohol abuse. Current research addressing fundamental biological and/or applied biomedical questions benefits from various genetic and genomic analyses. As a result, the genome of rhesus macaques has been the subject of more study than most nonhuman primates. This paper briefly discusses a number of information resources that can provide interested researchers with access to genetic and genomic data describing the content of the rhesus macaque genome, available information regarding genetic variation within the species, results from studies of gene expression, and other aspects of genomic analysis. Specific online databases are discussed, including the US National Center for Biotechnology Information, the University of California Santa Cruz genome browser, Ensembl genome browser, the Macaque Genotype and Phenotype database (mGAP), Rhesusbase, and others.
Collapse
|
6
|
Preising GA, Faber-Hammond JJ, Renn SCP. Correspondence of aCGH and long-read genome assembly for detection of copy number differences: A proof-of-concept with cichlid genomes. PLoS One 2021; 16:e0258193. [PMID: 34618847 PMCID: PMC8496808 DOI: 10.1371/journal.pone.0258193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/21/2021] [Indexed: 11/18/2022] Open
Abstract
Copy number variation is an important source of genetic variation, yet data are often lacking due to technical limitations for detection given the current genome assemblies. Our goal is to demonstrate the extent to which an array-based platform (aCGH) can identify genomic loci that are collapsed in genome assemblies that were built with short-read technology. Taking advantage of two cichlid species for which genome assemblies based on Illumina and PacBio are available, we show that inter-species aCGH log2 hybridization ratios correlate more strongly with inferred copy number differences based on PacBio-built genome assemblies than based on Illumina-built genome assemblies. With regard to inter-species copy number differences of specific genes identified by each platform, the set identified by aCGH intersects to a greater extent with the set identified by PacBio than with the set identified by Illumina. Gene function, according to Gene Ontology analysis, did not substantially differ among platforms, and platforms converged on functions associated with adaptive phenotypes. The results of the current study further demonstrate that aCGH is an effective platform for identifying copy number variable sequences, particularly those collapsed in short read genome assemblies.
Collapse
Affiliation(s)
| | | | - Suzy C. P. Renn
- Department of Biology, Reed College, Portland, OR, United States of America
| |
Collapse
|
7
|
Thomas GWC, Wang RJ, Nguyen J, Alan Harris R, Raveendran M, Rogers J, Hahn MW. Origins and Long-Term Patterns of Copy-Number Variation in Rhesus Macaques. Mol Biol Evol 2021; 38:1460-1471. [PMID: 33226085 PMCID: PMC8042740 DOI: 10.1093/molbev/msaa303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations play a key role in the development of disease in an individual and the evolution of traits within species. Recent work in humans and other primates has clarified the origins and patterns of single-nucleotide variants, showing that most arise in the father's germline during spermatogenesis. It remains unknown whether larger mutations, such as deletions and duplications of hundreds or thousands of nucleotides, follow similar patterns. Such mutations lead to copy-number variation (CNV) within and between species, and can have profound effects by deleting or duplicating genes. Here, we analyze patterns of CNV mutations in 32 rhesus macaque individuals from 14 parent-offspring trios. We find the rate of CNV mutations per generation is low (less than one per genome) and we observe no correlation between parental age and the number of CNVs that are passed on to offspring. We also examine segregating CNVs within the rhesus macaque sample and compare them to a similar data set from humans, finding that both species have far more segregating deletions than duplications. We contrast this with long-term patterns of gene copy-number evolution between 17 mammals, where the proportion of deletions that become fixed along the macaque lineage is much smaller than the proportion of segregating deletions. These results suggest purifying selection acting on deletions, such that the majority of them are removed from the population over time. Rhesus macaques are an important biomedical model organism, so these results will aid in our understanding of this species and the disease models it supports.
Collapse
Affiliation(s)
- Gregg W C Thomas
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Richard J Wang
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Jelena Nguyen
- Department of Computer Science, Indiana University, Bloomington, IN, USA
| | - R Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Computer Science, Indiana University, Bloomington, IN, USA
| |
Collapse
|
8
|
Mon HM, Feng M, Pattanawong U, Kosuwin R, Yanagi T, Kobayashi S, Putaporntip C, Jongwutiwes S, Cheng X, Tachibana H. Genotyping of Entamoeba nuttalli strains from the wild rhesus macaques of Myanmar and comparison with those from the wild rhesus macaques of Nepal and China. INFECTION GENETICS AND EVOLUTION 2021; 92:104830. [PMID: 33798757 DOI: 10.1016/j.meegid.2021.104830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Entamoeba nuttalli found in macaques is phylogenetically the closest species to Entamoeba histolytica and is potentially pathogenic. In this study, the prevalence of Entamoeba infections was examined in wild rhesus macaques by examining 73 and 90 fecal samples collected from two sites, Popa Taung Kalat (PTK) and Pho Win Taung (PWT), in Myanmar. The positive rates of E. nuttalli detected using PCR were 49% and 31% in PTK and PWT, respectively, but no infections of E. histolytica and E. moshkovskii were found. Entamoeba dispar was detected in 6% of samples only from PWT. Positive rates of E. chattoni and E. coli were both 70% in PWT and 67% and 79% in PTK, respectively. Six E. nuttalli strains from PTK and eight from PWT were obtained in the culture with xenic medium and then, one and two strains, respectively, were axenized and finally cloned. The genotypic analysis of serine-rich protein genes revealed two genotypes each in both sites. The genotypes found in five of six strains from PTK were similar to those from the strains found in Nepal, whereas the remaining one from PTK and two from PWT were similar to those obtained from macaques in China. The sequence of the 18S rDNA of strains with these four genotypes was identical to that of the strains from China. Six loci of tRNA-linked short tandem repeats were analyzed for further genotyping of the strains. Although there were two types in locus A-L in PTK isolates, one of each type for PTK and PWT was found in the other loci, including locus A-L in PWT strains. These results demonstrated that the E. nuttalli strains from Myanmar are closer to the strains from macaques in China rather than those from macaques in Nepal.
Collapse
Affiliation(s)
- Hla Myat Mon
- Yangon Technological University, Pharmaceutical Research Department, Myanma Scientific and Technological Research Department, Ministry of Science and Technology, Yangon, Myanmar
| | - Meng Feng
- Department of Parasitology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan; Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Urassaya Pattanawong
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rattiporn Kosuwin
- Department of Parasitology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan; Division of Health Promotion, Faculty of Physical Therapy, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand
| | - Tetsuo Yanagi
- Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Seiki Kobayashi
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Xunjia Cheng
- Department of Parasitology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan; Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hiroshi Tachibana
- Department of Parasitology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan.
| |
Collapse
|