1
|
Tan X, Zeng W, Yang Y, Lin Z, Li F, Liu J, Chen S, Liu YG, Xie W, Xie X. Genome-wide profiling of polymorphic short tandem repeats and their influence on gene expression and trait variation in diverse rice populations. J Genet Genomics 2025:S1673-8527(25)00078-5. [PMID: 40089018 DOI: 10.1016/j.jgg.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Short tandem repeats (STRs) modulate gene expression and contribute to trait variation. However, a systematic evaluation of the genomic characteristics of STRs has not been conducted, and their influence on gene expression in rice remains unclear. Here, we construct a map of 137,629 polymorphic STRs in the rice (Oryza sativa L.) genome using a population-scale resequencing dataset. A genome-wide survey encompassing 4726 accessions shows that the occurrence frequency, mutational patterns, chromosomal distribution, and functional properties of STRs are correlated with the sequences and lengths of repeat motifs. Leveraging a transcriptome dataset from 127 rice accessions, we identify 44,672 expression STRs (eSTRs) by modeling gene expression in response to the length variation of STRs. These eSTRs are notably enriched in the regulatory regions of genes with active transcriptional signatures. Population analysis identifies numerous STRs that have undergone genetic divergence among different rice groups and 1726 tagged STRs that may be associated with agronomic traits. By editing the (ACT)7 STR in OsFD1 promoter, we further experimentally validate its role in regulating gene expression and phenotype. Our study highlights the contribution of STRs to transcriptional regulation in plants and establishes the foundation for their potential use as alternative targets for genetic improvement.
Collapse
Affiliation(s)
- Xiyu Tan
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wanyong Zeng
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yujian Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhansheng Lin
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Fuquan Li
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jianhong Liu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shaotong Chen
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yao-Guang Liu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Xianrong Xie
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
2
|
Zhou H, Qiang G, Xia Y, Tan J, Fu Q, Luo K, Meng X, Chen B, Chen M, Sui J, Dai P, Li X, Liu M, Xing Q, Kong J, Luan S. Copy Number Variations in Short Tandem Repeats Modulate Growth Traits in Penaeid Shrimp Through Neighboring Gene Regulation. Animals (Basel) 2025; 15:262. [PMID: 39858262 PMCID: PMC11758629 DOI: 10.3390/ani15020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Penaeid shrimp, with its genomes enriched in short tandem repeats (STRs), presents an ideal model for studying the distribution and biological functions of STRs. In this study, we systematically identified and compared STRs across multiple species, confirming a significantly higher prevalence of STRs (26-32%) in penaeid shrimp, which is markedly higher than that observed in other species, such as mammals (1.3-2.1%) and plants (0.21-0.73%). Further analysis utilizing a cohort of 326 Pacific white shrimp revealed a total of 672,507 high-quality STRs evenly distributed across the genome, with a notably lower frequency of SNPs within these STR regions. Focusing on growth traits as a case study, we conducted a genome-wide association study (GWAS) and correlation analyses to identify the regulatory relationship of STRs on complex traits. We discovered 84 STRs that showed a significant association with body weight. Interestingly, eleven of these STRs, with 81% being composed of an A/T base, showed a significant linear correlation with body weight, revealing the key role of A/T-related STRs in shrimp weight regulation. For instance, a significant association and a negative correlation were found between the copy number of the STR [(A)n] at NW_020872788.1:580574 and body weight. The cytokinesis protein 7-like (LOC113800912) gene, which contains this STR in its splice region, exhibits differential expression associated with body weight variation. These findings introduce a model for STR copy number regulation in non-human species, illuminating the influence of STRs on growth traits. It offers a valuable framework for investigating complex traits and the biological functions of STRs in agricultural animals.
