1
|
Nguyen VH, Mittelsten Scheid O, Gutzat R. Heat stress response and transposon control in plant shoot stem cells. PLANT PHYSIOLOGY 2025; 197:kiaf110. [PMID: 40155207 PMCID: PMC11997658 DOI: 10.1093/plphys/kiaf110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/07/2025] [Indexed: 04/01/2025]
Abstract
Plants have an impressive repertoire to react to stress conditions that limit regular growth. Elevated temperatures beyond the optimal range cause rapid and specific transcriptional responses, resulting in developmental alterations and plasticity. Heat stress also causes chromatin decondensation and activation of some transposable elements (TEs), endangering genomic integrity. This is especially risky for stem cells in the shoot apical meristem (SAM) that potentially contribute to the next generation. We examined how the heat stress response in SAM stem cells of Arabidopsis (Arabidopsis thaliana) is different from that in other tissues and whether the elements of epigenetic TE control active in the meristem are involved in specific heat protection of stem cells. Using fluorescence-activated nuclear sorting to isolate and characterize SAM stem cells after exposure to conditions that activate a heat-responsive TE, we found that SAM stem cells maintain their developmental program and suppress the heat-response pathways dominating in surrounding somatic cells. Furthermore, mutants defective in DNA methylation recovered less efficiently from heat stress and persistently activated heat response factors and heat-responsive TEs. Heat stress also induced epimutations at the level of DNA methylation, especially in the CHG sequence context. Regions with modified DNA methylation patterns remained altered for at least 3 wk beyond the stress. These findings urge for disentangling cell type-specific responses under different stress types, especially for stem cells as bridges to the next generation.
Collapse
Affiliation(s)
- Vu Hoang Nguyen
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ruben Gutzat
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| |
Collapse
|
2
|
Zhang D, Gan Y, Le L, Pu L. Epigenetic variation in maize agronomical traits for breeding and trait improvement. J Genet Genomics 2025; 52:307-318. [PMID: 38310944 DOI: 10.1016/j.jgg.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
Epigenetics-mediated breeding (epibreeding) involves engineering crop traits and stress responses through the targeted manipulation of key epigenetic features to enhance agricultural productivity. While conventional breeding methods raise concerns about reduced genetic diversity, epibreeding propels crop improvement through epigenetic variations that regulate gene expression, ultimately impacting crop yield. Epigenetic regulation in crops encompasses various modes, including histone modification, DNA modification, RNA modification, non-coding RNA, and chromatin remodeling. This review summarizes the epigenetic mechanisms underlying major agronomic traits in maize and identifies candidate epigenetic landmarks in the maize breeding process. We propose a valuable strategy for improving maize yield through epibreeding, combining CRISPR/Cas-based epigenome editing technology and Synthetic Epigenetics (SynEpi). Finally, we discuss the challenges and opportunities associated with maize trait improvement through epibreeding.
Collapse
Affiliation(s)
- Daolei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Yujun Gan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Hure V, Piron-Prunier F, Yehouessi T, Vitte C, Kornienko AE, Adam G, Nordborg M, Déléris A. Alternative silencing states of transposable elements in Arabidopsis associated with H3K27me3. Genome Biol 2025; 26:11. [PMID: 39833858 PMCID: PMC11745025 DOI: 10.1186/s13059-024-03466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND The DNA/H3K9 methylation and Polycomb-group proteins (PcG)-H3K27me3 silencing pathways have long been considered mutually exclusive and specific to transposable elements (TEs) and genes, respectively in mammals, plants, and fungi. However, H3K27me3 can be recruited to many TEs in the absence of DNA/H3K9 methylation machinery and sometimes also co-occur with DNA methylation. RESULTS In this study, we show that TEs can also be solely targeted and silenced by H3K27me3 in wild-type Arabidopsis plants. These H3K27me3-marked TEs not only comprise degenerate relics but also seemingly intact copies that display the epigenetic features of responsive PcG target genes as well as an active H3K27me3 regulation. We also show that H3K27me3 can be deposited on newly inserted transgenic TE sequences in a TE-specific manner indicating that silencing is determined in cis. Finally, a comparison of Arabidopsis natural accessions reveals the existence of a category of TEs-which we refer to as "bifrons"-that are marked by DNA methylation or H3K27me3 depending on the accession. This variation can be linked to intrinsic TE features and to trans-acting factors and reveals a change in epigenetic status across the TE lifespan. CONCLUSIONS Our study sheds light on an alternative mode of TE silencing associated with H3K27me3 instead of DNA methylation in flowering plants. It also suggests dynamic switching between the two epigenetic marks at the species level, a new paradigm that might extend to other multicellular eukaryotes.
