1
|
Rickelton K, Ely JJ, Hopkins WD, Hof PR, Sherwood CC, Bauernfeind AL, Babbitt CC. Transcriptomic changes across subregions of the primate cerebellum support the evolution of uniquely human behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641249. [PMID: 40093170 PMCID: PMC11908169 DOI: 10.1101/2025.03.03.641249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background Compared to other primates, humans display unique behaviors including language and complex tool use. These abilities are made possible in part by the cerebellum. This region of the hindbrain, comprising the flocculus, vermis, and lateral hemispheres, has expanded throughout primate evolution, particularly in great apes. Given the cerebellum's architecture-differing in connectivity, neuron content, and functions across subregions-examining subregional differences is crucial to understanding its evolutionary trajectory. Results We performed bulk RNA-seq across samples from six primate species, representing 40-50 million years of evolutionary history, across four subregions of the cerebellum (vermis, flocculus, right lateral hemisphere, left lateral hemisphere). We analyzed changes in gene expression with respect to evolutionary relationships via the Ornstein-Uhlenbeck model and found that, on average, 8.5% of orthologous genes are differentially expressed in humans relative to other non-human primates. Subregion-specific gene expression patterns reveal that the primate lateral hemispheres exhibit significant differences in synaptic activity and glucose metabolism, which in turn are highly implicated in neural processing. Conclusions This study provides a novel perspective on gene expression divergences across cerebellar subregions in multiple primate species, offering valuable insights into the evolution of this brain structure. Our findings reveal distinct subregional transcriptomic patterns, with the lateral hemispheres emerging as key sites of divergence across the six primate species. The enrichment of genes related to synaptic activity, glucose metabolism, locomotion, and vocalization highlights the cerebellum's crucial role in supporting the neural complexity underlying uniquely human and other species-specific primate behaviors.
Collapse
Affiliation(s)
- Katherine Rickelton
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - John J Ely
- Alamogordo Primate Facility, Holloman Air Force Base, NM 88330, USA
| | - William D Hopkins
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine, The University of Texas M D Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Center for Discovery and Innovation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- New York Consortium in Evolutionary Primatology, New York, NY 10124, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Amy L Bauernfeind
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Courtney C Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Udine E, Finch NA, DeJesus-Hernandez M, Jackson JL, Baker MC, Saravanaperumal SA, Wieben E, Ebbert MTW, Shah J, Petrucelli L, Rademakers R, Oskarsson B, van Blitterswijk M. Targeted long-read sequencing to quantify methylation of the C9orf72 repeat expansion. Mol Neurodegener 2024; 19:99. [PMID: 39709476 DOI: 10.1186/s13024-024-00790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND The gene C9orf72 harbors a non-coding hexanucleotide repeat expansion known to cause amyotrophic lateral sclerosis and frontotemporal dementia. While previous studies have estimated the length of this repeat expansion in multiple tissues, technological limitations have impeded researchers from exploring additional features, such as methylation levels. METHODS We aimed to characterize C9orf72 repeat expansions using a targeted, amplification-free long-read sequencing method. Our primary goal was to determine the presence and subsequent quantification of observed methylation in the C9orf72 repeat expansion. In addition, we measured the repeat length and purity of the expansion. To do this, we sequenced DNA extracted from blood for 27 individuals with an expanded C9orf72 repeat. RESULTS For these individuals, we obtained a total of 7,765 on-target reads, including 1,612 fully covering the expanded allele. Our in-depth analysis revealed that the expansion itself is methylated, with great variability in total methylation levels observed, as represented by the proportion of methylated CpGs (13 to 66%). Interestingly, we demonstrated that the expanded allele is more highly methylated than the wild-type allele (P-Value = 2.76E-05) and that increased methylation levels are observed in longer repeat expansions (P-Value = 1.18E-04). Furthermore, methylation levels correlate with age at collection (P-Value = 3.25E-04) as well as age at disease onset (P-Value = 0.020). Additionally, we detected repeat lengths up to 4,088 repeats (~ 25 kb) and found that the expansion contains few interruptions in the blood. CONCLUSIONS Taken together, our study demonstrates robust ability to quantify methylation of the expanded C9orf72 repeat, capturing differences between individuals harboring this expansion and revealing clinical associations.
