1
|
Frost B, Dubnau J. The Role of Retrotransposons and Endogenous Retroviruses in Age-Dependent Neurodegenerative Disorders. Annu Rev Neurosci 2024; 47:123-143. [PMID: 38663088 DOI: 10.1146/annurev-neuro-082823-020615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Over 40% of the human genome is composed of retrotransposons, DNA species that hold the potential to replicate via an RNA intermediate and are evolutionarily related to retroviruses. Retrotransposons are most studied for their ability to jump within a genome, which can cause DNA damage and novel insertional mutations. Retrotransposon-encoded products, including viral-like proteins, double-stranded RNAs, and extrachromosomal circular DNAs, can also be potent activators of the innate immune system. A growing body of evidence suggests that retrotransposons are activated in age-related neurodegenerative disorders and that such activation causally contributes to neurotoxicity. Here we provide an overview of retrotransposon biology and outline evidence of retrotransposon activation in age-related neurodegenerative disorders, with an emphasis on those involving TAR-DNA binding protein-43 (TDP-43) and tau. Studies to date provide the basis for ongoing clinical trials and hold promise for innovative strategies to ameliorate the adverse effects of retrotransposon dysregulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Bess Frost
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, and Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA;
| | - Josh Dubnau
- Department of Anesthesiology and Department of Neurobiology and Behavior, Stony Brook School of Medicine, Stony Brook, New York, USA;
| |
Collapse
|
2
|
Talley MJ, Longworth MS. Retrotransposons in embryogenesis and neurodevelopment. Biochem Soc Trans 2024; 52:1159-1171. [PMID: 38716891 PMCID: PMC11346457 DOI: 10.1042/bst20230757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/27/2024]
Abstract
Retrotransposable elements (RTEs) are genetic elements that can replicate and insert new copies into different genomic locations. RTEs have long been identified as 'parasitic genes', as their mobilization can cause mutations, DNA damage, and inflammation. Interestingly, high levels of retrotransposon activation are observed in early embryogenesis and neurodevelopment, suggesting that RTEs may possess functional roles during these stages of development. Recent studies demonstrate that RTEs can function as transcriptional regulatory elements through mechanisms such as chromatin organization and noncoding RNAs. It is clear, however, that RTE expression and activity must be restrained at some level during development, since overactivation of RTEs during neurodevelopment is associated with several developmental disorders. Further investigation is needed to understand the importance of RTE expression and activity during neurodevelopment and the balance between RTE-regulated development and RTE-mediated pathogenesis.
Collapse
Affiliation(s)
- Mary Jo Talley
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, U.S.A
| | - Michelle S. Longworth
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, U.S.A
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44195, U.S.A
| |
Collapse
|
3
|
Yoth M, Maupetit-Méhouas S, Akkouche A, Gueguen N, Bertin B, Jensen S, Brasset E. Reactivation of a somatic errantivirus and germline invasion in Drosophila ovaries. Nat Commun 2023; 14:6096. [PMID: 37773253 PMCID: PMC10541861 DOI: 10.1038/s41467-023-41733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Most Drosophila transposable elements are LTR retrotransposons, some of which belong to the genus Errantivirus and share structural and functional characteristics with vertebrate endogenous retroviruses. Like endogenous retroviruses, it is unclear whether errantiviruses retain some infectivity and transposition capacity. We created conditions where control of the Drosophila ZAM errantivirus through the piRNA pathway was abolished leading to its de novo reactivation in somatic gonadal cells. After reactivation, ZAM invaded the oocytes and severe fertility defects were observed. While ZAM expression persists in the somatic gonadal cells, the germline then set up its own adaptive genomic immune response by producing piRNAs against the constantly invading errantivirus, restricting invasion. Our results suggest that although errantiviruses are continuously repressed by the piRNA pathway, they may retain their ability to infect the germline and transpose, thus allowing them to efficiently invade the germline if they are expressed.
Collapse
Affiliation(s)
- Marianne Yoth
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000, Clermont-Ferrand, France
| | | | - Abdou Akkouche
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000, Clermont-Ferrand, France
| | - Nathalie Gueguen
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000, Clermont-Ferrand, France
| | - Benjamin Bertin
- LIMAGRAIN EUROPE, Centre de recherche, 63720, Chappes, France
| | - Silke Jensen
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000, Clermont-Ferrand, France.
| | - Emilie Brasset
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000, Clermont-Ferrand, France.
| |
Collapse
|
4
|
Ferreiro ME, Faulkner GJ. Endogenous retroviruses can propagate TDP-43 proteinopathy. Trends Neurosci 2023; 46:413-414. [PMID: 37061454 DOI: 10.1016/j.tins.2023.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/17/2023]
Abstract
How does neurodegeneration spread in the brain? Leveraging TDP-43 fly models of amyotrophic lateral sclerosis (ALS), Chang and Dubnau recently reported that the endogenous retrovirus (ERV) mdg4 can trigger and transmit TDP-43 proteinopathy in vivo. Their results suggest that human ERVs could be targeted to develop future ALS therapies.