Collapse
Affiliation(s)
- Valentin Hure
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Centre National de La Recherche Scientifique (CNRS), Commissariat À L'EnergieAtomique (CEA), Gif-Sur-Yvette, 91190, France
| | - Florence Piron-Prunier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Centre National de La Recherche Scientifique (CNRS), Commissariat À L'EnergieAtomique (CEA), Gif-Sur-Yvette, 91190, France
| | - Tamara Yehouessi
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Centre National de La Recherche Scientifique (CNRS), Commissariat À L'EnergieAtomique (CEA), Gif-Sur-Yvette, 91190, France
| | - Clémentine Vitte
- Université Paris-Saclay, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), CNRS, AgroParisTech, Génétique Quantitative et Evolution (GQE), Gif-Sur-Yvette, 91190, France
| | - Aleksandra E Kornienko
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Gabrielle Adam
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Gif-Sur-Yvette, 91190, France
| | - Magnus Nordborg
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Angélique Déléris
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Centre National de La Recherche Scientifique (CNRS), Commissariat À L'EnergieAtomique (CEA), Gif-Sur-Yvette, 91190, France.
| |
Collapse
|
4
|
DiBiase CN, Cheng X, Lee G, Moore RC, McCoy AG, Chilvers MI, Sun L, Wang D, Lin F, Zhao M. DNA methylation analysis reveals local changes in resistant and susceptible soybean lines in response to Phytophthora sansomeana. G3 (BETHESDA, MD.) 2024; 14:jkae191. [PMID: 39141590 PMCID: PMC11457093 DOI: 10.1093/g3journal/jkae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Phytophthora sansomeana is an emerging oomycete pathogen causing root rot in many agricultural species including soybean. However, as of now, only one potential resistance gene has been identified in soybean, and our understanding of how genetic and epigenetic regulation in soybean contributes to responses against this pathogen remains largely unknown. In this study, we performed whole genome bisulfite sequencing (WGBS) on two soybean lines, Colfax (resistant) and Williams 82 (susceptible), in response to P. sansomeana at two time points: 4 and 16 hours post-inoculation to compare their methylation changes. Our findings revealed that there were no significant changes in genome-wide CG, CHG (H = A, T, or C), and CHH methylation. However, we observed local methylation changes, specially an increase in CHH methylation around genes and transposable elements (TEs) after inoculation, which occurred earlier in the susceptible line and later in the resistant line. After inoculation, we identified differentially methylated regions (DMRs) in both Colfax and Williams 82, with a predominant presence in TEs. Notably, our data also indicated that more TEs exhibited changes in their methylomes in the susceptible line compared to the resistant line. Furthermore, we discovered 837 DMRs within or flanking 772 differentially expressed genes (DEGs) in Colfax and 166 DMRs within or flanking 138 DEGs in Williams 82. These DEGs had diverse functions, with Colfax primarily showing involvement in metabolic process, defense response, plant and pathogen interaction, anion and nucleotide binding, and catalytic activity, while Williams 82 exhibited a significant association with photosynthesis. These findings suggest distinct molecular responses to P. sansomeana infection in the resistant and susceptible soybean lines.
