1
|
Wang E, Rotondo F, Cusimano MD. Alpha thalassemia/mental retardation X-linked (ATRX) protein expression in human pituitary neuroendocrine tumours and its reported correlation to prognosis and clinical outcomes: A systematic review. PLoS One 2025; 20:e0313380. [PMID: 40440300 PMCID: PMC12121788 DOI: 10.1371/journal.pone.0313380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/23/2025] [Indexed: 06/02/2025] Open
Abstract
Mutations in Alpha thalassemia/mental retardation X-linked (ATRX) have been implicated in several cancers, including gliomas, sarcomas, neuroendocrine tumors, and other mesenchymal malignancies. ATRX loss contributes to oncogenesis, accelerates tumor growth, and reduces survival by disrupting epigenetic and telomere mechanisms. Additionally, ATRX loss can increase tumor sensitivity to treatment therapies. While research has explored ATRX expression in many cancers, data on its relationship to prognosis in pituitary neuroendocrine tumors (PitNETs) remain inconsistent. This systematic review aims to summarize all available studies on ATRX mutations and expression in PitNETs. A systematic search of PubMed, Scopus, and EMBASE databases was conducted to identify publications between 2014 and 2025 that investigated ATRX mutations or expression in PitNETs, following PRISMA 2020 guidelines. Of 32 identified studies, ten met the inclusion criteria, covering a total of 513 PitNETs. Only 20 tumors (3.9%) showed a loss of ATRX expression. Among these, 60% exhibited corticotrophic pathology, while 20% displayed lactotrophic pathology. A small subset of tumors (30%) was classified as pituitary carcinomas with aggressive and proliferative characteristics. Additionally, 10% demonstrated the alternative lengthening of telomeres (ALT) phenotype, 50% had concurrent TP53 mutations, and 25% had elevated Ki-67 indices, indicating a higher proliferative index. Although ATRX mutations are rare in PitNETs, tumors with ATRX loss tend to be more aggressive and exhibit proliferative and transformative properties. Due to the limited number of cases, further studies with larger, prospective cohorts are needed to better understand the role of ATRX loss in PitNET progression and aggressiveness.
Collapse
Affiliation(s)
- Edward Wang
- Department of Surgery, Division of Neurosurgery, St. Michael’s Hospital, Injury Prevention Research Office, Li Ka Shing Knowledge Institute, Keenan Research Centre, University of Toronto, Toronto, ON, Canada
| | - Fabio Rotondo
- Department of Laboratory Medicine, Division of Pathology, Unity Health Toronto-St. Michael’s Hospital, Toronto, ON, Canada
| | - Michael D. Cusimano
- Department of Surgery, Division of Neurosurgery, St. Michael’s Hospital, Injury Prevention Research Office, Li Ka Shing Knowledge Institute, Keenan Research Centre, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Wang L, Lin F, Yuan J, Wu X, Zhong Y, Li S, Lv Y. FAM207A acts as a novel and potential biomarker in lung adenocarcinoma and shapes the immunesuppressive tumor microenvironment. Clin Exp Med 2025; 25:125. [PMID: 40259152 PMCID: PMC12011971 DOI: 10.1007/s10238-025-01657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/23/2025]
Abstract
The expression of Family with sequence similarity 207 member A( FAM207A) is closely related to the development, growth, and progression of various cancers. However, extensive research into its biological functions remains unexplored. In this study, we conducted a comprehensive biological information analysis of the Lung adenocarcinoma (LUAD) dataset to elucidate the foundational mechanisms underlying FAM207A's role in tumor development. The expression and clinical information of LUAD patients for FAM207A were extracted from the Cancer Genome Atlas (TCGA). Using Western blot, we assessed the expression levels of relevant proteins in LUAD cells and human lung epithelial cells. Subsequently, we employed Cox regression analysis to evaluate the prognostic significance of FAM207A in LUAD, along with gene set enrichment analysis (GSEA) to explore its potential biological functions and interactions with FAM207A's immune microenvironment. Finally, in vitro experiments confirmed that FAM207A significantly influences the proliferation and migration of LUAD cells. The results indicate that FAM207A mRNA and protein expression levels in LUAD tissues and cell are significantly elevated. Additionally, FAM207A high expression is significantly associated with a shorter overall survival (OS) and more advanced pathological stages. Furthermore, FAM207A expression is significantly linked to the expression of immunogenic markers in the LUAD tumor microenvironment. Gene set and KEGG enrichment analyses revealed that FAM207A is primarily associated with genes involved in adhesion and immune signaling pathways. Additionally, in vitro experiments demonstrated that FAM207A can effectively promote the proliferation and migration of LUAD cells. Our findings revealed that FAM207A is overexpressed in LUAD and is linked to a poor prognosis. Our study demonstrates the potential of FAM207A as an immunotherapeutic and predictive biomarker in LUAD.