Collapse
Affiliation(s)
- Maria E Ferreiro
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, 4067, Australia
| | - Geoffrey J Faulkner
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, 4067, Australia; Mater Research Institute - University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
5
|
Endogenous retroviruses and TDP-43 proteinopathy form a sustaining feedback driving intercellular spread of Drosophila neurodegeneration. Nat Commun 2023; 14:966. [PMID: 36810738 PMCID: PMC9944888 DOI: 10.1038/s41467-023-36649-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Inter-cellular movement of "prion-like" proteins is thought to explain propagation of neurodegeneration between cells. For example, propagation of abnormally phosphorylated cytoplasmic inclusions of TAR-DNA-Binding protein (TDP-43) is proposed to underlie progression of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). But unlike transmissible prion diseases, ALS and FTD are not infectious and injection of aggregated TDP-43 is not sufficient to cause disease. This suggests a missing component of a positive feedback necessary to sustain disease progression. We demonstrate that endogenous retrovirus (ERV) expression and TDP-43 proteinopathy are mutually reinforcing. Expression of either Drosophila mdg4-ERV (gypsy) or the human ERV, HERV-K (HML-2) are each sufficient to stimulate cytoplasmic aggregation of human TDP-43. Viral ERV transmission also triggers TDP-43 pathology in recipient cells that express physiological levels of TDP-43, whether they are in contact or at a distance. This mechanism potentially underlies the TDP-43 proteinopathy-caused neurodegenerative propagation through neuronal tissue.
Collapse
|
6
|
Botto JM, Faulkner GJ. Endogenous retrovirus expression during fruitfly metamorphosis enhances adult viral immunity. Nat Genet 2022; 54:1765-1767. [PMID: 36396708 DOI: 10.1038/s41588-022-01209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Juan M Botto
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland, Australia
| | - Geoffrey J Faulkner
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland, Australia. .,Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
7
|
Benoit I, Di Curzio D, Civetta A, Douville RN. Drosophila as a Model for Human Viral Neuroinfections. Cells 2022; 11:cells11172685. [PMID: 36078091 PMCID: PMC9454636 DOI: 10.3390/cells11172685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The study of human neurological infection faces many technical and ethical challenges. While not as common as mammalian models, the use of Drosophila (fruit fly) in the investigation of virus–host dynamics is a powerful research tool. In this review, we focus on the benefits and caveats of using Drosophila as a model for neurological infections and neuroimmunity. Through the examination of in vitro, in vivo and transgenic systems, we highlight select examples to illustrate the use of flies for the study of exogenous and endogenous viruses associated with neurological disease. In each case, phenotypes in Drosophila are compared to those in human conditions. In addition, we discuss antiviral drug screening in flies and how investigating virus–host interactions may lead to novel antiviral drug targets. Together, we highlight standardized and reproducible readouts of fly behaviour, motor function and neurodegeneration that permit an accurate assessment of neurological outcomes for the study of viral infection in fly models. Adoption of Drosophila as a valuable model system for neurological infections has and will continue to guide the discovery of many novel virus–host interactions.
Collapse
Affiliation(s)
- Ilena Benoit
- Department of Biology, University of Winnipeg, 599 Portage Avenue, Winnipeg, MB R3B 2G3, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, 351 Taché Ave, Winnipeg, MB R2H 2A6, Canada
| | - Domenico Di Curzio
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, 351 Taché Ave, Winnipeg, MB R2H 2A6, Canada
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, 599 Portage Avenue, Winnipeg, MB R3B 2G3, Canada
| | - Renée N. Douville
- Department of Biology, University of Winnipeg, 599 Portage Avenue, Winnipeg, MB R3B 2G3, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, 351 Taché Ave, Winnipeg, MB R2H 2A6, Canada
- Correspondence:
| |
Collapse
|
8
|
Lee Y, Ha U, Moon S. Ongoing endeavors to detect mobilization of transposable elements. BMB Rep 2022. [PMID: 35725016 PMCID: PMC9340088 DOI: 10.5483/bmbrep.2022.55.7.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transposable elements (TEs) are DNA sequences capable of mobilization from one location to another in the genome. Since the discovery of ‘Dissociation (Dc) locus’ by Barbara McClintock in maize (1), mounting evidence in the era of genomics indicates that a significant fraction of most eukaryotic genomes is composed of TE sequences, involving in various aspects of biological processes such as development, physiology, diseases and evolution. Although technical advances in genomics have discovered numerous functional impacts of TE across species, our understanding of TEs is still ongoing process due to challenges resulted from complexity and abundance of TEs in the genome. In this mini-review, we briefly summarize biology of TEs and their impacts on the host genome, emphasizing importance of understanding TE landscape in the genome. Then, we introduce recent endeavors especially in vivo retrotransposition assays and long read sequencing technology for identifying de novo insertions/TE polymorphism, which will broaden our knowledge of extraordinary relationship between genomic cohabitants and their host.