Collapse
Affiliation(s)
| | - Xi Cheng
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32611, USA
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Gwonjin Lee
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Richard C Moore
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Austin G McCoy
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Lianjun Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Fisher Delta Research, Extension, and Education Center, Division of Plant Sciences and Technology, University of Missouri, Portageville, MO 63873, USA
| | - Meixia Zhao
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32611, USA
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Sereshki S, Lonardi S. Predicting Differentially Methylated Cytosines in TET and DNMT3 Knockout Mutants via a Large Language Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592257. [PMID: 39282350 PMCID: PMC11398415 DOI: 10.1101/2024.05.02.592257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
DNA cytosine methylation is an epigenetic marker which regulates many cellular processes. Mammalian genomes typically maintain consistent methylation patterns over time, except in specific regulatory regions like promoters and certain types of enhancers. The dynamics of DNA methylation is controlled by a complex cellular machinery, in which the enzymes DNMT3 and TET play a major role. This study explores the identification of differentially methylated cytosines (DMCs) in TET and DNMT3 knockout mutants in mice and human embryonic stem cells. We investigate (i) whether a large language model can be trained to recognize DMCs in human and mouse from the sequence surrounding the cytosine of interest, (ii) whether a classifier trained on human knockout data can predict DMCs in the mouse genome (and vice versa), (iii) whether a classifier trained on DNMT3 knockout can predict DMCs for TET knockout (and vice versa). Our study identifies statistically significant motifs associated with the prediction of DMCs each mutant, casting a new light on the understanding of DNA methylation dynamics in stem cells. Our software tool is available at https://github.com/ucrbioinfo/dmc_prediction.
Collapse
Affiliation(s)
- Saleh Sereshki
- Department of Computer Science and Engineering, University of California, Riverside, 900 University Ave, Riverside, 92521, CA, United States
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, Riverside, 900 University Ave, Riverside, 92521, CA, United States
| |
Collapse
|
6
|
Lee G, DiBiase CN, Liu B, Li T, McCoy AG, Chilvers MI, Sun L, Wang D, Lin F, Zhao M. Transcriptomic and epigenetic responses shed light on soybean resistance to Phytophthora sansomeana. THE PLANT GENOME 2024; 17:e20487. [PMID: 39001589 DOI: 10.1002/tpg2.20487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 11/18/2024]
Abstract
Phytophthora root rot, caused by oomycete pathogens in the Phytophthora genus, poses a significant threat to soybean productivity. While resistance mechanisms against Phytophthora sojae have been extensively studied in soybean, the molecular basis underlying immune responses to Phytophthora sansomeana remains unclear. In this study, we investigated transcriptomic and epigenetic responses of two resistant (Colfax and NE2701) and two susceptible (Williams 82 and Senaki) soybean lines at four time points (2, 4, 8, and 16 h post inoculation [hpi]) after P. sansomeana inoculation. Comparative transcriptomic analyses revealed a greater number of differentially expressed genes (DEGs) upon pathogen inoculation in resistant lines, particularly at 8 and 16 hpi. These DEGs were predominantly associated with defense response, ethylene, and reactive oxygen species-mediated defense pathways. Moreover, DE transposons were predominantly upregulated after inoculation, and more of them were enriched near genes in Colfax than other soybean lines. Notably, we identified a long non-coding RNA (lncRNA) within the mapped region of the resistance gene that exhibited exclusive upregulation in the resistant lines after inoculation, potentially regulating two flanking LURP-one-related genes. Furthermore, DNA methylation analysis revealed increased CHH (where H = A, T, or C) methylation levels in lncRNAs after inoculation, with delayed responses in Colfax compared to Williams 82. Overall, our results provide comprehensive insights into soybean responses to P. sansomeana, highlighting potential roles of lncRNAs and epigenetic regulation in plant defense.