Collapse
Affiliation(s)
- Hao Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.Z.); (G.Q.); (Y.X.); (J.T.); (Q.F.); (K.L.); (X.M.); (B.C.); (M.C.); (J.S.); (P.D.); (X.L.); (M.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Guangfeng Qiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.Z.); (G.Q.); (Y.X.); (J.T.); (Q.F.); (K.L.); (X.M.); (B.C.); (M.C.); (J.S.); (P.D.); (X.L.); (M.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yan Xia
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.Z.); (G.Q.); (Y.X.); (J.T.); (Q.F.); (K.L.); (X.M.); (B.C.); (M.C.); (J.S.); (P.D.); (X.L.); (M.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jian Tan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.Z.); (G.Q.); (Y.X.); (J.T.); (Q.F.); (K.L.); (X.M.); (B.C.); (M.C.); (J.S.); (P.D.); (X.L.); (M.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Qiang Fu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.Z.); (G.Q.); (Y.X.); (J.T.); (Q.F.); (K.L.); (X.M.); (B.C.); (M.C.); (J.S.); (P.D.); (X.L.); (M.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Kun Luo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.Z.); (G.Q.); (Y.X.); (J.T.); (Q.F.); (K.L.); (X.M.); (B.C.); (M.C.); (J.S.); (P.D.); (X.L.); (M.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xianhong Meng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.Z.); (G.Q.); (Y.X.); (J.T.); (Q.F.); (K.L.); (X.M.); (B.C.); (M.C.); (J.S.); (P.D.); (X.L.); (M.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Baolong Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.Z.); (G.Q.); (Y.X.); (J.T.); (Q.F.); (K.L.); (X.M.); (B.C.); (M.C.); (J.S.); (P.D.); (X.L.); (M.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Meijia Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.Z.); (G.Q.); (Y.X.); (J.T.); (Q.F.); (K.L.); (X.M.); (B.C.); (M.C.); (J.S.); (P.D.); (X.L.); (M.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Juan Sui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.Z.); (G.Q.); (Y.X.); (J.T.); (Q.F.); (K.L.); (X.M.); (B.C.); (M.C.); (J.S.); (P.D.); (X.L.); (M.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Ping Dai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.Z.); (G.Q.); (Y.X.); (J.T.); (Q.F.); (K.L.); (X.M.); (B.C.); (M.C.); (J.S.); (P.D.); (X.L.); (M.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xupeng Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.Z.); (G.Q.); (Y.X.); (J.T.); (Q.F.); (K.L.); (X.M.); (B.C.); (M.C.); (J.S.); (P.D.); (X.L.); (M.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Mianyu Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.Z.); (G.Q.); (Y.X.); (J.T.); (Q.F.); (K.L.); (X.M.); (B.C.); (M.C.); (J.S.); (P.D.); (X.L.); (M.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Qun Xing
- BLUP Aquabreed Co., Ltd., Weifang 261311, China;
| | - Jie Kong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.Z.); (G.Q.); (Y.X.); (J.T.); (Q.F.); (K.L.); (X.M.); (B.C.); (M.C.); (J.S.); (P.D.); (X.L.); (M.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Sheng Luan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.Z.); (G.Q.); (Y.X.); (J.T.); (Q.F.); (K.L.); (X.M.); (B.C.); (M.C.); (J.S.); (P.D.); (X.L.); (M.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Ruybal-Pesántez S, McCann K, Vibin J, Siegel S, Auburn S, Barry AE. Molecular markers for malaria genetic epidemiology: progress and pitfalls. Trends Parasitol 2024; 40:147-163. [PMID: 38129280 DOI: 10.1016/j.pt.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Over recent years, progress in molecular markers for genotyping malaria parasites has enabled informative studies of epidemiology and transmission dynamics. Results have highlighted the value of these tools for surveillance to support malaria control and elimination strategies. There are many different types and panels of markers available for malaria parasite genotyping, and for end users, the nuances of these markers with respect to 'use case', resolution, and accuracy, are not well defined. This review clarifies issues surrounding different molecular markers and their application to malaria control and elimination. We describe available marker panels, use cases, implications for different transmission settings, limitations, access, cost, and data accuracy. The information provided can be used as a guide for molecular epidemiology and surveillance of malaria.
