1
|
Cai Y, Wang Y, He Y, Ren K, Liu Z, Zhao L, Wei T. Utilizing alternative in vivo animal models for food safety and toxicity: A focus on thermal process contaminant acrylamide. Food Chem 2025; 465:142135. [PMID: 39579401 DOI: 10.1016/j.foodchem.2024.142135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/07/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
Rodent models have traditionally been used to assess the toxicity of food chemicals, but this approach is costly, time-consuming, and raises ethical concerns. Alternatively, non-mammalian models such as Drosophila melanogaster, Danio rerio, and Caenorhabditis elegans have been shown to be suitable for studying the toxicity of food hazards. Their advantages include low cost, short life cycles, adaptability to high-throughput screening, and adherence to the 3R principles of replacement, reduction, and refinement. These models have been extensively studied in the context of acrylamide toxicity, a common food contaminant. This article comprehensively reviews the biological characteristics of non-mammalian models, recent advances and challenges in acrylamide toxicity research using these models, and explores the potential of natural plant compounds in ameliorating acrylamide toxicity. The review aims to guide research using non-mammalian models for food safety assessment.
Collapse
Affiliation(s)
- Yang Cai
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yuhan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yanfei He
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Kefeng Ren
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Zongzhong Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Lingli Zhao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| | - Tian Wei
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| |
Collapse
|
2
|
Xia S, Chen J, Arsala D, Emerson JJ, Long M. Functional innovation through new genes as a general evolutionary process. Nat Genet 2025; 57:295-309. [PMID: 39875578 DOI: 10.1038/s41588-024-02059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/15/2024] [Indexed: 01/30/2025]
Abstract
In the past decade, our understanding of how new genes originate in diverse organisms has advanced substantially, and more than a dozen molecular mechanisms for generating initial gene structures were identified, in addition to gene duplication. These new genes have been found to integrate into and modify pre-existing gene networks primarily through mutation and selection, revealing new patterns and rules with stable origination rates across various organisms. This progress has challenged the prevailing belief that new proteins evolve from pre-existing genes, as new genes may arise de novo from noncoding DNA sequences in many organisms, with high rates observed in flowering plants. New genes have important roles in phenotypic and functional evolution across diverse biological processes and structures, with detectable fitness effects of sexual conflict genes that can shape species divergence. Such knowledge of new genes can be of translational value in agriculture and medicine.
Collapse
Affiliation(s)
- Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Jianhai Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Lee U, Arsala D, Xia S, Li C, Ali M, Svetec N, Langer CB, Sobreira DR, Eres I, Sosa D, Chen J, Zhang L, Reilly P, Guzzetta A, Emerson J, Andolfatto P, Zhou Q, Zhao L, Long M. The three-dimensional genome drives the evolution of asymmetric gene duplicates via enhancer capture-divergence. SCIENCE ADVANCES 2024; 10:eadn6625. [PMID: 39693425 PMCID: PMC11654672 DOI: 10.1126/sciadv.adn6625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 11/11/2024] [Indexed: 12/20/2024]
Abstract
Previous evolutionary models of duplicate gene evolution have overlooked the pivotal role of genome architecture. Here, we show that proximity-based regulatory recruitment by distally duplicated genes is an efficient mechanism for modulating tissue-specific production of preexisting proteins. By leveraging genomic asymmetries, we performed a coexpression analysis on Drosophila melanogaster tissue data to show the generality of enhancer capture-divergence (ECD) as a significant evolutionary driver of asymmetric, distally duplicated genes. We use the recently evolved gene HP6/Umbrea as an example of the ECD process. By assaying genome-wide chromosomal conformations in multiple Drosophila species, we show that HP6/Umbrea was inserted near a preexisting, long-distance three-dimensional genomic interaction. We then use this data to identify a newly found enhancer (FLEE1), buried within the coding region of the highly conserved, essential gene MFS18, that likely neofunctionalized HP6/Umbrea. Last, we demonstrate ancestral transcriptional coregulation of HP6/Umbrea's future insertion site, illustrating how enhancer capture provides a highly evolvable, one-step solution to Ohno's dilemma.