Collapse
Affiliation(s)
- Lu Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feihong Lin
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jixiang Yuan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xudong Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yushan Zhong
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shan Li
- Shandong Provincial Hospital, Jinan, Shandong, China.
| | - Ya Lv
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Levesque MG, Picketts DJ. It Takes a Village of Chromatin Remodelers to Regulate rDNA Expression. Int J Mol Sci 2025; 26:1772. [PMID: 40004235 PMCID: PMC11855044 DOI: 10.3390/ijms26041772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Ribosome biogenesis is one of the most fundamental and energetically demanding cellular processes. In humans, the ribosomal DNA (rDNA) repeats span a large region of DNA and comprise 200 to 600 copies of a ~43 kb unit spread over five different chromosomes. Control over ribosome biogenesis is closely tied to the regulation of the chromatin environment of this large genomic region. The proportion of rDNA loci which are active or silent is altered depending on the proliferative or metabolic state of the cell. Repeat silencing is driven by epigenetic changes culminating in a repressive heterochromatin environment. One group of proteins facilitating these epigenetic changes in response to growth or metabolic demands are ATP-dependent chromatin remodeling protein complexes that use ATP hydrolysis to reposition nucleosomes. Indeed, some chromatin remodelers are known to have indispensable roles in regulating the chromatin environment of rDNA. In this review, we highlight these proteins and their complexes and describe their mechanistic roles at rDNA. We also introduce the developmental disorders arising from the dysfunction of these proteins and discuss how the consequent dysregulation of rDNA loci may be reflected in the phenotypes observed.
Collapse
Affiliation(s)
- Mathieu G. Levesque
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
4
|
Goncalves T, Bhatnagar H, Cunniffe S, Gibbons RJ, Rose AM, Clynes D. Phosphorylation of 'SDT-like' motifs in ATRX mediates its interaction with the MRN complex and is important for ALT pathway suppression. Open Biol 2024; 14:240205. [PMID: 39657822 PMCID: PMC11631451 DOI: 10.1098/rsob.240205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
Approximately 10-15% of human cancers are telomerase-negative and maintain their telomeres through a recombination-based process known as the alternative lengthening of telomeres (ALT) pathway. Loss of the alpha-thalassemia/mental retardation, X-linked (ATRX) chromatin remodeller is a common event in ALT-positive cancers, but is generally insufficient to drive ALT induction in isolation. We previously demonstrated that ATRX binds to the MRN complex, which is also known to be important in the ALT pathway, but the molecular basis of this interaction remained elusive. Here, we demonstrate that the interaction between ATRX and MRN is dependent on the N-terminal forkhead-associated and BRCA1 C-terminal domains of NBS1, analogous to the previously reported NBS1-MDC1 interaction. A number of conserved 'SDT-like' motifs (serine and threonine residues with aspartic/glutamic acid residues at proximal positions) in the central unstructured region of ATRX were found to be crucial for the ATRX-MRN interaction. Furthermore, treatment with a casein kinase 2 inhibitor prevented the ability of ATRX to bind MRN, suggesting that phosphorylation of these residues by casein kinase 2 is also important for the interaction. Finally, we show that a functional ATRX-MRN interaction is important for the ability of ATRX to prevent induction of ALT hallmarks in the presence of chemotherapeutically induced DNA-protein crosslinks, and might also have implications for individuals with ATR-X syndrome.