Collapse
Affiliation(s)
- Shazia Ruybal-Pesántez
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Institute of Microbiology, Universidad San Francisco de Quito, Quito, Ecuador
| | - Kirsty McCann
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Jessy Vibin
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia
| | | | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Alyssa E Barry
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
4
|
Argyropoulos DC, Tan MH, Adobor C, Mensah B, Labbé F, Tiedje KE, Koram KA, Ghansah A, Day KP. Performance of SNP barcodes to determine genetic diversity and population structure of Plasmodium falciparum in Africa. Front Genet 2023; 14:1071896. [PMID: 37323661 PMCID: PMC10267394 DOI: 10.3389/fgene.2023.1071896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Panels of informative biallelic single nucleotide polymorphisms (SNPs) have been proposed to be an economical method to fast-track the population genetic analysis of Plasmodium falciparum in malaria-endemic areas. Whilst used successfully in low-transmission areas where infections are monoclonal and highly related, we present the first study to evaluate the performance of these 24- and 96-SNP molecular barcodes in African countries, characterised by moderate-to-high transmission, where multiclonal infections are prevalent. For SNP barcodes it is generally recommended that the SNPs chosen i) are biallelic, ii) have a minor allele frequency greater than 0.10, and iii) are independently segregating, to minimise bias in the analysis of genetic diversity and population structure. Further, to be standardised and used in many population genetic studies, these barcodes should maintain characteristics i) to iii) across various iv) geographies and v) time points. Using haplotypes generated from the MalariaGEN P. falciparum Community Project version six database, we investigated the ability of these two barcodes to fulfil these criteria in moderate-to-high transmission African populations in 25 sites across 10 countries. Predominantly clinical infections were analysed, with 52.3% found to be multiclonal, generating high proportions of mixed-allele calls (MACs) per isolate thereby impeding haplotype construction. Of the 24- and 96-SNPs, loci were removed if they were not biallelic and had low minor allele frequencies in all study populations, resulting in 20- and 75-SNP barcodes respectively for downstream population genetics analysis. Both SNP barcodes had low expected heterozygosity estimates in these African settings and consequently biased analyses of similarity. Both minor and major allele frequencies were temporally unstable. These SNP barcodes were also shown to identify weak genetic differentiation across large geographic distances based on Mantel Test and DAPC. These results demonstrate that these SNP barcodes are vulnerable to ascertainment bias and as such cannot be used as a standardised approach for malaria surveillance in moderate-to-high transmission areas in Africa, where the greatest genomic diversity of P. falciparum exists at local, regional and country levels.
Collapse
Affiliation(s)
- Dionne C. Argyropoulos
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Mun Hua Tan
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Courage Adobor
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Benedicta Mensah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Frédéric Labbé
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, United States
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Kwadwo A. Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Anita Ghansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Karen P. Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Ghansah A, Tiedje KE, Argyropoulos DC, Onwona CO, Deed SL, Labbé F, Oduro AR, Koram KA, Pascual M, Day KP. Comparison of molecular surveillance methods to assess changes in the population genetics of Plasmodium falciparum in high transmission. FRONTIERS IN PARASITOLOGY 2023; 2:1067966. [PMID: 38031549 PMCID: PMC10686283 DOI: 10.3389/fpara.2023.1067966] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/14/2023] [Indexed: 12/01/2023]
Abstract
A major motivation for developing molecular methods for malaria surveillance is to measure the impact of control interventions on the population genetics of Plasmodium falciparum as a potential marker of progress towards elimination. Here we assess three established methods (i) single nucleotide polymorphism (SNP) barcoding (panel of 24-biallelic loci), (ii) microsatellite genotyping (panel of 12-multiallelic loci), and (iii) varcoding (fingerprinting var gene diversity, akin to microhaplotyping) to identify changes in parasite population genetics in response to a short-term indoor residual spraying (IRS) intervention. Typical of high seasonal transmission in Africa, multiclonal infections were found in 82.3% (median 3; range 1-18) and 57.8% (median 2; range 1-12) of asymptomatic individuals pre- and post-IRS, respectively, in Bongo District, Ghana. Since directly phasing multilocus haplotypes for population genetic analysis is not possible for biallelic SNPs and microsatellites, we chose ~200 low-complexity infections biased to single and double clone infections for analysis. Each genotyping method presented a different pattern of change in diversity and population structure as a consequence of variability in usable data and the relative polymorphism of the molecular markers (i.e., SNPs < microsatellites < var). Varcoding and microsatellite genotyping showed the overall failure of the IRS intervention to significantly change the population structure from pre-IRS characteristics (i.e., many diverse genomes of low genetic similarity). The 24-SNP barcode provided limited information for analysis, largely due to the biallelic nature of SNPs leading to a high proportion of double-allele calls and a view of more isolate relatedness compared to microsatellites and varcoding. Relative performance, suitability, and cost-effectiveness of the methods relevant to sample size and local malaria elimination in high-transmission endemic areas are discussed.