Collapse
Affiliation(s)
- Gwonjin Lee
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | | | - Beibei Liu
- Department of Biology, Miami University, Oxford, Ohio, USA
| | - Tong Li
- Department of Biology, Miami University, Oxford, Ohio, USA
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Austin G McCoy
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Lianjun Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
- Fisher Delta Research, Extension, and Education Center, Division of Plant Sciences and Technology, University of Missouri, Portageville, Missouri, USA
| | - Meixia Zhao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Liu B, Yang D, Wang D, Liang C, Wang J, Lisch D, Zhao M. Heritable changes of epialleles near genes in maize can be triggered in the absence of CHH methylation. PLANT PHYSIOLOGY 2024; 194:2511-2532. [PMID: 38109503 PMCID: PMC10980416 DOI: 10.1093/plphys/kiad668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023]
Abstract
Trans-chromosomal interactions resulting in changes in DNA methylation during hybridization have been observed in several plant species. However, little is known about the causes or consequences of these interactions. Here, we compared DNA methylomes of F1 hybrids that are mutant for a small RNA biogenesis gene, Mop1 (Mediator of paramutation1), with that of their parents, wild-type siblings, and backcrossed progeny in maize (Zea mays). Our data show that hybridization triggers global changes in both trans-chromosomal methylation (TCM) and trans-chromosomal demethylation (TCdM), most of which involved changes in CHH methylation. In more than 60% of these TCM differentially methylated regions (DMRs) in which small RNAs are available, no significant changes in the quantity of small RNAs were observed. Methylation at the CHH TCM DMRs was largely lost in the mop1 mutant, although the effects of this mutant varied depending on the location of these DMRs. Interestingly, an increase in CHH at TCM DMRs was associated with enhanced expression of a subset of highly expressed genes and suppressed expression of a small number of lowly expressed genes. Examination of the methylation levels in backcrossed plants demonstrates that both TCM and TCdM can be maintained in the subsequent generation, but that TCdM is more stable than TCM. Surprisingly, although increased CHH methylation in most TCM DMRs in F1 plants required Mop1, initiation of a new epigenetic state of these DMRs did not require a functional copy of this gene, suggesting that initiation of these changes is independent of RNA-directed DNA methylation.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Diya Yang
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Dafang Wang
- Biology Department, Hofstra University, Hempstead, NY 11549, USA
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Meixia Zhao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Miloro F, Kis A, Havelda Z, Dalmadi Á. Barley AGO4 proteins show overlapping functionality with distinct small RNA-binding properties in heterologous complementation. PLANT CELL REPORTS 2024; 43:96. [PMID: 38480545 PMCID: PMC10937801 DOI: 10.1007/s00299-024-03177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
KEY MESSAGE Barley AGO4 proteins complement expressional changes of epigenetically regulated genes in Arabidopsis ago4-3 mutant and show a distinct affinity for the 5' terminal nucleotide of small RNAs, demonstrating functional conservation and divergence. The function of Argonaute 4 (AGO4) in Arabidopsis thaliana has been extensively characterized; however, its role in monocots, which have large genomes abundantly supplemented with transposable elements (TEs), remains elusive. The study of barley AGO4 proteins can provide insights into the conserved aspects of RNA-directed DNA methylation (RdDM) and could also have further applications in the field of epigenetics or crop improvement. Bioinformatic analysis of RNA sequencing data identified two active AGO4 genes in barley, HvAGO4a and HvAGO4b. These genes function similar to AtAGO4 in an Arabidopsis heterologous complementation system, primarily binding to 24-nucleotide long small RNAs (sRNAs) and triggering methylation at specific target loci. Like AtAGO4, HvAGO4B exhibits a preference for binding sRNAs with 5' adenine residue, while also accepting 5' guanine, uracil, and cytosine residues. In contrast, HvAGO4A selectively binds only sRNAs with a 5' adenine residue. The diverse binding capacity of barley AGO4 proteins is reflected in TE-derived sRNAs and in their varying abundance. Both barley AGO4 proteins effectively restore the levels of extrachromosomal DNA and transcript abundancy of the heat-activated ONSEN retrotransposon to those observed in wild-type Arabidopsis plants. Our study provides insight into the distinct binding specificities and involvement in TE regulation of barley AGO4 proteins in Arabidopsis by heterologous complementation.
Collapse
Affiliation(s)
- Fabio Miloro
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary
| | - András Kis
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
| | - Zoltán Havelda
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary
| | - Ágnes Dalmadi
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary.
