1
|
Readshaw JJ, Doyle LA, Puiu M, Kelly A, Nelson A, Kaiser AJ, McGuire S, Peralta-Acosta J, Smith DL, Stoddard BL, Kaiser BK, Blower TR. PglZ from Type I BREX phage defence systems is a metal-dependent nuclease that forms a sub-complex with BrxB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645558. [PMID: 40196517 PMCID: PMC11974810 DOI: 10.1101/2025.03.26.645558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
BREX (Bacteriophage Exclusion) systems, identified through shared identity with Pgl (Phage Growth Limitation) systems, are a widespread, highly diverse group of phage defence systems found throughout bacteria and archaea. The varied BREX Types harbour multiple protein subunits (between four and eight) and all encode a conserved putative phosphatase (PglZ aka BrxZ) and an equally conserved, putative ATPase (BrxC). Almost all BREX systems also contain a site-specific methyltransferase (PglX aka BrxX). Despite having determined the structure and fundamental biophysical and biochemical behaviours for the PglX methyltransferase, the BrxL effector, the BrxA DNA-binding protein and the BrxR transcriptional regulator, the mechanism by which BREX impedes phage replication remains largely undetermined. In this study, we identify a stable BREX sub-complex of PglZ:BrxB, validate the structure and dynamic behaviour of that sub-complex, and assess the biochemical activity of PglZ, revealing it to be a metal-dependent nuclease. PglZ can cleave cyclic oligonucleotides, linear oligonucleotides, plasmid DNA and both non-modified and modified linear phage genomes. PglZ nuclease activity has no obvious role in BREX-dependent methylation, but does contribute to BREX phage defence. BrxB binding does not impact PglZ nuclease activity. These data contribute to our growing understanding of the BREX phage defence mechanism.
Collapse
Affiliation(s)
- Jennifer J. Readshaw
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Lindsey A. Doyle
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N. Seattle WA 98019, USA
| | - Maria Puiu
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Abigail Kelly
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Andrew Nelson
- Department of Applied Sciences, University of Northumbria, Newcastle Upon Tyne NE1 8ST, UK
| | - Alex J. Kaiser
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N. Seattle WA 98019, USA
| | - Sydney McGuire
- Department of Biology, Seattle University, 901 12 Ave. Seattle WA 98122, USA
| | | | - Darren L. Smith
- Department of Applied Sciences, University of Northumbria, Newcastle Upon Tyne NE1 8ST, UK
| | - Barry L. Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N. Seattle WA 98019, USA
| | - Brett K. Kaiser
- Department of Biology, Seattle University, 901 12 Ave. Seattle WA 98122, USA
| | - Tim R. Blower
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| |
Collapse
|
2
|
Drobiazko A, Adams MC, Skutel M, Potekhina K, Kotovskaya O, Trofimova A, Matlashov M, Yatselenko D, Maxwell KL, Blower TR, Severinov K, Ghilarov D, Isaev A. Molecular basis of foreign DNA recognition by BREX anti-phage immunity system. Nat Commun 2025; 16:1825. [PMID: 39979294 PMCID: PMC11842806 DOI: 10.1038/s41467-025-57006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Anti-phage systems of the BREX (BacteRiophage EXclusion) superfamily rely on site-specific epigenetic DNA methylation to discriminate between the host and invading DNA. We demonstrate that in Type I BREX systems, defense and methylation require BREX site DNA binding by the BrxX (PglX) methyltransferase employing S-adenosyl methionine as a cofactor. We determined 2.2-Å cryoEM structure of Escherichia coli BrxX bound to target dsDNA revealing molecular details of BREX DNA recognition. Structure-guided engineering of BrxX expands its DNA specificity and dramatically enhances phage defense. We show that BrxX alone does not methylate DNA, and BREX activity requires an assembly of a supramolecular BrxBCXZ immune complex. Finally, we present a cryoEM structure of BrxX bound to a phage-encoded inhibitor Ocr that sequesters BrxX in an inactive dimeric form. We propose that BrxX-mediated foreign DNA sensing is a necessary first step in activation of BREX defense.