Collapse
Affiliation(s)
- Tomas Goncalves
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OxfordOX3 9DS, UK
- Department of Paediatrics, University of Oxford, OxfordOX3 9DU, UK
| | | | | | - Richard J. Gibbons
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OxfordOX3 9DS, UK
| | - Anna M. Rose
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OxfordOX3 9DS, UK
- Department of Paediatrics, University of Oxford, OxfordOX3 9DU, UK
| | - David Clynes
- Department of Oncology, University of Oxford, OxfordOX3 7DQ, UK
| |
Collapse
|
5
|
Mirceta M, Schmidt MHM, Shum N, Prasolava TK, Meikle B, Lanni S, Mohiuddin M, Mckeever PM, Zhang M, Liang M, van der Werf I, Scheers S, Dion PA, Wang P, Wilson MD, Abell T, Philips EA, Sznajder ŁJ, Swanson MS, Mehkary M, Khan M, Yokoi K, Jung C, de Jong PJ, Freudenreich CH, McGoldrick P, Yuen RKC, Abrahão A, Keith J, Zinman L, Robertson J, Rogaeva E, Rouleau GA, Kooy RF, Pearson CE. C9orf72 expansion creates the unstable folate-sensitive fragile site FRA9A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.26.620312. [PMID: 39569145 PMCID: PMC11577248 DOI: 10.1101/2024.10.26.620312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The hyper-unstable Chr9p21 locus, harbouring the interferon gene cluster, oncogenes and C9orf72, is linked to multiple diseases. C9orf72 (GGGGCC)n expansions ( C9orf72 Exp) are associated with incompletely penetrant amyotrophic lateral sclerosis, frontotemporal dementia and autoimmune disorders. C9orf72 Exp patients display hyperactive cGAS-STING-linked interferon immune and DNA damage responses, but the source of immuno-stimulatory or damaged DNA is unknown. Here, we show C9orf72 Exp in pre-symptomatic and ALS-FTD patient cells and brains cause the folate-sensitive chromosomal fragile site, FRA9A. FRA9A centers on >33kb of C9orf72 as highly-compacted chromatin embedded in an 8.2Mb fragility zone spanning 9p21, encompassing 46 genes, making FRA9A one of the largest fragile sites. C9orf72 Exp cells show chromosomal instability, heightened global- and Chr9p-enriched sister-chromatid exchanges, truncated-Chr9s, acentric-Chr9s and Chr9-containing micronuclei, providing endogenous sources of damaged and immunostimulatory DNA. Cells from one C9orf72 Exp patient contained highly-rearranged FRA9A-expressing Chr9 with Chr9-wide dysregulated gene expression. Somatic C9orf72 Exp repeat instability and chromosomal fragility are sensitive to folate-deficiency. Age-dependent repeat instability, chromosomal fragility, and chromosomal instability can be transferred to CNS and peripheral tissues of transgenic C9orf72 Exp mice, implicating C9orf72 Exp as the source. Our results highlight unappreciated effects of C9orf72 expansions that trigger vitamin-sensitive chromosome fragility, adding structural variations to the disease-enriched 9p21 locus, and likely elsewhere.
Collapse
|
6
|
Mirceta M, Schmidt MM, Shum N, Prasolava T, Meikle B, Lanni S, Mohiuddin M, McKeever P, Zhang M, Liang M, van der Werf I, Scheers S, Dion P, Wang P, Wilson M, Abell T, Philips E, Sznajder Ł, Swanson M, Mehkary M, Khan M, Yokoi K, Jung C, de Jong P, Freudenreich C, McGoldrick P, Yuen RC, Abrahão A, Keith J, Zinman L, Robertson J, Rogaeva E, Rouleau G, Kooy R, Pearson C. C9orf72 repeat expansion creates the unstable folate-sensitive fragile site FRA9A. NAR MOLECULAR MEDICINE 2024; 1:ugae019. [PMID: 39669124 PMCID: PMC11632612 DOI: 10.1093/narmme/ugae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
The hyper-unstable Chr9p21 locus, harbouring the interferon gene cluster, oncogenes and C9orf72, is linked to multiple diseases. C9orf72 (GGGGCC)n expansions (C9orf72Exp) are associated with incompletely penetrant amyotrophic lateral sclerosis, frontotemporal dementia and autoimmune disorders. C9orf72Exp patients display hyperactive cGAS-STING-linked interferon immune and DNA damage responses, but the source of immunostimulatory or damaged DNA is unknown. Here, we show C9orf72Exp in pre-symptomatic and amyotrophic lateral sclerosis-frontotemporal dementia patient cells and brains cause the folate-sensitive chromosomal fragile site, FRA9A. FRA9A centers on >33 kb of C9orf72 as highly compacted chromatin embedded in an 8.2 Mb fragility zone spanning 9p21, encompassing 46 genes, making FRA9A one of the largest fragile sites. C9orf72Exp cells show chromosomal instability, heightened global- and Chr9p-enriched sister-chromatid exchanges, truncated-Chr9s, acentric-Chr9s and Chr9-containing micronuclei, providing endogenous sources of damaged and immunostimulatory DNA. Cells from one C9orf72Exp patient contained a highly rearranged FRA9A-expressing Chr9 with Chr9-wide dysregulated gene expression. Somatic C9orf72Exp repeat instability and chromosomal fragility are sensitive to folate deficiency. Age-dependent repeat instability, chromosomal fragility and chromosomal instability can be transferred to CNS and peripheral tissues of transgenic C9orf72Exp mice, implicating C9orf72Exp as the source. Our results highlight unappreciated effects of C9orf72 expansions that trigger vitamin-sensitive chromosome fragility, adding structural variations to the disease-enriched 9p21 locus, and likely elsewhere.