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary.
| |
Collapse
|
9
|
Liu XS, Li H, Feng SJ, Yang ZM. A transposable element-derived siRNAs involve DNA hypermethylation at the promoter of OsGSTZ4 for cadmium tolerance in rice. Gene 2024; 892:147900. [PMID: 37839767 DOI: 10.1016/j.gene.2023.147900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Environmental contaminants such as cadmium (Cd) pose high risks to crop production and human health. The genetic basis for regulation of Cd stress-responsive genes for plant adaptation to adverse environments remains poorly understood. In this study, we characterized a rice Zeta family glutathione-S-transferase (OsGSTZ4) gene for Cd detoxification. Heterologous expression of OsGSTZ4 in a yeast (Saccharomyces cerevisiae) conferred cellular Cd tolerance. Transgenic rice overexpressing OsGSTZ4 improved plant growth, attenuated Cd-induced toxicity, and accumulated more Cd in roots. OsGSTZ4 transcription was rapidly induced 3 h after Cd exposure and then declined to the basal level. This was followed by (days after Cd treatment) by CHH hypermethylation (by 41.2 %) at a MITE (Miniature Inverted-repeat Transposable Element) transposable element (TE) inserted in the 5'-untranscribed region (UTR) (-1,722 ∼ -1,392 bp) of OsGSTZ4. Meanwhile, three 24-nt siRNAs derived from the TE (-1,722 ∼ -1,471 bp) were detected and was also rapidly enriched under Cd stress. To validate the possibility that Cd-induced change in OsGSTZ4 expression correlates with the siRNAs-involved CHH methylation through an RdDM (RNA-directed DNA methylation) pathway, genetic analyses were performed. We found that the CHH methylation at the promoter and transcript level of OsGSTZ4 were compromised in the osdrm2 (loss of function for CHH methylation) and osrdr2i (defective in RNA-dependent RNA polymerase 2) but did not change in other types of methyltransferases such as osmet1, ossdg714 or osros1. Promoter deletion analyses confirmed that the siRNA target sequences were essential for the proper expression of OsGSTZ4. Our studies reveal an unusual feedback mechanism by which the Cd-induced rapid OsGSTZ4 expression for Cd tolerance would interplay with the late CHH hypermethylation to silence the TE through the 24-nt siRNAs- and Osdrm2-mediated RdDM pathway, and help understand the diversity of gene regulation via an epigenetic mechanism for rice adaptation to the environmental stress.
Collapse
Affiliation(s)
- Xue Song Liu
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - He Li
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Jun Feng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Cai L, Ma A, Lei J, He C. METTL4-mediated N 6-methyladenine DNA modification regulates thermotolerance in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111916. [PMID: 37944704 DOI: 10.1016/j.plantsci.2023.111916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
DNA N6-methyladenine (6 mA) is an evolutionarily conserved DNA modification in procaryotes and eukaryotes. The DNA 6 mA methylation is tightly controlled by 6 mA regulatory proteins. DNA N6-adenine methyltransferase 1 (DAMT-1) has been identified as a DNA 6 mA methyltransferase in animals. In plants, DNA 6 mA methylation has been found, however, the DNA 6 mA methyltransferases and their function in plants are largely unknown. In our study, we find METTL4 is a DNA 6 mA methyltransferase in Arabidopsis thaliana. Both in vitro and in vivo evidences support the DNA 6 mA methyltransferase activity of METTL4. mettl4 mutant is hypersensitive to heat stress, suggesting DNA 6 mA methylation plays important role in heat stress adaption. RNA-seq and 6 mA IP-qPCR analysis show that METTL4 participates in heat stress tolerance by regulating expression of heat responsive genes. Our study find METTL4 is a plant DNA 6 mA methyltransferase and illustrates its function in regulating heat stress response.
Collapse
Affiliation(s)
- Linjun Cai
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082 Hunan, China
| | - Ancheng Ma
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082 Hunan, China
| | - Jiao Lei
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082 Hunan, China
| | - Chongsheng He
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082 Hunan, China.