Collapse
Affiliation(s)
- Alena Drobiazko
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Myfanwy C Adams
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Mikhail Skutel
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | | | - Anna Trofimova
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tim R Blower
- Department of Biosciences, Durham University, Durham, UK
| | - Konstantin Severinov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
- Waksman Institute of Microbiology, Piscataway, NJ, USA.
| | - Dmitry Ghilarov
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK.
| | - Artem Isaev
- Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|
3
|
Oshiro RT, Dunham DT, Seed KD. The vibriophage-encoded inhibitor OrbA abrogates BREX-mediated defense through the ATPase BrxC. J Bacteriol 2024; 206:e0020624. [PMID: 39404463 PMCID: PMC11580459 DOI: 10.1128/jb.00206-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Bacteria and phages are locked in a co-evolutionary arms race where each entity evolves mechanisms to restrict the proliferation of the other. Phage-encoded defense inhibitors have proven powerful tools to interrogate how defense systems function. A relatively common defense system is BREX (bacteriophage exclusion); however, how BREX functions to restrict phage infection remains poorly understood. A BREX system encoded by the sulfamethoxazole and trimethoprim (SXT) integrative and conjugative element, VchInd5, was recently identified in Vibrio cholerae, the causative agent of the diarrheal disease cholera. The lytic phage ICP1 (International Centre for Diarrhoeal Disease Research, Bangladesh cholera phage 1) that co-circulates with V. cholerae encodes the BREX-inhibitor OrbA, but how OrbA inhibits BREX is unclear. Here, we determine that OrbA inhibits BREX using a unique mechanism from known BREX inhibitors by directly binding to the BREX component BrxC. BrxC has a functional ATPase domain that, when mutated, not only disrupts BrxC function but also alters how BrxC multimerizes. Furthermore, we find that OrbA binding disrupts BrxC-BrxC interactions. We determine that OrbA cannot bind BrxC encoded by the distantly related BREX system encoded by the aSXT VchBan9, and thus fails to inhibit this BREX system that also circulates in epidemic V. cholerae. Lastly, we find that homologs of the VchInd5 BrxC are more diverse than the homologs of the VchBan9 BrxC. These data provide new insight into the function of the BrxC ATPase and highlight how phage-encoded inhibitors can disrupt phage defense systems using different mechanisms.IMPORTANCEWith renewed interest in phage therapy to combat antibiotic-resistant pathogens, understanding the mechanisms bacteria use to defend themselves against phages and the counter-strategies phages evolve to inhibit defenses is paramount. Bacteriophage exclusion (BREX) is a common defense system with few known inhibitors. Here, we probe how the vibriophage-encoded inhibitor OrbA inhibits the BREX system of Vibrio cholerae, the causative agent of the diarrheal disease cholera. By interrogating OrbA function, we have begun to understand the importance and function of a BREX component. Our results demonstrate the importance of identifying inhibitors against defense systems, as they are powerful tools for dissecting defense activity and can inform strategies to increase the efficacy of some phage therapies.
Collapse
Affiliation(s)
- Reid T. Oshiro
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Drew T. Dunham
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Kimberley D. Seed
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
4
|
Went SC, Picton DM, Morgan RD, Nelson A, Brady A, Mariano G, Dryden DTF, Smith DL, Wenner N, Hinton JCD, Blower TR. Structure and rational engineering of the PglX methyltransferase and specificity factor for BREX phage defence. Nat Commun 2024; 15:7236. [PMID: 39174540 PMCID: PMC11341690 DOI: 10.1038/s41467-024-51629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Bacteria have evolved a broad range of systems that provide defence against their viral predators, bacteriophages. Bacteriophage Exclusion (BREX) systems recognise and methylate 6 bp non-palindromic motifs within the host genome, and prevent replication of non-methylated phage DNA that encodes these same motifs. How BREX recognises cognate motifs has not been fully understood. In this study we characterise BREX from pathogenic Salmonella and present X-ray crystallographic structures of the conserved BREX protein, PglX. The PglX N-terminal domain encodes the methyltransferase, whereas the C-terminal domain is for motif recognition. We also present the structure of PglX bound to the phage-derived DNA mimic, Ocr, an inhibitor of BREX activity. Our analyses propose modes for DNA-binding by PglX and indicate that both methyltransferase activity and defence require larger BREX complexes. Through rational engineering of PglX we broaden both the range of phages targeted, and the host motif sequences that are methylated by BREX. Our data demonstrate that PglX is used to recognise specific DNA sequences for BREX activity, contributing to motif recognition for both phage defence and host methylation.