Collapse
Affiliation(s)
- UnJin Lee
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Shengqian Xia
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Cong Li
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Mujahid Ali
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Christopher B. Langer
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | | | - Ittai Eres
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Dylan Sosa
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Jianhai Chen
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Patrick Reilly
- Department of Anthropology, Yale University, New Haven, CT, USA
| | | | - J.J. Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Qi Zhou
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- MOE Laboratory of Biosystems Homeostasis and Protection Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Manyuan Long
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Zhao L, Svetec N, Begun DJ. De Novo Genes. Annu Rev Genet 2024; 58:211-232. [PMID: 39088850 DOI: 10.1146/annurev-genet-111523-102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Although the majority of annotated new genes in a given genome appear to have arisen from duplication-related mechanisms, recent studies have shown that genes can also originate de novo from ancestrally nongenic sequences. Investigating de novo-originated genes offers rich opportunities to understand the origin and functions of new genes, their regulatory mechanisms, and the associated evolutionary processes. Such studies have uncovered unexpected and intriguing facets of gene origination, offering novel perspectives on the complexity of the genome and gene evolution. In this review, we provide an overview of the research progress in this field, highlight recent advancements, identify key technical and conceptual challenges, and underscore critical questions that remain to be addressed.
Collapse
Affiliation(s)
- Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA; ,
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA; ,
| | - David J Begun
- Department of Evolution and Ecology, University of California, Davis, California, USA;
| |
Collapse
|
5
|
Chen JH, Landback P, Arsala D, Guzzetta A, Xia S, Atlas J, Sosa D, Zhang YE, Cheng J, Shen B, Long M. Evolutionarily new genes in humans with disease phenotypes reveal functional enrichment patterns shaped by adaptive innovation and sexual selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.14.567139. [PMID: 38045239 PMCID: PMC10690195 DOI: 10.1101/2023.11.14.567139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
New genes (or young genes) are genetic novelties pivotal in mammalian evolution. However, their phenotypic impacts and evolutionary patterns over time remain elusive in humans due to the technical and ethical complexities of functional studies. Integrating gene age dating with Mendelian disease phenotyping, our research shows a gradual rise in disease gene proportion as gene age increases. Logistic regression modeling indicates that this increase in older genes may be related to their longer sequence lengths and higher burdens of deleterious de novo germline variants (DNVs). We also find a steady integration of new genes with biomedical phenotypes into the human genome over macroevolutionary timescales (~0.07% per million years). Despite this stable pace, we observe distinct patterns in phenotypic enrichment, pleiotropy, and selective pressures across gene ages. Notably, young genes show significant enrichment in diseases related to the male reproductive system, indicating strong sexual selection. Young genes also exhibit disease-related functions in tissues and systems potentially linked to human phenotypic innovations, such as increased brain size, musculoskeletal phenotypes, and color vision. We further reveal a logistic growth pattern of pleiotropy over evolutionary time, indicating a diminishing marginal growth of new functions for older genes due to intensifying selective constraints over time. We propose a "pleiotropy-barrier" model that delineates higher potentials for phenotypic innovation in young genes compared to older genes, a process that is subject to natural selection. Our study demonstrates that evolutionarily new genes are critical in influencing human reproductive evolution and adaptive phenotypic innovations driven by sexual and natural selection, with low pleiotropy as a selective advantage.
Collapse
Affiliation(s)
- Jian-Hai Chen
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
- Institutes for Systems Genetics, West China University Hospital, Chengdu 610041, China
| | - Patrick Landback
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Alexander Guzzetta
- Department of Pathology, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Jared Atlas
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Dylan Sosa
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Yong E. Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingqiu Cheng
- Institutes for Systems Genetics, West China University Hospital, Chengdu 610041, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China University Hospital, Chengdu 610041, China
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| |
Collapse
|
6
|
Lin RC, Ferreira BT, Yuan YW. The molecular basis of phenotypic evolution: beyond the usual suspects. Trends Genet 2024; 40:668-680. [PMID: 38704304 PMCID: PMC11303103 DOI: 10.1016/j.tig.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
It has been well documented that mutations in coding DNA or cis-regulatory elements underlie natural phenotypic variation in many organisms. However, the development of sophisticated functional tools in recent years in a wide range of traditionally non-model systems have revealed many 'unusual suspects' in the molecular bases of phenotypic evolution, including upstream open reading frames (uORFs), cryptic splice sites, and small RNAs. Furthermore, large-scale genome sequencing, especially long-read sequencing, has identified a cornucopia of structural variation underlying phenotypic divergence and elucidated the composition of supergenes that control complex multi-trait polymorphisms. In this review article we highlight recent studies that demonstrate this great diversity of molecular mechanisms producing adaptive genetic variation and the panoply of evolutionary paths leading to the 'grandeur of life'.