| |
Collapse
|
11
|
Zheng M, Song Y, Wang L, Yang D, Yan J, Sun Y, Hsu YF. CaRH57, a RNA helicase, contributes pepper tolerance to heat stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108202. [PMID: 37995575 DOI: 10.1016/j.plaphy.2023.108202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/19/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
RNA helicases (RHs) are required for most aspects of RNA metabolism and play an important role in plant stress tolerance. Heat stress (HS) causes the deleterious effects on plant cells, such as membrane disruption and protein misfolding, which results in the inhibition of plant growth and development. In this study, CaRH57 was identified from pepper (Capsicum annuum) and encodes a DEAD-box RH. CaRH57 was induced by HS, and overexpression of CaRH57 in Atrh57-1 rescued the glucose-sensitive phenotype of Atrh57-1, suggesting the functional replacement of CaRH57 to AtRH57. The nucleolus-localized CaRH57 possessed a RH activity in vitro. CaRH57 knockdown impaired pepper heat tolerance, showing severe necrosis and enhanced ROS accumulation in the region of the shoot tip. Additionally, accumulation of aberrant-spliced CaHSFA1d and CaHSFA9d was enhanced, and the corresponding mature mRNA levels were reduced in the TRV2 (Tobacco rattle virus)-CaRH57-infected plants compared with the control plants under HS. Overall, these results suggested that CaRH57 acted as a RH to confer pepper heat tolerance and was required for the proper pre-mRNA splicing of some HS-related genes.
Collapse
Affiliation(s)
- Min Zheng
- School of Life Sciences, Southwest University, Chongqing, China.
| | - Yu Song
- School of Life Sciences, Southwest University, Chongqing, China
| | - Lingyu Wang
- School of Life Sciences, Southwest University, Chongqing, China
| | - Dandan Yang
- School of Life Sciences, Southwest University, Chongqing, China
| | - Jiawen Yan
- School of Life Sciences, Southwest University, Chongqing, China
| | - Yutao Sun
- School of Life Sciences, Southwest University, Chongqing, China
| | - Yi-Feng Hsu
- School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
12
|
Liu B, Zhao M. How transposable elements are recognized and epigenetically silenced in plants? CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102428. [PMID: 37481986 DOI: 10.1016/j.pbi.2023.102428] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023]
Abstract
Plant genomes are littered with transposable elements (TEs). Because TEs are potentially highly mutagenic, host organisms have evolved a set of defense mechanisms to recognize and epigenetically silence them. Although the maintenance of TE silencing is well studied, our understanding of the initiation of TE silencing is limited, but it clearly involves small RNAs and DNA methylation. Once TEs are silent, the silent state can be maintained to subsequent generations. However, under some circumstances, such inheritance is unstable, leading to the escape of TEs to the silencing machinery, resulting in the transcriptional activation of TEs. Epigenetic control of TEs has been found to be closely linked to many other epigenetic phenomena, such as genomic imprinting, and is known to contribute to regulation of genes, especially those near TEs. Here we review and discuss the current models of TE silencing, its unstable inheritance after hybridization, and the effects of epigenetic regulation of TEs on genomic imprinting.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Meixia Zhao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
13
|
Diogo-Jr R, de Resende Von Pinho EV, Pinto RT, Zhang L, Condori-Apfata JA, Pereira PA, Vilela DR. Maize heat shock proteins-prospection, validation, categorization and in silico analysis of the different ZmHSP families. STRESS BIOLOGY 2023; 3:37. [PMID: 37981586 PMCID: PMC10482818 DOI: 10.1007/s44154-023-00104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/05/2023] [Indexed: 11/21/2023]
Abstract
Among the plant molecular mechanisms capable of effectively mitigating the effects of adverse weather conditions, the heat shock proteins (HSPs), a group of chaperones with multiple functions, stand out. At a time of full progress on the omic sciences, they look very promising in the genetic engineering field, especially in order to conceive superior genotypes, potentially tolerant to abiotic stresses (AbSts). Recently, some works concerning certain families of maize HSPs (ZmHSPs) were published. However, there was still a lack of a study that, with a high degree of criteria, would fully conglomerate them. Using distinct but complementary strategies, we have prospected as many ZmHSPs candidates as possible, gathering more than a thousand accessions. After detailed data mining, we accounted for 182 validated ones, belonging to seven families, which were subcategorized into classes with potential for functional parity. In them, we identified dozens of motifs with some degree of similarity with proteins from different kingdoms, which may help explain some of their still poorly understood means of action. Through in silico and in vitro approaches, we compared their expression levels after controlled exposure to several AbSts' sources, applied at diverse tissues, on varied phenological stages. Based on gene ontology concepts, we still analyzed them from different perspectives of term enrichment. We have also searched, in model plants and close species, for potentially orthologous genes. With all these new insights, which culminated in a plentiful supplementary material, rich in tables, we aim to constitute a fertile consultation source for those maize researchers attracted by these interesting stress proteins.