Collapse
Affiliation(s)
- Evan Udine
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - NiCole A Finch
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Jazmyne L Jackson
- Fels Cancer Institute for Personalized Medicine, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Eric Wieben
- Genome Analysis Core, Mayo Clinic, Rochester, MN, USA
| | - Mark T W Ebbert
- Department of Neuroscience, University of Kentucky Sanders-Brown Center on Aging, Lexington, KY, USA
| | - Jaimin Shah
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
| | | | - Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
3
|
Navandar M, Vennin C, Lutz B, Gerber S. Long non-coding RNAs expression and regulation across different brain regions in primates. Sci Data 2024; 11:545. [PMID: 38806530 PMCID: PMC11133376 DOI: 10.1038/s41597-024-03380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Human and non-human primates have strikingly similar genomes, but they strongly differ in many brain-based processes (e.g., behaviour and cognition). While the functions of protein-coding genes have been extensively studied, rather little is known about the role of non-coding RNAs such as long non-coding RNAs (lncRNAs). Here, we predicted lncRNAs and analysed their expression pattern across different brain regions of human and non-human primates (chimpanzee, gorilla, and gibbon). Our analysis identified shared orthologous and non-orthologous lncRNAs, showing striking differences in the genomic features. Differential expression analysis of the shared orthologous lncRNAs from humans and chimpanzees revealed distinct expression patterns in subcortical regions (striatum, hippocampus) and neocortical areas while retaining a homogeneous expression in the cerebellum. Co-expression analysis of lncRNAs and protein-coding genes revealed massive proportions of co-expressed pairs in neocortical regions of humans compared to chimpanzees. Network analysis of co-expressed pairs revealed the distinctive role of the hub-acting orthologous lncRNAs in a region- and species-specific manner. Overall, our study provides novel insight into lncRNA driven gene regulatory landscape, neural regulation, brain evolution, and constitutes a resource for primate's brain lncRNAs.
Collapse
Affiliation(s)
- Mohit Navandar
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Constance Vennin
- Leibniz Institute for Resilience Research, 55122, Mainz, Germany
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Beat Lutz
- Leibniz Institute for Resilience Research, 55122, Mainz, Germany
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Susanne Gerber
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
4
|
Chen S, Liu S, Shi S, Yin H, Tang Y, Zhang J, Li W, Liu G, Qu K, Ding X, Wang Y, Liu J, Zhang S, Fang L, Yu Y. Cross-Species Comparative DNA Methylation Reveals Novel Insights into Complex Trait Genetics among Cattle, Sheep, and Goats. Mol Biol Evol 2024; 41:msae003. [PMID: 38266195 PMCID: PMC10834038 DOI: 10.1093/molbev/msae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
The cross-species characterization of evolutionary changes in the functional genome can facilitate the translation of genetic findings across species and the interpretation of the evolutionary basis underlying complex phenotypes. Yet, this has not been fully explored between cattle, sheep, goats, and other mammals. Here, we systematically characterized the evolutionary dynamics of DNA methylation and gene expression in 3 somatic tissues (i.e. brain, liver, and skeletal muscle) and sperm across 7 mammalian species, including 3 ruminant livestock species (cattle, sheep, and goats), humans, pigs, mice, and dogs, by generating and integrating 160 DNA methylation and transcriptomic data sets. We demonstrate dynamic changes of DNA hypomethylated regions and hypermethylated regions in tissue-type manner across cattle, sheep, and goats. Specifically, based on the phylo-epigenetic model of DNA methylome, we identified a total of 25,074 hypomethylated region extension events specific to cattle, which participated in rewiring tissue-specific regulatory network. Furthermore, by integrating genome-wide association studies of 50 cattle traits, we provided novel insights into the genetic and evolutionary basis of complex phenotypes in cattle. Overall, our study provides a valuable resource for exploring the evolutionary dynamics of the functional genome and highlights the importance of cross-species characterization of multiomics data sets for the evolutionary interpretation of complex phenotypes in cattle livestock.