Collapse
Affiliation(s)
- Rong-Chien Lin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Bianca T Ferreira
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
7
|
VanKuren NW, Chen J, Long M. Sexual conflict drive in the rapid evolution of new gametogenesis genes. Semin Cell Dev Biol 2024; 159-160:27-37. [PMID: 38309142 DOI: 10.1016/j.semcdb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
The evolutionary forces underlying the rapid evolution in sequences and functions of new genes remain a mystery. Adaptation by natural selection explains the evolution of some new genes. However, many new genes perform sex-biased functions that have rapidly evolved over short evolutionary time scales, suggesting that new gene evolution may often be driven by conflicting selective pressures on males and females. It is well established that such sexual conflict (SC) plays a central role in maintaining phenotypic and genetic variation within populations, but the role of SC in driving new gene evolution remains essentially unknown. This review explores the connections between SC and new gene evolution through discussions of the concept of SC, the phenotypic and genetic signatures of SC in evolving populations, and the molecular mechanisms by which SC could drive the evolution of new genes. We synthesize recent work in this area with a discussion of the case of Apollo and Artemis, two extremely young genes (<200,000 years) in Drosophila melanogaster, which offered the first empirical insights into the evolutionary process by which SC could drive the evolution of new genes. These new duplicate genes exhibit the hallmarks of sexually antagonistic selection: rapid DNA and protein sequence evolution, essential sex-specific functions in gametogenesis, and complementary sex-biased expression patterns. Importantly, Apollo is essential for male fitness but detrimental to female fitness, while Artemis is essential for female fitness but detrimental to male fitness. These sexually antagonistic fitness effects and complementary changes to expression, sequence, and function suggest that these duplicates were selected for mitigating SC, but that SC has not been fully resolved. Finally, we propose Sexual Conflict Drive as a self-driven model to interpret the rapid evolution of new genes, explain the potential for SC and sexually antagonistic selection to contribute to long-term evolution, and suggest its utility for understanding the rapid evolution of new genes in gametogenesis.
Collapse
Affiliation(s)
- Nicholas W VanKuren
- Department of Ecology and Evolution, The University of Chicago, United States.
| | - Jianhai Chen
- Department of Ecology and Evolution, The University of Chicago, United States
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, United States.
| |
Collapse
|
8
|
Ma F, Lau CY, Zheng C. Young duplicate genes show developmental stage- and cell type-specific expression and function in Caenorhabditis elegans. CELL GENOMICS 2024; 4:100467. [PMID: 38190105 PMCID: PMC10794840 DOI: 10.1016/j.xgen.2023.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024]
Abstract
Gene duplication produces the material that fuels evolutionary innovation. The "out-of-testis" hypothesis suggests that sperm competition creates selective pressure encouraging the emergence of new genes in male germline, but the somatic expression and function of the newly evolved genes are not well understood. We systematically mapped the expression of young duplicate genes throughout development in Caenorhabditis elegans using both whole-organism and single-cell transcriptomic data. Based on the expression dynamics across developmental stages, young duplicate genes fall into three clusters that are preferentially expressed in early embryos, mid-stage embryos, and late-stage larvae. Early embryonic genes are involved in protein degradation and develop essentiality comparable to the genomic average. In mid-to-late embryos and L4-stage larvae, young genes are enriched in intestine, epidermal cells, coelomocytes, and amphid chemosensory neurons. Their molecular functions and inducible expression indicate potential roles in innate immune response and chemosensory perceptions, which may contribute to adaptation outside of the sperm.
Collapse
Affiliation(s)
- Fuqiang Ma
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Chun Yin Lau
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Chen J. Evolutionarily new genes in humans with disease phenotypes reveal functional enrichment patterns shaped by adaptive innovation and sexual selection. RESEARCH SQUARE 2023:rs.3.rs-3632644. [PMID: 38045389 PMCID: PMC10690325 DOI: 10.21203/rs.3.rs-3632644/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
New genes (or young genes) are structural novelties pivotal in mammalian evolution. Their phenotypic impact on humans, however, remains elusive due to the technical and ethical complexities in functional studies. Through combining gene age dating with Mendelian disease phenotyping, our research reveals that new genes associated with disease phenotypes steadily integrate into the human genome at a rate of ~ 0.07% every million years over macroevolutionary timescales. Despite this stable pace, we observe distinct patterns in phenotypic enrichment, pleiotropy, and selective pressures between young and old genes. Notably, young genes show significant enrichment in the male reproductive system, indicating strong sexual selection. Young genes also exhibit functions in tissues and systems potentially linked to human phenotypic innovations, such as increased brain size, bipedal locomotion, and color vision. Our findings further reveal increasing levels of pleiotropy over evolutionary time, which accompanies stronger selective constraints. We propose a "pleiotropy-barrier" model that delineates different potentials for phenotypic innovation between young and older genes subject to natural selection. Our study demonstrates that evolutionary new genes are critical in influencing human reproductive evolution and adaptive phenotypic innovations driven by sexual and natural selection, with low pleiotropy as a selective advantage.