Collapse
Affiliation(s)
- Mila Mirceta
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Monika H M Schmidt
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Natalie Shum
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Tanya K Prasolava
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Bryanna Meikle
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Stella Lanni
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Mohiuddin Mohiuddin
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Paul M McKeever
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ming Zhang
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, 200090, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Advanced Study, Tongji University, Shanghai, 200092, China
| | - Minggao Liang
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | | | - Stefaan Scheers
- Department of Medical Genetics, University of Antwerp, Belgium
| | - Patrick A Dion
- Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
| | - Peixiang Wang
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Michael D Wilson
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Theresa Abell
- Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Elliot A Philips
- Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
- Department of Chemistry and Biochemistry, University of Nevada, 4003-4505 South Maryland Parkway, Las Vegas, NV 89154, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
| | - Mustafa Mehkary
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Mahreen Khan
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Katsuyuki Yokoi
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Christine Jung
- BACPAC Resource Center, Children’s Hospital Oakland Research Institute, 25129 NE 42nd Pl, Redmond, WA 98053, USA
| | - Pieter J de Jong
- BACPAC Resource Center, Children’s Hospital Oakland Research Institute, 25129 NE 42nd Pl, Redmond, WA 98053, USA
| | | | - Philip McGoldrick
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Agessandro Abrahão
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Julia Keith
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Janice Robertson
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Human Genetics, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Belgium
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| |
Collapse
|
7
|
Udroiu I, Marinaccio J, Sgura A. Effects of p53 and ATRX inhibition on telomeric recombination in aging fibroblasts. Front Oncol 2024; 14:1322438. [PMID: 38333682 PMCID: PMC10850245 DOI: 10.3389/fonc.2024.1322438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
In order to avoid replicative senescence, tumor cells must acquire a telomere maintenance mechanism. Beside telomerase activation, a minority of tumors employs a recombinational mechanism called Alternative Lengthening of Telomeres (ALT). Several studies have investigated the potential ALT stimulation by inactivation of ATRX in tumor cells, obtaining contrasting results. Differently, since ALT can be viewed as a mechanism to overcome telomere shortening-mediated replicative senescence, we have investigated the effects of the inhibition of ATRX and p53 in aging primary fibroblasts. We observed that senescence leads to a phenotype that seems permissive for ALT activity, i.e. high levels of ALT-associated PML bodies (APB), telomeric damage and telomeric cohesion. On the other hand, RAD51 is highly repressed and thus telomeric recombination, upon which the ALT machinery relies, is almost absent. Silencing of ATRX greatly increases telomeric recombination in young cells, but is not able to overcome senescence-induced repression of homologous recombination. Conversely, inhibition of both p53 and ATRX leads to a phenotype reminiscent of some aspects of ALT activity, with a further increase of APB, a decrease of telomere shortening (and increased proliferation) and, above all, an increase of telomeric recombination.
