1
|
van Karnebeek CDM, Tarailo-Graovac M, Leen R, Meinsma R, Correard S, Jansen-Meijer J, Prykhozhij SV, Pena IA, Ban K, Schock S, Saxena V, Pras-Raves ML, Drögemöller BI, Grootemaat AE, van der Wel NN, Dobritzsch D, Roseboom W, Schomakers BV, Jaspers YRJ, Zoetekouw L, Roelofsen J, Ferreira CR, van der Lee R, Ross CJ, Kochan J, McIntyre RL, van Klinken JB, van Weeghel M, Kramer G, Weschke B, Labrune P, Willemsen MA, Riva D, Garavaglia B, Moeschler JB, Filiano JJ, Ekker M, Berman JN, Dyment D, Vaz FM, Wasserman WW, Houtkooper RH, van Kuilenburg ABP. CIAO1 and MMS19 deficiency: A lethal neurodegenerative phenotype caused by cytosolic Fe-S cluster protein assembly disorders. Genet Med 2024; 26:101104. [PMID: 38411040 PMCID: PMC11788579 DOI: 10.1016/j.gim.2024.101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
PURPOSE The functionality of many cellular proteins depends on cofactors; yet, they have only been implicated in a minority of Mendelian diseases. Here, we describe the first 2 inherited disorders of the cytosolic iron-sulfur protein assembly system. METHODS Genetic testing via genome sequencing was applied to identify the underlying disease cause in 3 patients with microcephaly, congenital brain malformations, progressive developmental and neurologic impairments, recurrent infections, and a fatal outcome. Studies in patient-derived skin fibroblasts and zebrafish models were performed to investigate the biochemical and cellular consequences. RESULTS Metabolic analysis showed elevated uracil and thymine levels in body fluids but no pathogenic variants in DPYD, encoding dihydropyrimidine dehydrogenase. Genome sequencing identified compound heterozygosity in 2 patients for missense variants in CIAO1, encoding cytosolic iron-sulfur assembly component 1, and homozygosity for an in-frame 3-nucleotide deletion in MMS19, encoding the MMS19 homolog, cytosolic iron-sulfur assembly component, in the third patient. Profound alterations in the proteome, metabolome, and lipidome were observed in patient-derived fibroblasts. We confirmed the detrimental effect of deficiencies in CIAO1 and MMS19 in zebrafish models. CONCLUSION A general failure of cytosolic and nuclear iron-sulfur protein maturation caused pleiotropic effects. The critical function of the cytosolic iron-sulfur protein assembly machinery for antiviral host defense may well explain the recurrent severe infections occurring in our patients.
Collapse
Affiliation(s)
- Clara D M van Karnebeek
- Amsterdam UMC location University of Amsterdam, Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam, The Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands; Departments of Medical Genetics and Pediatrics, Centre for Molecular Medicine and Therapeutics, Faculty of Pharmaceutical Science, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada; United for Metabolic Diseases, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Maja Tarailo-Graovac
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute (ACHRI), Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - René Leen
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rutger Meinsma
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
| | - Solenne Correard
- Departments of Medical Genetics and Pediatrics, Centre for Molecular Medicine and Therapeutics, Faculty of Pharmaceutical Science, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Judith Jansen-Meijer
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
| | - Sergey V Prykhozhij
- Faculty of Medicine, CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Izabella A Pena
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology-MIT, Boston, MA
| | - Kevin Ban
- Faculty of Medicine, CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Sarah Schock
- Faculty of Medicine, CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Vishal Saxena
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Mia L Pras-Raves
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Britt I Drögemöller
- Rady Faculty of Health Sciences, Department of Biochemistry and Medical Genetics, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anita E Grootemaat
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biology, Amsterdam, The Netherlands
| | - Nicole N van der Wel
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biology, Amsterdam, The Netherlands
| | - Doreen Dobritzsch
- Uppsala University, Department of Chemistry, Biomedical Center, Uppsala, Sweden
| | - Winfried Roseboom
- Swammerdam Institute for Life Sciences, University of Amsterdam, Laboratory for Mass Spectrometry of Biomolecules, Amsterdam, The Netherlands
| | - Bauke V Schomakers
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Yorrick R J Jaspers
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands; Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
| | - Lida Zoetekouw
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
| | - Jeroen Roelofsen
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Robin van der Lee
- Departments of Medical Genetics and Pediatrics, Centre for Molecular Medicine and Therapeutics, Faculty of Pharmaceutical Science, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Colin J Ross