Collapse
|
10
|
Ogawa M, Tsuneizumi K, Abe T, Nozawa M. Testing immediate dosage compensation in Drosophila miranda via irradiation with heavy-ion beams. Genes Genet Syst 2023; 98:201-206. [PMID: 37779054 DOI: 10.1266/ggs.23-00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Many organisms with heteromorphic sex chromosomes possess a mechanism of dosage compensation (DC) in which X-linked genes are upregulated in males to mitigate the dosage imbalance between sexes and between chromosomes. However, how quickly the DC is established during evolution remains unknown. In this study, by irradiating Drosophila miranda male flies, which carry young sex chromosomes (the so-called neo-sex chromosomes), with heavy-ion beams, we induced deletions in the neo-Y chromosome to mimic the condition of Y-chromosome degeneration, in which functional neo-Y-linked genes are nonfunctionalized; furthermore, we tested whether their neo-X-linked gametologs were immediately upregulated. Because the males that received 2-Gy iron-ion beam irradiation exhibited lower fertility, we sequenced the genomes and transcriptomes of six F1 males derived from these males. Our pipeline identified 82 neo-Y-linked genes in which deletions were predicted in the F1 males. Only three of them showed a one-to-one gametologous relationship with the neo-X-linked genes. The candidate deletions in these three genes occurred in UTRs and did not seriously affect their expression levels. These observations indirectly suggest that DC was unlikely to have operated on the neo-X-linked genes immediately after the pseudogenization of their neo-Y-linked gametologs in D. miranda. Therefore, the dosage imbalance caused by deletions in the neo-Y-linked genes without paralogs may not have effectively been compensated, and individuals with such deletions could have exhibited lethality. Future studies on sex chromosomes at different ages will further reveal the relationship between the age of sex chromosomes and the stringency of DC.
Collapse
Affiliation(s)
- Masafumi Ogawa
- Department of Biological Sciences, Tokyo Metropolitan University
| | | | - Tomoko Abe
- Ion Beam Breeding Team, RIKEN Nishina Center for Accelerator-Based Science
| | - Masafumi Nozawa
- Department of Biological Sciences, Tokyo Metropolitan University
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University
| |
Collapse
|
11
|
Grill S, Riley A, Selvaraj M, Lehmann R. HP6/Umbrea is dispensable for viability and fertility, suggesting essentiality of newly evolved genes is rare. Proc Natl Acad Sci U S A 2023; 120:e2309478120. [PMID: 37725638 PMCID: PMC10523450 DOI: 10.1073/pnas.2309478120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/15/2023] [Indexed: 09/21/2023] Open
Abstract
The newly evolved gene Heterochromatin Protein 6 (HP6), which has been previously classified as essential, challenged the dogma that functions required for viability are only seen in genes with a long evolutionary history. Based on previous RNA-sequencing analysis in Drosophila germ cells, we asked whether HP6 might play a role in germline development. Surprisingly, we found that CRISPR-generated HP6 mutants are viable and fertile. Using previously generated mutants, we identified an independent lethal allele and an RNAi off-target effect that prevented accurate interpretation of HP6 essentiality. By reviewing existing data, we found that the vast majority of young genes that were previously classified as essential were indeed viable when tested with orthologous methods. Together, our data call into question the frequency with which newly evolved genes gain essential functions and suggest that using multiple independent genetic methods is essential when probing the functions of young genes.