Collapse
Affiliation(s)
- Ion Udroiu
- Dipartimento di Scienze, Università “Roma Tre“, Rome, Italy
| | | | | |
Collapse
|
8
|
Silveira KC, Fonseca IC, Oborn C, Wengryn P, Ghafoor S, Beke A, Dreseris ES, Wong C, Iacovone A, Soltys CL, Babul-Hirji R, Artigalas O, Antolini-Tavares A, Gingras AC, Campos E, Cavalcanti DP, Kannu P. CYP26B1-related disorder: expanding the ends of the spectrum through clinical and molecular evidence. Hum Genet 2023; 142:1571-1586. [PMID: 37755482 PMCID: PMC10602971 DOI: 10.1007/s00439-023-02598-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/03/2023] [Indexed: 09/28/2023]
Abstract
CYP26B1 metabolizes retinoic acid in the developing embryo to regulate its levels. A limited number of individuals with pathogenic variants in CYP26B1 have been documented with a varied phenotypic spectrum, spanning from a severe manifestation involving skull anomalies, craniosynostosis, encephalocele, radio-humeral fusion, oligodactyly, and a narrow thorax, to a milder presentation characterized by craniosynostosis, restricted radio-humeral joint mobility, hearing loss, and intellectual disability. Here, we report two families with CYP26B1-related phenotypes and describe the data obtained from functional studies of the variants. Exome and Sanger sequencing were used for variant identification in family 1 and family 2, respectively. Family 1 reflects a mild phenotype, which includes craniofacial dysmorphism with brachycephaly (without craniosynostosis), arachnodactyly, reduced radioulnar joint movement, conductive hearing loss, learning disability-and compound heterozygous CYP26B1 variants: (p.[(Pro118Leu)];[(Arg234Gln)]) were found. In family 2, a stillborn fetus presented a lethal phenotype with spina bifida occulta, hydrocephalus, poor skeletal mineralization, synostosis, limb defects, and a synonymous homozygous variant in CYP26B1: c.1083C > A. A minigene assay revealed that the synonymous variant created a new splice site, removing part of exon 5 (p.Val361_Asp382del). Enzymatic activity was assessed using a luciferase assay, demonstrating a notable reduction in exogenous retinoic acid metabolism for the variant p.Val361_Asp382del. (~ 3.5 × decrease compared to wild-type); comparatively, the variants p.(Pro118Leu) and p.(Arg234Gln) demonstrated a partial loss of metabolism (1.7× and 2.3× reduction, respectively). A proximity-dependent biotin identification assay reaffirmed previously reported ER-resident protein interactions. Additional work into these interactions is critical to determine if CYP26B1 is involved with other biological events on the ER. Immunofluorescence assay suggests that mutant CYP26B1 is still localized in the endoplasmic reticulum. These results indicate that novel pathogenic variants in CYP26B1 result in varying levels of enzymatic activity that impact retinoic acid metabolism and relate to the distinct phenotypes observed.
Collapse
Affiliation(s)
- Karina C Silveira
- Department of Medical Genetics, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Inara Chacon Fonseca
- Clinical Genetics, Durham Region Cancer Centre, Lakeridge Health Oshawa, Oshawa, ON, L1G 2B9, Canada
| | - Connor Oborn
- Department of Medical Genetics, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Parker Wengryn
- Department of Medical Genetics, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Saima Ghafoor
- Department of Medical Genetics, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Alexander Beke
- Department of Medical Genetics, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Ema S Dreseris
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Cassandra Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Aline Iacovone
- Skeletal Dysplasia Group, Medical Genetics Area, Translational Medicine Department, FCM, University of Campinas (UNICAMP), R. Tessália V de Camargo, 126, Campinas, SP, 13083-887, Brazil
| | - Carrie-Lynn Soltys
- Department of Medical Genetics, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Riyana Babul-Hirji
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Osvaldo Artigalas
- Clinical Genetics Unit, Children's Hospital, Grupo Hospitalar Conceicao, Porto Alegre, Brazil
| | | | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Eric Campos
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Denise P Cavalcanti
- Skeletal Dysplasia Group, Medical Genetics Area, Translational Medicine Department, FCM, University of Campinas (UNICAMP), R. Tessália V de Camargo, 126, Campinas, SP, 13083-887, Brazil.