Collapse
Affiliation(s)
- Anita Ghansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Dionne C. Argyropoulos
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Christiana O. Onwona
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Samantha L. Deed
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Frédéric Labbé
- Department Ecology and Evolution, The University of Chicago, Chicago, IL, United States
| | - Abraham R. Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Kwadwo A. Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Mercedes Pascual
- Department Ecology and Evolution, The University of Chicago, Chicago, IL, United States
- Santa Fe Institute, Santa Fe, NM, United States
| | - Karen P. Day
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Microsatellite Genome-Wide Database Development for the Commercial Blackhead Seabream (Acanthopagrus schlegelii). Genes (Basel) 2023; 14:genes14030620. [PMID: 36980892 PMCID: PMC10048070 DOI: 10.3390/genes14030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Simple sequence repeats (SSRs), the markers with the highest polymorphism and co-dominance degrees, offer a crucial genetic research resource. Limited SSR markers in blackhead seabream have been reported. The availability of the blackhead seabream genome assembly provided the opportunity to carry out genome-wide identification for all microsatellite markers, and bioinformatic analyses open the way for developing a microsatellite genome-wide database in blackhead seabream. In this study, a total of 412,381 SSRs were identified in the 688.08 Mb genome by Krait software. Whole-genome sequences (10×) of 42 samples were aligned against the reference genome and genotyped using the HipSTR tools by comparing and counting repeat number variation across the SSR loci. A total of 156,086 SSRs with a 2–4 bp repeat were genotyped by HipSTR tools, which accounted for 55.78% of the 2–4 bp SSRs in the reference genome. High accuracy of genotyping was observed by comparing HipSTR tools and PCR amplification. A set of 109,131 loci with a number of alleles ≥ 3 and with a number of genotyped individuals ≥ 6 were reserved to constitute the polymorphic SSR database. Fifty-one polymorphic SSR loci were identified through PCR amplification. This strategy to develop polymorphic SSR markers not only obtained a large set of polymorphic SSRs but also eliminated the need for laborious experimental screening. SSR markers developed in this study may facilitate blackhead seabream research, which lays a certain foundation for further gene tagging and genetic linkage analysis, such as marker-assisted selection, genetic mapping, as well as comparative genomic analysis.
Collapse
|
7
|
Coppée R, Sarrasin V, Zaffaroulah R, Bouzayene A, Thellier M, Noël H, Clain J, Houzé S. Nosocomial Malaria Transmissions Resolved by Genomic Analyses-A Retrospective Case Report Study in France: 2007-2021. Clin Infect Dis 2023; 76:631-639. [PMID: 36208204 PMCID: PMC9619641 DOI: 10.1093/cid/ciac813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Exposure of blood to malaria parasites can lead to infection even in the absence of the mosquito vector. During a stay in a healthcare facility, accidental inoculation of the skin with blood from a malaria patient might occur, referred to as nosocomial malaria. METHODS Between 2007 and 2021, we identified 6 autochthonous malaria cases that occurred in different French hospitals, originating from nosocomial transmission and imported malaria cases being the infection source. Four cases were observed during the coronavirus disease 2019 pandemic. The genetic relatedness between source and nosocomial infections was evaluated by genome-wide short tandem repeats (STRs) and single-nucleotide polymorphisms (SNPs). RESULTS None of the patients with autochthonous malaria had travel history to an endemic area nor had been transfused. For each case, both the source and recipient patients stayed a few hours in the same ward. After diagnosis, autochthonous cases were treated with antimalarials and all recovered except 1. Genetically, each pair of matched source/nosocomial parasite infections showed <1% of different STRs and <6.9% (<1.5% for monoclonal infections) of different SNPs. Similar levels of genetic differences were obtained for parasite DNA samples that were independently sequenced twice as references of identical infections. Parasite phylogenomics were consistent with travel information reported by the source patients. CONCLUSIONS Our study demonstrates that genomics analyses may resolve nosocomial malaria transmissions, despite the uncertainty regarding the modes of contamination. Nosocomial transmission of potentially life-threatening parasites should be taken into consideration in settings or occasions where compliance with universal precautions is not rigorous.