Collapse
Affiliation(s)
- Sherilyn Grill
- Department of Biology, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA02142
| | - Ashley Riley
- Department of Biology, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA02142
| | - Monica Selvaraj
- Department of Biology, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA02142
| | - Ruth Lehmann
- Department of Biology, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA02142
| |
Collapse
|
12
|
Zhao Z, Yang W, Kong R, Zhang Y, Li L, Song Z, Chen H, Luo Y, Zhang T, Cheng C, Li G, Liu D, Geng X, Chen H, Wang Y, Pan S, Hu J, Sun B. circEIF3I facilitates the recruitment of SMAD3 to early endosomes to promote TGF-β signalling pathway-mediated activation of MMPs in pancreatic cancer. Mol Cancer 2023; 22:152. [PMID: 37689715 PMCID: PMC10492306 DOI: 10.1186/s12943-023-01847-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/22/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Among digestive tract tumours, pancreatic ductal adenocarcinoma (PDAC) shows the highest mortality trend. Moreover, although PDAC metastasis remains a leading cause of cancer-related deaths, the biological mechanism is poorly understood. Recent evidence demonstrates that circular RNAs (circRNAs) play important roles in PDAC progression. METHODS Differentially expressed circRNAs in normal and PDAC tissues were screened via bioinformatics analysis. Sanger sequencing, RNase R and actinomycin D assays were performed to confirm the loop structure of circEIF3I. In vitro and in vivo functional experiments were conducted to assess the role of circEIF3I in PDAC. MS2-tagged RNA affinity purification, mass spectrometry, RNA immunoprecipitation, RNA pull-down assay, fluorescence in situ hybridization, immunofluorescence and RNA-protein interaction simulation and analysis were performed to identify circEIF3I-interacting proteins. The effects of circEIF3I on the interactions of SMAD3 with TGFβRI or AP2A1 were measured through co-immunoprecipitation and western blotting. RESULTS A microarray data analysis showed that circEIF3I was highly expressed in PDAC cells and correlated with TNM stage and poor prognosis. Functional experiments in vitro and in vivo revealed that circEIF3I accelerated PDAC cells migration, invasion and metastasis by increasing MMPs expression and activity. Mechanistic research indicated that circEIF3I binds to the MH2 domain of SMAD3 and increases SMAD3 phosphorylation by strengthening the interactions between SMAD3 and TGFβRI on early endosomes. Moreover, AP2A1 binds with circEIF3I directly and promotes circEIF3I-bound SMAD3 recruitment to TGFβRI on early endosomes. Finally, we found that circEif3i exerts biological functions in mice similar to those of circEIF3I in humans PDAC. CONCLUSIONS Our study reveals that circEIF3I promotes pancreatic cancer progression. circEIF3I is a molecular scaffold that interacts with SMAD3 and AP2A1 to form a ternary complex, that facilitates the recruitment of SMAD3 to early endosomes and then activates the TGF-β signalling pathway. Hence, circEIF3I is a potential prognostic biomarker and therapeutic target in PDAC.
Collapse
Affiliation(s)
- Zhongjie Zhao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Wenbo Yang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yangyang Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zengfu Song
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, HarbinHeilongjiang, 150001, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yan Luo
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Tao Zhang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Chundong Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Danxi Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Xinglong Geng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
13
|
Sanejouand YH. On the Unknown Proteins of Eukaryotic Proteomes. J Mol Evol 2023:10.1007/s00239-023-10116-1. [PMID: 37219573 DOI: 10.1007/s00239-023-10116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/07/2023] [Indexed: 05/24/2023]
Abstract
To study unknown proteins on a large scale, a reference system has been set up for the three better studied eukaryotic kingdoms, built with 36 proteomes as taxonomically diverse as possible. Proteins from 362 other eukaryotic proteomes with no known homologue in this set were then analyzed, focusing noteworthy on singletons, that is, on such proteins with no known homologue in their own proteome. Consistently, for a given species, no more than 12% of the singletons thus found are known at the protein level, according to Uniprot. In addition, since they rely on the information found in the alignment of homologous sequences, predictions of AlphaFold2 for their tridimensional structure are poor. In the case of metazoan species, the number of singletons rarely exceeds 1000 for the species the closest to the reference system (divergence times below 75 Myr). Interestingly, in the cases of viridiplantae and fungi, larger amounts of singletons are found for such species, as if the timescale on which singletons are added to proteomes were different in metazoa and in other eukaryotic kingdoms. In order to confirm this phenomenon, further studies of proteomes closer to those of the reference system are, however, needed.
Collapse
Affiliation(s)
- Yves-Henri Sanejouand
- US2B, UMR 6286 of CNRS, Nantes University, rue de la Houssinière, 44322, Nantes, France.
| |
Collapse
|
14
|
Liang M, Chen W, LaFountain AM, Liu Y, Peng F, Xia R, Bradshaw H, Yuan YW. Taxon-specific, phased siRNAs underlie a speciation locus in monkeyflowers. Science 2023; 379:576-582. [PMID: 36758083 PMCID: PMC10601778 DOI: 10.1126/science.adf1323] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/06/2022] [Indexed: 02/11/2023]
Abstract
Taxon-specific small RNA loci are widespread in eukaryotic genomes, yet their role in lineage-specific adaptation, phenotypic diversification, and speciation is poorly understood. Here, we report that a speciation locus in monkeyflowers (Mimulus), YELLOW UPPER (YUP), contains an inverted repeat region that produces small interfering RNAs (siRNAs) in a phased pattern. Although the inverted repeat is derived from a partial duplication of a protein-coding gene that is not involved in flower pigmentation, one of the siRNAs targets and represses a master regulator of floral carotenoid pigmentation. YUP emerged with two protein-coding genes that control other aspects of flower coloration as a "superlocus" in a subclade of Mimulus and has contributed to subsequent phenotypic diversification and pollinator-mediated speciation in the descendant species.