| | - Peter Kannu
- Department of Medical Genetics, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
9
|
Zhang L, Wirth M, Patra U, Stroh J, Isaakidis K, Rieger L, Kossatz S, Milanovic M, Zang C, Demel U, Keiten‐Schmitz J, Wagner K, Steiger K, Rad R, Bassermann F, Müller S, Keller U, Schick M. Actionable loss of SLF2 drives B-cell lymphomagenesis and impairs the DNA damage response. EMBO Mol Med 2023; 15:e16431. [PMID: 37485814 PMCID: PMC10493575 DOI: 10.15252/emmm.202216431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
The DNA damage response (DDR) acts as a barrier to malignant transformation and is often impaired during tumorigenesis. Exploiting the impaired DDR can be a promising therapeutic strategy; however, the mechanisms of inactivation and corresponding biomarkers are incompletely understood. Starting from an unbiased screening approach, we identified the SMC5-SMC6 Complex Localization Factor 2 (SLF2) as a regulator of the DDR and biomarker for a B-cell lymphoma (BCL) patient subgroup with an adverse prognosis. SLF2-deficiency leads to loss of DDR factors including Claspin (CLSPN) and consequently impairs CHK1 activation. In line with this mechanism, genetic deletion of Slf2 drives lymphomagenesis in vivo. Tumor cells lacking SLF2 are characterized by a high level of DNA damage, which leads to alterations of the post-translational SUMOylation pathway as a safeguard. The resulting co-dependency confers synthetic lethality to a clinically applicable SUMOylation inhibitor (SUMOi), and inhibitors of the DDR pathway act highly synergistic with SUMOi. Together, our results identify SLF2 as a DDR regulator and reveal co-targeting of the DDR and SUMOylation as a promising strategy for treating aggressive lymphoma.
Collapse
Affiliation(s)
- Le Zhang
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Matthias Wirth
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Upayan Patra
- Institute of Biochemistry IIGoethe University Frankfurt, Medical SchoolFrankfurtGermany
| | - Jacob Stroh
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Medicine III, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Konstandina Isaakidis
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Leonie Rieger
- Department of Medicine III, Klinikum rechts der IsarTechnical University of MunichMunichGermany
- Center for Translational Cancer Research (TranslaTUM)Technische Universität MünchenMunichGermany
| | - Susanne Kossatz
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Center for Translational Cancer Research (TranslaTUM)Technische Universität MünchenMunichGermany
- Nuclear Medicine, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Maja Milanovic
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Chuanbing Zang
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Uta Demel
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
- Clinician Scientist ProgramBerlin Institute of Health (BIH)BerlinGermany
| | - Jan Keiten‐Schmitz
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Institute of Biochemistry IIGoethe University Frankfurt, Medical SchoolFrankfurtGermany
| | - Kristina Wagner
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Institute of Biochemistry IIGoethe University Frankfurt, Medical SchoolFrankfurtGermany
| | - Katja Steiger
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Comparative Experimental Pathology, Institute of PathologyTechnical University of MunichMunichGermany
| | - Roland Rad
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Center for Translational Cancer Research (TranslaTUM)Technische Universität MünchenMunichGermany
- Institute of Molecular Oncology and Functional Genomics, TUM School of MedicineTechnische Universität MünchenMunichGermany
| | - Florian Bassermann
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Medicine III, Klinikum rechts der IsarTechnical University of MunichMunichGermany
- Center for Translational Cancer Research (TranslaTUM)Technische Universität MünchenMunichGermany
| | - Stefan Müller
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Institute of Biochemistry IIGoethe University Frankfurt, Medical SchoolFrankfurtGermany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Markus Schick
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin FranklinCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
- Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| |
Collapse
|
10
|
Udroiu I, Marinaccio J, Sgura A. Inhibition of p53 and ATRX increases telomeric recombination in primary fibroblasts. FEBS Open Bio 2023; 13:1683-1698. [PMID: 37499040 PMCID: PMC10476563 DOI: 10.1002/2211-5463.13680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Telomere length can be maintained either by the telomerase enzyme or by alternative lengthening of telomeres (ALT), which is based on telomeric recombination. However, both mechanisms are inactive in most human somatic cells. ATRX has been previously identified as an ALT repressor gene. Nonetheless, TP53 is also deficient in most ALT cell lines, and previous works showed that it is an inhibitor of homologous recombination (HR). Despite this, the role of p53 as an ALT repressor has not been previously examined. Therefore, we investigated the effects of p53 and ATRX inhibition on normal human fibroblasts (devoid of any mutation), in the presence or absence of X-ray-induced telomeric damage. Performing immunofluorescence with antibodies for RAD51, H2AX, and TRF1 (for studying HR-mediated DNA damage repair) and CO-FISH (for telomeric sister chromatid exchanges), we observed that HR is a normal mechanism for the repair of telomeric damage, present also in noncancer cells. Moreover, we discovered that telomeric HR, as for HR in general, is significantly inhibited by p53. Indeed, we observed that inhibition of p53 drastically increases telomeric sister chromatid exchanges. We also confirmed that ATRX inhibition increases telomeric recombination. In particular, we observed an increase in crossover products, but a much higher increase in noncrossover products.