Collapse
Affiliation(s)
- Yujeong Lee
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Una Ha
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sungjin Moon
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
9
|
Billon V, Sanchez-Luque FJ, Rasmussen J, Bodea GO, Gerhardt DJ, Gerdes P, Cheetham SW, Schauer SN, Ajjikuttira P, Meyer TJ, Layman CE, Nevonen KA, Jansz N, Garcia-Perez JL, Richardson SR, Ewing AD, Carbone L, Faulkner GJ. Somatic retrotransposition in the developing rhesus macaque brain. Genome Res 2022; 32:1298-1314. [PMID: 35728967 PMCID: PMC9341517 DOI: 10.1101/gr.276451.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022]
Abstract
The retrotransposon LINE-1 (L1) is central to the recent evolutionary history of the human genome and continues to drive genetic diversity and germline pathogenesis. However, the spatiotemporal extent and biological significance of somatic L1 activity are poorly defined and are virtually unexplored in other primates. From a single L1 lineage active at the divergence of apes and Old World monkeys, successive L1 subfamilies have emerged in each descendant primate germline. As revealed by case studies, the presently active human L1 subfamily can also mobilize during embryonic and brain development in vivo. It is unknown whether nonhuman primate L1s can similarly generate somatic insertions in the brain. Here we applied approximately 40× single-cell whole-genome sequencing (scWGS), as well as retrotransposon capture sequencing (RC-seq), to 20 hippocampal neurons from two rhesus macaques (Macaca mulatta). In one animal, we detected and PCR-validated a somatic L1 insertion that generated target site duplications, carried a short 5' transduction, and was present in ∼7% of hippocampal neurons but absent from cerebellum and nonbrain tissues. The corresponding donor L1 allele was exceptionally mobile in vitro and was embedded in PRDM4, a gene expressed throughout development and in neural stem cells. Nanopore long-read methylome and RNA-seq transcriptome analyses indicated young retrotransposon subfamily activation in the early embryo, followed by repression in adult tissues. These data highlight endogenous macaque L1 retrotransposition potential, provide prototypical evidence of L1-mediated somatic mosaicism in a nonhuman primate, and allude to L1 mobility in the brain over the past 30 million years of human evolution.
Collapse
Affiliation(s)
- Victor Billon
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Biology Department, École Normale Supérieure Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Francisco J Sanchez-Luque
- GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
- Institute of Parasitology and Biomedicine "Lopez-Neyra"-Spanish National Research Council, PTS Granada 18016, Spain
| | - Jay Rasmussen
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Gabriela O Bodea
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Daniel J Gerhardt
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Patricia Gerdes
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Seth W Cheetham
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Stephanie N Schauer
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Prabha Ajjikuttira
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Thomas J Meyer
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Cora E Layman
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Kimberly A Nevonen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Natasha Jansz
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Jose L Garcia-Perez
- GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Sandra R Richardson
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Lucia Carbone
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Geoffrey J Faulkner
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
10
|
Li W, Pandya D, Pasternack N, Garcia-Montojo M, Henderson L, Kozak CA, Nath A. Retroviral Elements in Pathophysiology and as Therapeutic Targets for Amyotrophic Lateral Sclerosis. Neurotherapeutics 2022; 19:1085-1101. [PMID: 35415778 PMCID: PMC9587200 DOI: 10.1007/s13311-022-01233-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 10/18/2022] Open
Abstract
The study of the role of retroviruses in amyotrophic lateral sclerosis (ALS) dates back to the 1960s shortly after transposable elements themselves were first discovered. It was quickly realized that in wild mice both horizontal and vertical transmissions of retroviral elements were key to the development of an ALS-like syndrome leading to the postulate that endogenous retroviruses (ERVs) contribute significantly to the pathogenicity of this disease. Subsequent studies identified retroviral reverse transcriptase activity in brains of individuals with ALS from Guam. However, except for a single study from the former Soviet Union, ALS could not be transmitted to rhesus macaques. The discovery of an ALS-like syndrome in human immunodeficiency virus (HIV) and human T cell leukemia virus infected individuals led to renewed interest in the field and reverse transcriptase