Collapse
Affiliation(s)
- Siqian Chen
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuli Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Shaolei Shi
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hongwei Yin
- Agriculture Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yongjie Tang
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinning Zhang
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenlong Li
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gang Liu
- National Animal Husbandry Service, Beijing 100125, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yachun Wang
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianfeng Liu
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Zhang
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics (QGG), Aarhus University, Aarhus, Denmark
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
de Sousa AA, Beaudet A, Calvey T, Bardo A, Benoit J, Charvet CJ, Dehay C, Gómez-Robles A, Gunz P, Heuer K, van den Heuvel MP, Hurst S, Lauters P, Reed D, Salagnon M, Sherwood CC, Ströckens F, Tawane M, Todorov OS, Toro R, Wei Y. From fossils to mind. Commun Biol 2023; 6:636. [PMID: 37311857 PMCID: PMC10262152 DOI: 10.1038/s42003-023-04803-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/04/2023] [Indexed: 06/15/2023] Open
Abstract
Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology's approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior.
Collapse
Affiliation(s)
| | - Amélie Beaudet
- Laboratoire de Paléontologie, Évolution, Paléoécosystèmes et Paléoprimatologie (PALEVOPRIM), UMR 7262 CNRS & Université de Poitiers, Poitiers, France.
- University of Cambridge, Cambridge, UK.
| | - Tanya Calvey
- Division of Clinical Anatomy and Biological Anthropology, University of Cape Town, Cape Town, South Africa.
| | - Ameline Bardo
- UMR 7194, CNRS-MNHN, Département Homme et Environnement, Musée de l'Homme, Paris, France
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Julien Benoit
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Colette Dehay
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500, Bron, France
| | | | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| | - Katja Heuer
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | | | - Shawn Hurst
- University of Indianapolis, Indianapolis, IN, USA
| | - Pascaline Lauters
- Institut royal des Sciences naturelles, Direction Opérationnelle Terre et Histoire de la Vie, Brussels, Belgium
| | - Denné Reed
- Department of Anthropology, University of Texas at Austin, Austin, TX, USA
| | - Mathilde Salagnon
- CNRS, CEA, IMN, GIN, UMR 5293, Université Bordeaux, Bordeaux, France
- PACEA UMR 5199, CNRS, Université Bordeaux, Pessac, France
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Felix Ströckens
- C. & O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirriam Tawane
- Ditsong National Museum of Natural History, Pretoria, South Africa
| | - Orlin S Todorov
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Roberto Toro
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | - Yongbin Wei
- Beijing University of Posts and Telecommunications, Beijing, China
| |
Collapse
|
6
|
Ekström AG, Edlund J. Evolution of the human tongue and emergence of speech biomechanics. Front Psychol 2023; 14:1150778. [PMID: 37325743 PMCID: PMC10266234 DOI: 10.3389/fpsyg.2023.1150778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
The tongue is one of the organs most central to human speech. Here, the evolution and species-unique properties of the human tongue is traced, via reference to the apparent articulatory behavior of extant non-human great apes, and fossil findings from early hominids - from a point of view of articulatory phonetics, the science of human speech production. Increased lingual flexibility provided the possibility of mapping of articulatory targets, possibly via exaptation of manual-gestural mapping capacities evident in extant great apes. The emergence of the human-specific tongue, its properties, and morphology were crucial to the evolution of human articulate speech.