Collapse
Affiliation(s)
- Ion Udroiu
- Dipartimento di Scienze, Università "Roma Tre", Italy
| | | | | |
Collapse
|
11
|
van Gerven MR, Schild L, van Arkel J, Koopmans B, Broeils LA, Meijs LAM, van Oosterhout R, van Noesel MM, Koster J, van Hooff SR, Molenaar JJ, van den Boogaard ML. Two opposing gene expression patterns within ATRX aberrant neuroblastoma. PLoS One 2023; 18:e0289084. [PMID: 37540673 PMCID: PMC10403137 DOI: 10.1371/journal.pone.0289084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/02/2023] [Indexed: 08/06/2023] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. A subgroup of high-risk patients is characterized by aberrations in the chromatin remodeller ATRX that is encoded by 35 exons. In contrast to other pediatric cancer where ATRX point mutations are most frequent, multi-exon deletions (MEDs) are the most frequent type of ATRX aberrations in neuroblastoma. 75% of these MEDs are predicted to produce in-frame fusion proteins, suggesting a potential gain-of-function effect compared to nonsense mutations. For neuroblastoma there are only a few patient-derived ATRX aberrant models. Therefore, we created isogenic ATRX aberrant models using CRISPR-Cas9 in several neuroblastoma cell lines and one tumoroid and performed total RNA-sequencing on these and the patient-derived models. Gene set enrichment analysis (GSEA) showed decreased expression of genes related to both ribosome biogenesis and several metabolic processes in our isogenic ATRX exon 2-10 MED model systems, the patient-derived MED models and in tumor data containing two patients with an ATRX exon 2-10 MED. In sharp contrast, these same processes showed an increased expression in our isogenic ATRX knock-out and exon 2-13 MED models. Our validations confirmed a role of ATRX in the regulation of ribosome homeostasis. The two distinct molecular expression patterns within ATRX aberrant neuroblastomas that we identified imply that there might be a need for distinct treatment regimens.
Collapse
Affiliation(s)
- Michael R van Gerven
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Linda Schild
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Jennemiek van Arkel
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Bianca Koopmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Luuk A Broeils
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Loes A M Meijs
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Romy van Oosterhout
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Max M van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
- Department of Cancer and Imaging, University Medical Center Utrecht, Utrecht, Utrecht, The Netherlands
| | - Jan Koster
- Department of Oncogenomics, University Medical Center Amsterdam, Amsterdam, North-Holland, The Netherlands
| | - Sander R van Hooff
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, The Netherlands
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
12
|
Dragic D, Chang SL, Ennour-Idrissi K, Durocher F, Severi G, Diorio C. Association between alcohol consumption and DNA methylation in blood: a systematic review of observational studies. Epigenomics 2022; 14:793-810. [PMID: 35762294 DOI: 10.2217/epi-2022-0055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We systematically reviewed and evaluated current literature on alcohol consumption and DNA methylation (DNAm) at the genome-wide and probe-wise level in blood of adults. Materials & methods: Five databases (PubMed, Embase, Web of Science, CINAHL and PsycInfo) were searched until 20 December 2020. Studies assessing the effect of alcohol dependence on DNAm were not eligible. Results: 11 cross-sectional studies were included with 88 to 9643 participants. Overall, all studies had a risk of bias criteria unclear or unmet. Epigenome-wide association studies identified between 0 and 5458 differentially methylated positions, and 15 were observed in at least four studies. Conclusion: Potential methylation markers for alcohol consumption have been identified, but further validation in large cohorts is needed.