Collapse
Affiliation(s)
- Mei Liang
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Wenjie Chen
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding and Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
| | - Amy M. LaFountain
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Foen Peng
- Department of Biology, University of Washington, Seattle, WA 98195
- Department of Biology, Haverford College, Haverford, Pennsylvania 19041
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - H.D. Bradshaw
- Department of Biology, University of Washington, Seattle, WA 98195
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
15
|
Ma C, Li C, Ma H, Yu D, Zhang Y, Zhang D, Su T, Wu J, Wang X, Zhang L, Chen CL, Zhang YE. Pan-cancer surveys indicate cell cycle-related roles of primate-specific genes in tumors and embryonic cerebrum. Genome Biol 2022; 23:251. [PMID: 36474250 PMCID: PMC9724437 DOI: 10.1186/s13059-022-02821-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite having been extensively studied, it remains largely unclear why humans bear a particularly high risk of cancer. The antagonistic pleiotropy hypothesis predicts that primate-specific genes (PSGs) tend to promote tumorigenesis, while the molecular atavism hypothesis predicts that PSGs involved in tumors may represent recently derived duplicates of unicellular genes. However, these predictions have not been tested. RESULTS By taking advantage of pan-cancer genomic data, we find the upregulation of PSGs across 13 cancer types, which is facilitated by copy-number gain and promoter hypomethylation. Meta-analyses indicate that upregulated PSGs (uPSGs) tend to promote tumorigenesis and to play cell cycle-related roles. The cell cycle-related uPSGs predominantly represent derived duplicates of unicellular genes. We prioritize 15 uPSGs and perform an in-depth analysis of one unicellular gene-derived duplicate involved in the cell cycle, DDX11. Genome-wide screening data and knockdown experiments demonstrate that DDX11 is broadly essential across cancer cell lines. Importantly, non-neutral amino acid substitution patterns and increased expression indicate that DDX11 has been under positive selection. Finally, we find that cell cycle-related uPSGs are also preferentially upregulated in the highly proliferative embryonic cerebrum. CONCLUSIONS Consistent with the predictions of the atavism and antagonistic pleiotropy hypotheses, primate-specific genes, especially those PSGs derived from cell cycle-related genes that emerged in unicellular ancestors, contribute to the early proliferation of the human cerebrum at the cost of hitchhiking by similarly highly proliferative cancer cells.
Collapse
Affiliation(s)
- Chenyu Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Li
- School of Engineering Medicine, Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Dan Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianhan Su
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Chun-Long Chen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, 75005, Paris, France
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
16
|
Dubois‐Mignon T, Monget P. Gene essentiality and variability: What is the link? A within‐ and between‐species perspective. Bioessays 2022; 44:e2200132. [DOI: 10.1002/bies.202200132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Tania Dubois‐Mignon
- Institut de Biologie de l’École Normale Supérieure Université PSL 46 rue d'Ulm Paris 75005 France
| | - Philippe Monget
- Physiologie de la Reproduction et des Comportements, Centre Val de Loire – UMR INRAE, CNRS, IFCE Université de Tours Nouzilly France
| |
Collapse
|
17
|
Chenevert M, Miller B, Karkoutli A, Rusnak A, Lott SE, Atallah J. The early embryonic transcriptome of a Hawaiian Drosophila picture-wing fly shows evidence of altered gene expression and novel gene evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:277-291. [PMID: 35322942 DOI: 10.1002/jez.b.23129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/14/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
A massive adaptive radiation on the Hawaiian archipelago has produced approximately one-quarter of the fly species in the family Drosophilidae. The Hawaiian Drosophila clade has long been recognized as a model system for the study of both the ecology of island endemics and the evolution of developmental mechanisms, but relatively few genomic and transcriptomic datasets are available for this group. We present here a differential expression analysis of the transcriptional profiles of two highly conserved embryonic stages in the Hawaiian picture-wing fly Drosophila grimshawi. When we compared our results to previously published datasets across the family Drosophilidae, we identified cases of both gains and losses of gene representation in D. grimshawi, including an apparent delay in Hox gene activation. We also found a high expression of unannotated genes. Most transcripts of unannotated genes with open reading frames do not have identified homologs in non-Hawaiian Drosophila species, although the vast majority have sequence matches in genomes of other Hawaiian picture-wing flies. Some of these unannotated genes may have arisen from noncoding sequence in the ancestor of Hawaiian flies or during the evolution of the clade. Our results suggest that both the modified use of ancestral genes and the evolution of new ones may occur in rapid radiations.