Collapse
Affiliation(s)
- Rubens Diogo-Jr
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, (47907), USA.
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, MG, (37200-900), Brazil.
| | | | - Renan Terassi Pinto
- Faculty of Philosophy and Sciences at Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, SP, (14040-901), Brazil
| | - Lingrui Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, (47907), USA
| | - Jorge Alberto Condori-Apfata
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, (47907), USA
- Faculty of Engineering and Agricultural Sciences, Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas (UNTRM), Chachapoyas, AM, (01001), Peru
| | - Paula Andrade Pereira
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, MG, (37200-900), Brazil
| | - Danielle Rezende Vilela
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, MG, (37200-900), Brazil
| |
Collapse
|
14
|
Yang F, Sun Y, Du X, Chu Z, Zhong X, Chen X. Plant-specific histone deacetylases associate with ARGONAUTE4 to promote heterochromatin stabilization and plant heat tolerance. THE NEW PHYTOLOGIST 2023; 238:252-269. [PMID: 36631970 DOI: 10.1111/nph.18729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
High temperature causes devasting effects on many aspects of plant cells and thus enhancing plant heat tolerance is critical for crop production. Emerging studies have revealed the important roles of chromatin modifications in heat stress responses. However, how chromatin is regulated during heat stress remains unclear. We show that heat stress results in heterochromatin disruption coupled with histone hyperacetylation and DNA hypomethylation. Two plant-specific histone deacetylases HD2B and HD2C could promote DNA methylation and relieve the heat-induced heterochromatin decondensation. We noted that most DNA methylation regulated by HD2B and HD2C is lost upon heat stress. HD2B- and HD2C-regulated histone acetylation and DNA methylation are dispensable for heterochromatin maintenance under normal conditions, but critical for heterochromatin stabilization under heat stress. We further showed that HD2B and HD2C promoted DNA methylation through associating with ARGONAUTE4 in nucleoli and Cajal bodies, and facilitating its nuclear accumulation. Thus, HD2B and HD2C act both canonically and noncanonically to stabilize heterochromatin under heat stress. This study not only reveals a novel plant-specific crosstalk between histone deacetylases and key factor of DNA methylation pathway, but also uncovers their new roles in chromatic regulation of plant heat tolerance.
Collapse
Affiliation(s)
- Fangfang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Yingnan Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Xiaoxuan Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Xuehua Zhong
- Department of Biology, Washington University, St Louis, MO, 63130, USA
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| |
Collapse
|
15
|
Liu P, Cuerda-Gil D, Shahid S, Slotkin RK. The Epigenetic Control of the Transposable Element Life Cycle in Plant Genomes and Beyond. Annu Rev Genet 2022; 56:63-87. [DOI: 10.1146/annurev-genet-072920-015534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Within the life cycle of a living organism, another life cycle exists for the selfish genome inhabitants, which are called transposable elements (TEs). These mobile sequences invade, duplicate, amplify, and diversify within a genome, increasing the genome's size and generating new mutations. Cells act to defend their genome, but rather than permanently destroying TEs, they use chromatin-level repression and epigenetic inheritance to silence TE activity. This level of silencing is ephemeral and reversible, leading to a dynamic equilibrium between TE suppression and reactivation within a host genome. The coexistence of the TE and host genome can also lead to the domestication of the TE to serve in host genome evolution and function. In this review, we describe the life cycle of a TE, with emphasis on how epigenetic regulation is harnessed to control TEs for host genome stability and innovation.
Collapse
Affiliation(s)
- Peng Liu
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Diego Cuerda-Gil
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Graduate Program in the Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Saima Shahid
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - R. Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
16
|
Velay F, Méteignier LV, Laloi C. You shall not pass! A Chromatin barrier story in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:888102. [PMID: 36212303 PMCID: PMC9540200 DOI: 10.3389/fpls.2022.888102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
As in other eukaryotes, the plant genome is functionally organized in two mutually exclusive chromatin fractions, a gene-rich and transcriptionally active euchromatin, and a gene-poor, repeat-rich, and transcriptionally silent heterochromatin. In Drosophila and humans, the molecular mechanisms by which euchromatin is preserved from heterochromatin spreading have been extensively studied, leading to the identification of insulator DNA elements and associated chromatin factors (insulator proteins), which form boundaries between chromatin domains with antagonistic features. In contrast, the identity of factors assuring such a barrier function remains largely elusive in plants. Nevertheless, several genomic elements and associated protein factors have recently been shown to regulate the spreading of chromatin marks across their natural boundaries in plants. In this minireview, we focus on recent findings that describe the spreading of chromatin and propose avenues to improve the understanding of how plant chromatin architecture and transitions between different chromatin domains are defined.