Collapse
Affiliation(s)
- Dzevka Dragic
- Department of Social & Preventive Medicine, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada.,Cancer Research Center, CHU de Québec Research Center, Oncology division, Quebec, QC, G1R 3S3, Canada.,Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome & Heredity" team, Gustave Roussy, Villejuif, 94807, France
| | - Sue-Ling Chang
- Cancer Research Center, CHU de Québec Research Center, Oncology division, Quebec, QC, G1R 3S3, Canada
| | - Kaoutar Ennour-Idrissi
- Department of Social & Preventive Medicine, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada.,Cancer Research Center, CHU de Québec Research Center, Oncology division, Quebec, QC, G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry & Pathology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Francine Durocher
- Cancer Research Center, CHU de Québec Research Center, Oncology division, Quebec, QC, G1R 3S3, Canada.,Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome & Heredity" team, Gustave Roussy, Villejuif, 94807, France.,Department of Statistics, Computer Science & Applications "G. Parenti" (DISIA), University of Florence, Florence, 50134, Italy
| | - Caroline Diorio
- Department of Social & Preventive Medicine, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada.,Cancer Research Center, CHU de Québec Research Center, Oncology division, Quebec, QC, G1R 3S3, Canada.,Deschênes-Fabia Center for Breast Diseases, Saint-Sacrement Hospital, Quebec, QC, G1S 4L8, Canada
| |
Collapse
|
13
|
McQuaid ME, Ahmed K, Tran S, Rousseau J, Shaheen R, Kernohan KD, Yuki KE, Grover P, Dreseris ES, Ahmed S, Dupuis L, Stimec J, Shago M, Al-Hassnan ZN, Tremblay R, Maass PG, Wilson MD, Grunebaum E, Boycott KM, Boisvert FM, Maddirevula S, Faqeih EA, Almanjomi F, Khan ZU, Alkuraya FS, Campeau PM, Kannu P, Campos EI, Wurtele H. Hypomorphic GINS3 variants alter DNA replication and cause Meier-Gorlin syndrome. JCI Insight 2022; 7:155648. [PMID: 35603789 PMCID: PMC9215265 DOI: 10.1172/jci.insight.155648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
The eukaryotic CDC45/MCM2-7/GINS (CMG) helicase unwinds the DNA double helix during DNA replication. The GINS subcomplex is required for helicase activity and is, therefore, essential for DNA replication and cell viability. Here, we report the identification of 7 individuals from 5 unrelated families presenting with a Meier-Gorlin syndrome–like (MGS-like) phenotype associated with hypomorphic variants of GINS3, a gene not previously associated with this syndrome. We found that MGS-associated GINS3 variants affecting aspartic acid 24 (D24) compromised cell proliferation and caused accumulation of cells in S phase. These variants shortened the protein half-life, altered key protein interactions at the replisome, and negatively influenced DNA replication fork progression. Yeast expressing MGS-associated variants of PSF3 (the yeast GINS3 ortholog) also displayed impaired growth, S phase progression defects, and decreased Psf3 protein stability. We further showed that mouse embryos homozygous for a D24 variant presented intrauterine growth retardation and did not survive to birth, and that fibroblasts derived from these embryos displayed accelerated cellular senescence. Taken together, our findings implicate GINS3 in the pathogenesis of MGS and support the notion that hypomorphic variants identified in this gene impaired cell and organismal growth by compromising DNA replication.
Collapse
Affiliation(s)
- Mary E. McQuaid
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
| | - Kashif Ahmed
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephanie Tran
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Ranad Shaheen
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Kristin D. Kernohan
- CHEO Research Institute, Ottawa, Ontario, Canada
- Newborn Screening Ontario, CHEO, Ottawa, Ontario, Canada
| | - Kyoko E. Yuki
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Prerna Grover
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ema S. Dreseris
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sameen Ahmed
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lucie Dupuis
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer Stimec
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mary Shago
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Zuhair N. Al-Hassnan
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Roch Tremblay
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
| | - Philipp G. Maass
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael D. Wilson
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Eyal Grunebaum
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa A. Faqeih
- Section of Medical Genetics, Children’s Specialist Hospital, and
| | - Fahad Almanjomi
- Department of Pediatric Hematology and Oncology, Comprehensive Cancer Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Zaheer Ullah Khan
- Department of Pediatric Hematology and Oncology, Comprehensive Cancer Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fowzan S. Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Peter Kannu
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Eric I. Campos
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hugo Wurtele
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|