Collapse
Affiliation(s)
- Madeline Chenevert
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Bronwyn Miller
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| | - Ahmad Karkoutli
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
- LSUHSC School of Medicine, New Orleans, Louisiana, USA
| | - Anna Rusnak
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
- Center for Biomedical Engineering, Brown University, Box A-2, Arnold Lab, Providence, Rhode Island, USA
| | - Susan E Lott
- Department of Evolution & Ecology, University of California-Davis, Davis, California, USA
| | - Joel Atallah
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
18
|
Lee YCG. Synergistic epistasis of the deleterious effects of transposable elements. Genetics 2022; 220:iyab211. [PMID: 34888644 PMCID: PMC9097265 DOI: 10.1093/genetics/iyab211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 11/12/2022] Open
Abstract
The replicative nature and generally deleterious effects of transposable elements (TEs) raise an outstanding question about how TE copy number is stably contained in host populations. Classic theoretical analyses predict that, when the decline in fitness due to each additional TE insertion is greater than linear, or when there is synergistic epistasis, selection against TEs can result in a stable equilibrium of TE copy number. While several mechanisms are predicted to yield synergistic deleterious effects of TEs, we lack empirical investigations of the presence of such epistatic interactions. Purifying selection with synergistic epistasis generates repulsion linkage between deleterious alleles. We investigated this population genetic signal in the likely ancestral Drosophila melanogaster population and found evidence supporting the presence of synergistic epistasis among TE insertions, especially TEs expected to exert large fitness impacts. Even though synergistic epistasis of TEs has been predicted to arise through ectopic recombination and TE-mediated epigenetic silencing mechanisms, we only found mixed support for the associated predictions. We observed signals of synergistic epistasis for a large number of TE families, which is consistent with the expectation that such epistatic interaction mainly happens among copies of the same family. Curiously, significant repulsion linkage was also found among TE insertions from different families, suggesting the possibility that synergism of TEs' deleterious fitness effects could arise above the family level and through mechanisms similar to those of simple mutations. Our findings set the stage for investigating the prevalence and importance of epistatic interactions in the evolutionary dynamics of TEs.
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
19
|
Logeay R, Géminard C, Lassus P, Rodríguez-Vázquez M, Kantar D, Heron-Milhavet L, Fischer B, Bray SJ, Colinge J, Djiane A. Mechanisms underlying the cooperation between loss of epithelial polarity and Notch signaling during neoplastic growth in Drosophila. Development 2022; 149:274230. [PMID: 35005772 DOI: 10.1242/dev.200110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022]
Abstract
Aggressive neoplastic growth can be initiated by a limited number of genetic alterations, such as the well-established cooperation between loss of cell architecture and hyperactive signaling pathways. However, our understanding of how these different alterations interact and influence each other remains very incomplete. Using Drosophila paradigms of imaginal wing disc epithelial growth, we have monitored the changes in Notch pathway activity according to the polarity status of cells (scrib mutant). We show that the scrib mutation impacts the direct transcriptional output of the Notch pathway, without altering the global distribution of Su(H), the Notch-dedicated transcription factor. The Notch-dependent neoplasms require, however, the action of a group of transcription factors, similar to those previously identified for Ras/scrib neoplasm (namely AP-1, Stat92E, Ftz-F1 and basic leucine zipper factors), further suggesting the importance of this transcription factor network during neoplastic growth. Finally, our work highlights some Notch/scrib specificities, in particular the role of the PAR domain-containing basic leucine zipper transcription factor and Notch direct target Pdp1 for neoplastic growth.