Collapse
Affiliation(s)
- Florent Velay
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, Marseille, F-13009, France
| | - Louis-Valentin Méteignier
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, Marseille, F-13009, France
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Christophe Laloi
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, Marseille, F-13009, France
| |
Collapse
|
17
|
Gu X, Su Y, Wang T. 转座元件对植物基因组进化、表观遗传和适应性的作用. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Guo W, Cannon A, Lisch D. A Molecular Cloning and Sanger Sequencing-based Protocol for Detecting Site-specific DNA Methylation. Bio Protoc 2022; 12:e4408. [PMID: 35800457 PMCID: PMC9090521 DOI: 10.21769/bioprotoc.4408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/22/2022] [Indexed: 12/29/2022] Open
Abstract
DNA methylation is a conserved chemical modification, by which methyl groups are added to the cytosine of DNA molecules. Methylation can influence gene expression without changing the sequence of a particular gene. This epigenetic effect is an intriguing phenomenon that has puzzled biologists for years. By probing the temporal and spatial patterns of DNA methylation in genomes, it is possible to learn about the biological role of cytosine methylation, as well as its involvement in gene regulation and transposon silencing. Advances in whole-genome sequencing have led to the widespread adoption of methods that examine genome-wide patterns of DNA methylation. Achieving sufficient sequencing depth in these types of experiments is costly, particularly for pilot studies in organisms with large genome sizes, or incomplete reference genomes. To overcome this issue, assays to determine site-specific DNA methylation can be used. Although often used, these assays are rarely described in detail. Here, we describe a pipeline that applies traditional TA cloning, Sanger sequencing, and online tools to examine DNA methylation. We provide an example of how to use this protocol to examine the pattern of DNA methylation at a specific transposable element in maize.
Collapse
Affiliation(s)
- Wei Guo
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States
| | - Anthony Cannon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States; ,
*For correspondence:
| |
Collapse
|
19
|
Chen Z, Galli M, Gallavotti A. Mechanisms of temperature-regulated growth and thermotolerance in crop species. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102134. [PMID: 34749068 DOI: 10.1016/j.pbi.2021.102134] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Temperature is a major environmental factor affecting the development and productivity of crop species. The ability to cope with periods of high temperatures, also known as thermotolerance, is becoming an increasingly indispensable trait for the future of agriculture owing to the current trajectory of average global temperatures. From temperature sensing to downstream transcriptional changes, here, we review recent findings involving the thermal regulation of plant growth and the effects of heat on hormonal pathways, reactive oxygen species, and epigenetic regulation. We also highlight recent approaches and strategies that could be integrated to confront the challenges in sustaining crop productivity in future decades.
Collapse
Affiliation(s)
- Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA; Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
20
|
Tang Y, Yan X, Gu C, Yuan X. Biogenesis, Trafficking, and Function of Small RNAs in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:825477. [PMID: 35251095 PMCID: PMC8891129 DOI: 10.3389/fpls.2022.825477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 05/03/2023]
Abstract
Small RNAs (sRNAs) encoded by plant genomes have received widespread attention because they can affect multiple biological processes. Different sRNAs that are synthesized in plant cells can move throughout the plants, transport to plant pathogens via extracellular vesicles (EVs), and transfer to mammals via food. Small RNAs function at the target sites through DNA methylation, RNA interference, and translational repression. In this article, we reviewed the systematic processes of sRNA biogenesis, trafficking, and the underlying mechanisms of its functions.
Collapse
Affiliation(s)
- Yunjia Tang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoning Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxian Gu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Yuan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiaofeng Yuan,
| |
Collapse
|