Collapse
|
7
|
Szwarc MM, Guarnieri AL, Joshi M, Duc HN, Laird MC, Pandey A, Khanal S, Dohm E, Bui AK, Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM. FAM193A is a positive regulator of p53 activity. Cell Rep 2023; 42:112230. [PMID: 36897777 PMCID: PMC10164416 DOI: 10.1016/j.celrep.2023.112230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
Inactivation of the p53 tumor suppressor, either by mutations or through hyperactivation of repressors such as MDM2 and MDM4, is a hallmark of cancer. Although many inhibitors of the p53-MDM2/4 interaction have been developed, such as Nutlin, their therapeutic value is limited by highly heterogeneous cellular responses. We report here a multi-omics investigation of the cellular response to MDM2/4 inhibitors, leading to identification of FAM193A as a widespread regulator of p53 function. CRISPR screening identified FAM193A as necessary for the response to Nutlin. FAM193A expression correlates with Nutlin sensitivity across hundreds of cell lines. Furthermore, genetic codependency data highlight FAM193A as a component of the p53 pathway across diverse tumor types. Mechanistically, FAM193A interacts with MDM4, and FAM193A depletion stabilizes MDM4 and inhibits the p53 transcriptional program. Last, FAM193A expression is associated with better prognosis in multiple malignancies. Altogether, these results identify FAM193A as a positive regulator of p53.
Collapse
Affiliation(s)
- Maria M Szwarc
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anna L Guarnieri
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Huy N Duc
- Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Madison C Laird
- Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ahwan Pandey
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Santosh Khanal
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily Dohm
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Aimee K Bui
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelly D Sullivan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zdenek Andrysik
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
8
|
Marshall LJ, Bailey J, Cassotta M, Herrmann K, Pistollato F. Poor Translatability of Biomedical Research Using Animals - A Narrative Review. Altern Lab Anim 2023; 51:102-135. [PMID: 36883244 DOI: 10.1177/02611929231157756] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The failure rate for the translation of drugs from animal testing to human treatments remains at over 92%, where it has been for the past few decades. The majority of these failures are due to unexpected toxicity - that is, safety issues revealed in human trials that were not apparent in animal tests - or lack of efficacy. However, the use of more innovative tools, such as organs-on-chips, in the preclinical pipeline for drug testing, has revealed that these tools are more able to predict unexpected safety events prior to clinical trials and so can be used for this, as well as for efficacy testing. Here, we review several disease areas, and consider how the use of animal models has failed to offer effective new treatments. We also make some suggestions as to how the more human-relevant new approach methodologies might be applied to address this.
Collapse
Affiliation(s)
- Lindsay J Marshall
- Animal Research Issues, 94219The Humane Society of the United States, Gaithersburg, MD, USA
| | - Jarrod Bailey
- 380235Cruelty Free International, London, UK; 542332Animal Free Research UK, London, UK
| | | | - Kathrin Herrmann
- Johns Hopkins Bloomberg School of Public Health, 457389Center for Alternatives to Animal Testing, Baltimore, MD, USA; Senate Department for the Environment, Urban Mobility, Consumer Protection and Climate Action, Berlin, Germany
| | | |
Collapse
|
9
|
Staes N, White CM, Guevara EE, Eens M, Hopkins WD, Schapiro SJ, Stevens JM, Sherwood CC, Bradley BJ. Chimpanzee Extraversion scores vary with epigenetic modification of dopamine receptor gene D2 ( DRD2) and early rearing conditions. Epigenetics 2022; 17:1701-1714. [PMID: 35345970 PMCID: PMC9621015 DOI: 10.1080/15592294.2022.2058224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 02/17/2022] [Accepted: 03/22/2022] [Indexed: 11/03/2022] Open
Abstract
Chimpanzees have consistent individual differences in behaviour, also referred to as personality. Similar to human personality structure, five dimensions are commonly found in chimpanzee studies that show evidence for convergent and predictive validity (Dominance, Openness, Extraversion, Agreeableness, and Reactivity/Undependability). These dimensions are to some extent heritable, indicating a genetic component that explains part of the variation in personality scores, but are also influenced by environmental factors, such as the early social rearing background of the individuals. In this study, we investigated the role of epigenetic modification of the dopamine receptor D2 gene (DRD2) as a potential mechanism underlying personality variation in 51 captive chimpanzees. We used previously collected personality trait rating data and determined levels of DRD2 CpG methylation in peripheral blood samples for these same individuals. Results showed that DRD2 methylation is most strongly associated with Extraversion, and that varying methylation levels at specific DRD2 sites are associated with changes in Extraversion in nursery-reared, but not mother-reared, individuals. These results highlight the role of dopaminergic signalling in chimpanzee personality, and indicate that environmental factors, such as social experiences early in life, can have long-lasting behavioural effects, potentially through modification of the epigenome. These findings add to the growing evidence demonstrating the importance of the experience-dependent methylome for the development of complex social traits like personality.