Collapse
Affiliation(s)
- Rémi Logeay
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | - Charles Géminard
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | - Patrice Lassus
- IRCM, Inserm, University of Montpellier, ICM, CNRS, Montpellier, France
| | | | - Diala Kantar
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | | | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Sarah J Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Jacques Colinge
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | - Alexandre Djiane
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| |
Collapse
|
20
|
Xia S, Ventura IM, Blaha A, Sgromo A, Han S, Izaurralde E, Long M. Rapid Gene Evolution in an Ancient Post-transcriptional and Translational Regulatory System Compensates for Meiotic X Chromosomal Inactivation. Mol Biol Evol 2022; 39:msab296. [PMID: 34626117 PMCID: PMC8763131 DOI: 10.1093/molbev/msab296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is conventionally assumed that conserved pathways evolve slowly with little participation of gene evolution. Nevertheless, it has been recently observed that young genes can take over fundamental functions in essential biological processes, for example, development and reproduction. It is unclear how newly duplicated genes are integrated into ancestral networks and reshape the conserved pathways of important functions. Here, we investigated origination and function of two autosomal genes that evolved recently in Drosophila: Poseidon and Zeus, which were created by RNA-based duplications from the X-linked CAF40, a subunit of the conserved CCR4-NOT deadenylase complex involved in posttranscriptional and translational regulation. Knockdown and knockout assays show that the two genes quickly evolved critically important functions in viability and male fertility. Moreover, our transcriptome analysis demonstrates that the three genes have a broad and distinct effect in the expression of hundreds of genes, with almost half of the differentially expressed genes being perturbed exclusively by one paralog, but not the others. Co-immunoprecipitation and tethering assays show that the CAF40 paralog Poseidon maintains the ability to interact with the CCR4-NOT deadenylase complex and might act in posttranscriptional mRNA regulation. The rapid gene evolution in the ancient posttranscriptional and translational regulatory system may be driven by evolution of sex chromosomes to compensate for the meiotic X chromosomal inactivation (MXCI) in Drosophila.
Collapse
Affiliation(s)
- Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Iuri M Ventura
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Andreas Blaha
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Annamaria Sgromo
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Shuaibo Han
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
21
|
Lyu Y, Liufu Z, Xiao J, Tang T. A Rapid Evolving microRNA Cluster Rewires Its Target Regulatory Networks in Drosophila. Front Genet 2021; 12:760530. [PMID: 34777478 PMCID: PMC8581666 DOI: 10.3389/fgene.2021.760530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
New miRNAs are evolutionarily important but their functional evolution remains unclear. Here we report that the evolution of a microRNA cluster, mir-972C rewires its downstream regulatory networks in Drosophila. Genomic analysis reveals that mir-972C originated in the common ancestor of Drosophila where it comprises six old miRNAs. It has subsequently recruited six new members in the melanogaster subgroup after evolving for at least 50 million years. Both the young and the old mir-972C members evolved rapidly in seed and non-seed regions. Combining target prediction and cell transfection experiments, we found that the seed and non-seed changes in individual mir-972C members cause extensive target divergence among D. melanogaster, D. simulans, and D. virilis, consistent with the functional evolution of mir-972C reported recently. Intriguingly, the target pool of the cluster as a whole remains relatively conserved. Our results suggest that clustering of young and old miRNAs broadens the target repertoires by acquiring new targets without losing many old ones. This may facilitate the establishment of new miRNAs in existing regulatory networks.
Collapse
Affiliation(s)
- Yang Lyu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongqi Liufu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Juan Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tian Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Shared evolutionary trajectories of three independent neo-sex chromosomes in Drosophila. Genome Res 2021; 31:2069-2079. [PMID: 34675069 PMCID: PMC8559708 DOI: 10.1101/gr.275503.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/22/2021] [Indexed: 11/25/2022]
Abstract
Dosage compensation (DC) on the X Chromosome counteracts the deleterious effects of gene loss on the Y Chromosome. However, DC is not efficient if the X Chromosome also degenerates. This indeed occurs in Drosophila miranda, in which both the neo-Y and the neo-X are under accelerated pseudogenization. To examine the generality of this pattern, we investigated the evolution of two additional neo-sex chromosomes that emerged independently in D. albomicans and D. americana and reanalyzed neo-sex chromosome evolution in D. miranda. Comparative genomic and transcriptomic analyses revealed that the pseudogenization rate on the neo-X is also accelerated in D. albomicans and D. americana although to a lesser extent than in D. miranda. In males, neo-X-linked genes whose neo-Y-linked homologs are pseudogenized tended to be up-regulated more than those whose neo-Y-linked homologs remain functional. Moreover, genes under strong functional constraint and genes highly expressed in the testis tended to remain functional on the neo-X and neo-Y, respectively. Focusing on the D. miranda and D. albomicans neo-sex chromosomes that emerged independently from the same autosome, we further found that the same genes tend to become pseudogenized in parallel on the neo-Y. These genes include Idgf6 and JhI-26, which may be unnecessary or even harmful in males. Our results indicate that neo-sex chromosomes in Drosophila share a common evolutionary trajectory after their emergence, which may prevent sex chromosomes from being an evolutionary dead end.
Collapse
|