Collapse
Affiliation(s)
- Romain Coppée
- Université Paris Cité and Sorbonne Paris Nord, Inserm, IAME, F-75018 Paris, France
| | - Véronique Sarrasin
- Centre National de Référence du Paludisme, AP-HP, Hôpital Bichat-Claude Bernard, F-75018 Paris, France.,Université Paris Cité, IRD, MERIT, F-75006 Paris, France
| | - Rizwana Zaffaroulah
- Centre National de Référence du Paludisme, AP-HP, Hôpital Bichat-Claude Bernard, F-75018 Paris, France
| | - Azza Bouzayene
- Centre National de Référence du Paludisme, AP-HP, Hôpital Bichat-Claude Bernard, F-75018 Paris, France
| | - Marc Thellier
- Centre National de Référence du Paludisme, AP-HP, GHU Pitié-Salpêtrière, F-75013 Paris, France
| | - Harold Noël
- Infectious Diseases Division, Santé Publique France, F-91410 Saint Maurice, France
| | - Jérôme Clain
- Centre National de Référence du Paludisme, AP-HP, Hôpital Bichat-Claude Bernard, F-75018 Paris, France.,Université Paris Cité, IRD, MERIT, F-75006 Paris, France
| | - Sandrine Houzé
- Centre National de Référence du Paludisme, AP-HP, Hôpital Bichat-Claude Bernard, F-75018 Paris, France.,Université Paris Cité, IRD, MERIT, F-75006 Paris, France
| | | |
Collapse
|
8
|
Kucharski M, Wirjanata G, Nayak S, Boentoro J, Dziekan JM, Assisi C, van der Pluijm RW, Miotto O, Mok S, Dondorp AM, Bozdech Z. Short tandem repeat polymorphism in the promoter region of cyclophilin 19B drives its transcriptional upregulation and contributes to drug resistance in the malaria parasite Plasmodium falciparum. PLoS Pathog 2023; 19:e1011118. [PMID: 36696458 PMCID: PMC9901795 DOI: 10.1371/journal.ppat.1011118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/06/2023] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Resistance of the human malaria parasites, Plasmodium falciparum, to artemisinins is now fully established in Southeast Asia and is gradually emerging in Sub-Saharan Africa. Although nonsynonymous SNPs in the pfk13 Kelch-repeat propeller (KREP) domain are clearly associated with artemisinin resistance, their functional relevance requires cooperation with other genetic factors/alterations of the P. falciparum genome, collectively referred to as genetic background. Here we provide experimental evidence that P. falciparum cyclophilin 19B (PfCYP19B) may represent one putative factor in this genetic background, contributing to artemisinin resistance via its increased expression. We show that overexpression of PfCYP19B in vitro drives limited but significant resistance to not only artemisinin but also piperaquine, an important partner drug in artemisinin-based combination therapies. We showed that PfCYP19B acts as a negative regulator of the integrated stress response (ISR) pathway by modulating levels of phosphorylated eIF2α (eIF2α-P). Curiously, artemisinin and piperaquine affect eIF2α-P in an inverse direction that in both cases can be modulated by PfCYP19B towards resistance. Here we also provide evidence that the upregulation of PfCYP19B in the drug-resistant parasites appears to be maintained by a short tandem repeat (SRT) sequence polymorphism in the gene's promoter region. These results support a model that artemisinin (and other drugs) resistance mechanisms are complex genetic traits being contributed to by altered expression of multiple genes driven by genetic polymorphism at their promoter regions.
Collapse
Affiliation(s)
- Michal Kucharski
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Grennady Wirjanata
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sourav Nayak
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Josephine Boentoro
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Christina Assisi
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Rob W. van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sachel Mok
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|