Collapse
Affiliation(s)
- Nicky Staes
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Cassandra M. White
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Elaine E Guevara
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - William D. Hopkins
- Michale E. Keeling Center for Comparative Medicine and Research, the University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GAUSA
- Ape Cognition and Conservation Initiative, Des Moines, IA, USA
| | - Steven J. Schapiro
- Michale E. Keeling Center for Comparative Medicine and Research, the University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Jeroen M.G. Stevens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Salto Agro- and Biotechnology, Odisee University College, Sint-Niklaas, Belgium
| | - Chet C. Sherwood
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Brenda J Bradley
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
| |
Collapse
|
10
|
Genome-Wide DNA Methylation Profile Indicates Potential Epigenetic Regulation of Aging in the Rhesus Macaque Thymus. Int J Mol Sci 2022; 23:ijms232314984. [PMID: 36499310 PMCID: PMC9738698 DOI: 10.3390/ijms232314984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
We analyzed whole-genome bisulfite sequencing (WGBS) and RNA sequencing data of two young (1 year old) and two adult (9 years old) rhesus macaques (Macaca mulatta) to characterize the genomic DNA methylation profile of the thymus and explore the molecular mechanism of age-related changes in the thymus. Combining the two-omics data, we identified correlations between DNA methylation and gene expression and found that DNA methylation played an essential role in the functional changes of the aging thymus, especially in immunity and coagulation. The hypomethylation levels of C3 and C5AR2 and the hypermethylation level of C7 may lead to the high expressions of these genes in adult rhesus macaque thymuses, thus activating the classical complement pathway and the alternative pathway and enhancing their innate immune function. Adult thymuses had an enhanced coagulation pathway, which may have resulted from the hypomethylation and upregulated expressions of seven coagulation-promoting factor genes (F13A1, CLEC4D, CLEC4E, FCN3, PDGFRA, FGF2 and FGF7) and the hypomethylation and low expression of CPB2 to inhibit the degradation of blood clots. Furthermore, the functional decline in differentiation, activation and maturation of T cells in adult thymuses was also closely related to the changes in methylation levels and gene expression levels of T cell development genes (CD3G, GAD2, ADAMDEC1 and LCK) and the thymogenic hormone gene TMPO. A comparison of the age-related methylated genes among four mammal species revealed that most of the epigenetic clocks were species-specific. Furthermore, based on the genomic landscape of allele-specific DNA methylation, we identified several age-related clustered sequence-dependent allele-specific DNA methylated (cS-ASM) genes. Overall, these DNA methylation patterns may also help to assist with understanding the mechanisms of the aging thymus with the epigenome.