- Departments of Medical Genetics and Pediatrics, Centre for Molecular Medicine and Therapeutics, Faculty of Pharmaceutical Science, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jakub Kochan
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biochemistry, Kraków, Poland
| | - Rebecca L McIntyre
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
| | - Jan B van Klinken
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC, Amsterdam, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Michel van Weeghel
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands; Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gertjan Kramer
- Swammerdam Institute for Life Sciences, University of Amsterdam, Laboratory for Mass Spectrometry of Biomolecules, Amsterdam, The Netherlands
| | - Bernhard Weschke
- Department of Neuropediatrics, Charité University Medicine Berlin, Berlin, Germany
| | - Philippe Labrune
- APHP-Université Paris-Saclay, Hôpital Antoine Béclère, Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Service de Pédiatrie, Clamart, and Paris-Saclay University, and INSERM U 1195, Clamart, France
| | - Michèl A Willemsen
- Department of Pediatric Neurology and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daria Riva
- Neurogenetic Syndromes and Autism Spectrum Disorders Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
| | - John B Moeschler
- Geisel School of Medicine, Dartmouth College and Departments of Pediatrics, Children's Hospital at Dartmouth, Lebanon, NH
| | - James J Filiano
- Geisel School of Medicine, Dartmouth College and Departments of Pediatrics, Children's Hospital at Dartmouth, Lebanon, NH
| | - Marc Ekker
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jason N Berman
- Faculty of Medicine, CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - David Dyment
- Faculty of Medicine, CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Frédéric M Vaz
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands; Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wyeth W Wasserman
- Departments of Medical Genetics and Pediatrics, Centre for Molecular Medicine and Therapeutics, Faculty of Pharmaceutical Science, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Riekelt H Houtkooper
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands; Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands; Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Leone M, Cazorla-Vázquez S, Ferrazzi F, Wiederstein JL, Gründl M, Weinstock G, Vergarajauregui S, Eckstein M, Krüger M, Gaubatz S, Engel FB. IQGAP3, a YAP Target, Is Required for Proper Cell-Cycle Progression and Genome Stability. Mol Cancer Res 2021; 19:1712-1726. [PMID: 34183451 DOI: 10.1158/1541-7786.mcr-20-0639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 04/08/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
Controlling cell proliferation is critical for organism development, tissue homeostasis, disease, and regeneration. IQGAP3 has been shown to be required for proper cell proliferation and migration, and is associated to a number of cancers. Moreover, its expression is inversely correlated with the overall survival rate in the majority of cancers. Here, we show that IQGAP3 expression is elevated in cervical cancer and that in these cancers IQGAP3 high expression is correlated with an increased lethality. Furthermore, we demonstrate that IQGAP3 is a target of YAP, a regulator of cell cycle gene expression. IQGAP3 knockdown resulted in an increased percentage of HeLa cells in S phase, delayed progression through mitosis, and caused multipolar spindle formation and consequentially aneuploidy. Protein-protein interaction studies revealed that IQGAP3 interacts with MMS19, which is known in Drosophila to permit, by competitive binding to Xpd, Cdk7 to be fully active as a Cdk-activating kinase (CAK). Notably, IQGAP3 knockdown caused decreased MMS19 protein levels and XPD knockdown partially rescued the reduced proliferation rate upon IQGAP3 knockdown. This suggests that IQGAP3 modulates the cell cycle via the MMS19/XPD/CAK axis. Thus, in addition to governing proliferation and migration, IQGAP3 is a critical regulator of mitotic progression and genome stability. IMPLICATIONS: Our data indicate that, while IQGAP3 inhibition might be initially effective in decreasing cancer cell proliferation, this approach harbors the risk to promote aneuploidy and, therefore, the formation of more aggressive cancers.
Collapse
Affiliation(s)
- Marina Leone
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Salvador Cazorla-Vázquez
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Fulvia Ferrazzi
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Muscle Research Center Erlangen (MURCE), Erlangen, Germany
| | - Janica L Wiederstein
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marco Gründl
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Grit Weinstock
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Silvia Vergarajauregui
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus Eckstein
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Stefan Gaubatz
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany. .,Muscle Research Center Erlangen (MURCE), Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|