activity was found in the blood and cerebrospinal fluid of individuals with sporadic ALS. However, exogenous retroviruses could not be found in individuals with ALS which further reinforced the possibility of involvement of a human ERV (HERV). The first demonstration of the involvement of a HERV was the discovery of the activation of human endogenous retrovirus-K subtype HML-2 in the brains of individuals with ALS. The envelope protein of HML-2 is neurotoxic and transgenic animals expressing the envelope protein develop an ALS-like syndrome. Activation of HML-2 occurs in the context of generalized transposable element activation and is not specific for ALS. Individuals with HIV-associated ALS show a remarkable response to antiretroviral therapy; however, antiretroviral trials in ALS down-regulate HML-2 without ameliorating the disease. This highlights the need for specific drugs to be developed against HML-2 as a novel therapeutic target for ALS. Other approaches might include antisense oligonucleotides, shRNA targeted against the envelope gene or antibodies that can target the extracellular envelope protein. Future clinical trials in ALS should consider combination therapies to control these ERVs.
Collapse
Affiliation(s)
- Wenxue Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Darshan Pandya
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Nicholas Pasternack
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Marta Garcia-Montojo
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Lisa Henderson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Christine A Kozak
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
11
|
Lee Y, Ha U, Moon S. Ongoing endeavors to detect mobilization of transposable elements. BMB Rep 2022; 55:305-315. [PMID: 35725016 PMCID: PMC9340088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 02/21/2025] Open
Abstract
Transposable elements (TEs) are DNA sequences capable of mobilization from one location to another in the genome. Since the discovery of 'Dissociation (Dc) locus' by Barbara McClintock in maize (1), mounting evidence in the era of genomics indicates that a significant fraction of most eukaryotic genomes is composed of TE sequences, involving in various aspects of biological processes such as development, physiology, diseases and evolution. Although technical advances in genomics have discovered numerous functional impacts of TE across species, our understanding of TEs is still ongoing process due to challenges resulted from complexity and abundance of TEs in the genome. In this mini-review, we briefly summarize biology of TEs and their impacts on the host genome, emphasizing importance of understanding TE landscape in the genome. Then, we introduce recent endeavors especially in vivo retrotransposition assays and long read sequencing technology for identifying de novo insertions/TE polymorphism, which will broaden our knowledge of extraordinary relationship between genomic cohabitants and their host. [BMB Reports 2022; 55(7): 305-315].
Collapse
Affiliation(s)
- Yujeong Lee
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Una Ha
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sungjin Moon
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
12
|
Yoth M, Jensen S, Brasset E. The Intricate Evolutionary Balance between Transposable Elements and Their Host: Who Will Kick at Goal and Convert the Next Try? BIOLOGY 2022; 11:710. [PMID: 35625438 PMCID: PMC9138309 DOI: 10.3390/biology11050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
Abstract
Transposable elements (TEs) are mobile DNA sequences that can jump from one genomic locus to another and that have colonized the genomes of all living organisms. TE mobilization and accumulation are an important source of genomic innovations that greatly contribute to the host species evolution. To ensure their maintenance and amplification, TE transposition must occur in the germ cell genome. As TE transposition is also a major threat to genome integrity, the outcome of TE mobility in germ cell genomes could be highly dangerous because such mutations are inheritable. Thus, organisms have developed specialized strategies to protect the genome integrity from TE transposition, particularly in germ cells. Such effective TE silencing, together with ongoing mutations and negative selection, should result in the complete elimination of functional TEs from genomes. However, TEs have developed efficient strategies for their maintenance and spreading in populations, particularly by using horizontal transfer to invade the genome of novel species. Here, we discuss how TEs manage to bypass the host's silencing machineries to propagate in its genome and how hosts engage in a fightback against TE invasion and propagation. This shows how TEs and their hosts have been evolving together to achieve a fine balance between transposition and repression.
Collapse
Affiliation(s)
| | | | - Emilie Brasset
- iGReD, CNRS, INSERM, Faculté de Médecine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (M.Y.); (S.J.)
| |
Collapse
|