Collapse
|
11
|
Guevara EE, Hopkins WD, Hof PR, Ely JJ, Bradley BJ, Sherwood CC. Epigenetic aging of the prefrontal cortex and cerebellum in humans and chimpanzees. Epigenetics 2022; 17:1774-1785. [PMID: 35603816 DOI: 10.1080/15592294.2022.2080993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Epigenetic age has emerged as an important biomarker of biological aging. It has revealed that some tissues age faster than others, which is vital to understanding the complex phenomenon of aging and developing effective interventions. Previous studies have demonstrated that humans exhibit heterogeneity in pace of epigenetic aging among brain structures that are consistent with differences in structural and microanatomical deterioration. Here, we add comparative data on epigenetic brain aging for chimpanzees, humans' closest relatives. Such comparisons can further our understanding of which aspects of human aging are evolutionarily conserved or specific to our species, especially given that humans are distinguished by a long lifespan, large brain, and, potentially, more severe neurodegeneration with age. Specifically, we investigated epigenetic aging of the dorsolateral prefrontal cortex and cerebellum, of humans and chimpanzees by generating genome-wide CpG methylation data and applying established epigenetic clock algorithms to produce estimates of biological age for these tissues. We found that both species exhibit relatively slow epigenetic aging in the brain relative to blood. Between brain structures, humans show a faster rate of epigenetic aging in the dorsolateral prefrontal cortex compared to the cerebellum, which is consistent with previous findings. Chimpanzees, in contrast, show comparable rates of epigenetic aging in the two brain structures. Greater epigenetic change in the human dorsolateral prefrontal cortex compared to the cerebellum may reflect both the protracted development of this structure in humans and its greater age-related vulnerability to neurodegenerative pathology.
Collapse
Affiliation(s)
- Elaine E Guevara
- Department of Anthropology, University of North Carolina Wilmington, Wilmington, NC 28403, USA.,Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA.,Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA
| | - William D Hopkins
- Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,New York Consortium in Evolutionary Primatology, New York, NY 10124, USA
| | - John J Ely
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA.,MAEBIOS, Alamogordo, NM 88310, USA
| | - Brenda J Bradley
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
12
|
Wang Y, Chai L, Chu C, Li D, Gao C, Wu X, Yang Z, Zhang Y, Xu J, Nyengaard JR, Eickhoff SB, Liu B, Madsen KH, Jiang T, Fan L. Uncovering the genetic profiles underlying the intrinsic organization of the human cerebellum. Mol Psychiatry 2022; 27:2619-2634. [PMID: 35264730 DOI: 10.1038/s41380-022-01489-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022]
Abstract
The functional diversity of the human cerebellum is largely believed to be derived more from its extensive connections rather than being limited to its mostly invariant architecture. However, whether and how the determination of cerebellar connections in its intrinsic organization interact with microscale gene expression is still unknown. Here we decode the genetic profiles of the cerebellar functional organization by investigating the genetic substrates simultaneously linking cerebellar functional heterogeneity and its drivers, i.e., the connections. We not only identified 443 network-specific genes but also discovered that their co-expression pattern correlated strongly with intra-cerebellar functional connectivity (FC). Ninety of these genes were also linked to the FC of cortico-cerebellar cognitive-limbic networks. To further discover the biological functions of these genes, we performed a "virtual gene knock-out" by observing the change in the coupling between gene co-expression and FC and divided the genes into two subsets, i.e., a positive gene contribution indicator (GCI+) involved in cerebellar neurodevelopment and a negative gene set (GCI-) related to neurotransmission. A more interesting finding is that GCI- is significantly linked with the cerebellar connectivity-behavior association and many recognized brain diseases that are closely linked with the cerebellar functional abnormalities. Our results could collectively help to rethink the genetic substrates underlying the cerebellar functional organization and offer possible micro-macro interacted mechanistic interpretations of the cerebellum-involved high order functions and dysfunctions in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yaping Wang
- Sino-Danish Center, University of Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Lin Chai
- University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Congying Chu
- University of Chinese Academy of Sciences, 100190, Beijing, China. .,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China. .,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Deying Li
- University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Chaohong Gao
- Sino-Danish Center, University of Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xia Wu
- University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zhengyi Yang
- University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yu Zhang
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 311100, China
| | - Junhai Xu
- School of Computer Science and Technology, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, 300350, China
| | - Jens Randel Nyengaard
- Sino-Danish Center, University of Chinese Academy of Sciences, 100190, Beijing, China.,Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, 8000, Aarhus, Denmark.,Department of Pathology, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing, China
| | - Kristoffer Hougaard Madsen
- Sino-Danish Center, University of Chinese Academy of Sciences, 100190, Beijing, China.,Department of Informatics and Mathematical Modelling, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, 2650, Hvidovre, Denmark
| | - Tianzi Jiang
- Sino-Danish Center, University of Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Lingzhong Fan
- Sino-Danish Center, University of Chinese Academy of Sciences, 100190, Beijing, China. .,University of Chinese Academy of Sciences, 100190, Beijing, China. .,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China. .,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.
| |
Collapse
|
13
|
Freire-Cobo C, Edler MK, Varghese M, Munger E, Laffey J, Raia S, In SS, Wicinski B, Medalla M, Perez SE, Mufson EJ, Erwin JM, Guevara EE, Sherwood CC, Luebke JI, Lacreuse A, Raghanti MA, Hof PR. Comparative neuropathology in aging primates: A perspective. Am J Primatol 2021; 83:e23299. [PMID: 34255875 PMCID: PMC8551009 DOI: 10.1002/ajp.23299] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 12/27/2022]
Abstract
While humans exhibit a significant degree of neuropathological changes associated with deficits in cognitive and memory functions during aging, non-human primates (NHP) present with more variable expressions of pathological alterations among individuals and species. As such, NHP with long life expectancy in captivity offer an opportunity to study brain senescence in the absence of the typical cellular pathology caused by age-related neurodegenerative illnesses commonly seen in humans. Age-related changes at neuronal population, single cell, and synaptic levels have been well documented in macaques and marmosets, while age-related and Alzheimer's disease-like neuropathology has been characterized in additional species including lemurs as well as great apes. We present a comparative overview of existing neuropathologic observations across the primate order, including classic age-related changes such as cell loss, amyloid deposition, amyloid angiopathy, and tau accumulation. We also review existing cellular and ultrastructural data on neuronal changes, such as dendritic attrition and spine alterations, synaptic loss and pathology, and axonal and myelin pathology, and discuss their repercussions on cellular and systems function and cognition.
Collapse
Affiliation(s)
- Carmen Freire-Cobo
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Melissa K Edler
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emily Munger
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Jessie Laffey
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sophia Raia
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Selena S In
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bridget Wicinski
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Center for Systems Neuroscience, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Joseph M Erwin
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Elaine E Guevara
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Chet C Sherwood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Jennifer I Luebke
- Department of Anatomy and Neurobiology, Center for Systems Neuroscience, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Agnès Lacreuse
- Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mary A Raghanti
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
14
|
Abstract
Humans belong to the vast clade of species known as the bilateria, with a bilaterally symmetrical body plan. Over the course of evolution, exceptions to symmetry have arisen. Among chordates, the internal organs have been arranged asymmetrically in order to create more efficient functioning and packaging. The brain has also assumed asymmetries, although these generally trade off against the pressure toward symmetry, itself a reflection of the symmetry of limbs and sense organs. In humans, at least, brain asymmetries occur in independent networks, including those involved in language and manual manipulation biased to the left hemisphere, and emotion and face perception biased to the right. Similar asymmetries occur in other species, notably the great apes. A number of asymmetries are correlated with conditions such as dyslexia, autism, and schizophrenia, and have largely independent genetic associations. The origin of asymmetry itself, though, appears to be unitary, and in the case of the internal organs, at least, may depend ultimately on asymmetry at the molecular level.
Collapse
|