Collapse
Affiliation(s)
- Sam C Went
- Department of Biosciences, Durham University, South Road, Durham, UK
| | - David M Picton
- Department of Biosciences, Durham University, South Road, Durham, UK
| | | | - Andrew Nelson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Aisling Brady
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Giuseppina Mariano
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - David T F Dryden
- Department of Biosciences, Durham University, South Road, Durham, UK
| | - Darren L Smith
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Nicolas Wenner
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, South Road, Durham, UK.
| |
Collapse
|
5
|
Oshiro RT, Dunham DT, Seed KD. The vibriophage-encoded inhibitor OrbA abrogates BREX-mediated defense through the ATPase BrxC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593382. [PMID: 38766029 PMCID: PMC11100822 DOI: 10.1101/2024.05.09.593382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Bacteria and phages are locked in a co-evolutionary arms race where each entity evolves mechanisms to restrict the proliferation of the other. Phage-encoded defense inhibitors have proven powerful tools to interrogate how defense systems function. A relatively common defense system is BREX (Bacteriophage exclusion); however, how BREX functions to restrict phage infection remains poorly understood. A BREX system encoded by the SXT integrative and conjugative element, Vch Ind5, was recently identified in Vibrio cholerae , the causative agent of the diarrheal disease cholera. The lytic phage ICP1 that co-circulates with V. cholerae encodes the BREX inhibitor OrbA, but how OrbA inhibits BREX is unclear. Here, we determine that OrbA inhibits BREX using a unique mechanism from known BREX inhibitors by directly binding to the BREX component BrxC. BrxC has a functional ATPase domain that, when mutated, not only disrupts BrxC function but also alters how BrxC multimerizes. Furthermore, we find that OrbA binding disrupts BrxC-BrxC interactions. We determine that OrbA cannot bind BrxC encoded by the distantly related BREX system encoded by the SXT Vch Ban9, and thus fails to inhibit this BREX system that also circulates in epidemic V. cholerae . Lastly, we find that homologs of the Vch Ind5 BrxC are more diverse than the homologs of the Vch Ban9 BrxC. These data provide new insight into the function of the BrxC ATPase and highlight how phage-encoded inhibitors can disrupt phage defense systems using different mechanisms. Importance With renewed interest in phage therapy to combat antibiotic-resistant pathogens, understanding the mechanisms bacteria use to defend themselves against phages and the counter-strategies phages evolve to inhibit defenses is paramount. Bacteriophage exclusion (BREX) is a common defense system with few known inhibitors. Here, we probe how the vibriophage-encoded inhibitor OrbA inhibits the BREX system of Vibrio cholerae , the causative agent of the diarrheal disease cholera. By interrogating OrbA function, we have begun to understand the importance and function of a BREX component. Our results demonstrate the importance of identifying inhibitors against defense systems, as they are powerful tools for dissecting defense activity and can inform strategies to increase the efficacy of some phage therapies.
Collapse
|
6
|
Wozniak CE, Hughes KT, Liou TG. Mutations in the C-terminal region of the bacteriophage exclusion protein PglX can selectively inactivate restriction in Salmonella. J Bacteriol 2023; 205:e0020723. [PMID: 37730541 PMCID: PMC10601704 DOI: 10.1128/jb.00207-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 09/22/2023] Open
Abstract
Salmonella enterica serovar Typhimurium strain LT2 is protected by two DNA restriction-modification systems (HsdRMS and Mod-Res) and a Type I bacteriophage exclusion (BREX) system (BrxA-L). The LB5000 strain was constructed to inactivate restriction but not methylation in all three systems and has been available for decades (L. R. Bullas and J. I. Ryu, J Bacteriol 156:471-474, 1983, https://doi.org/10.1128/jb.156.1.471-474.1983). However, this strain had been heavily mutagenized and contains hundreds of other mutations, including a few in DNA repair genes. Here, we describe the development of a strain that is only mutated for DNA restriction by the three systems and remains competent for DNA modification. We transferred mutations specific to DNA restriction from LB5000 to a wild-type LT2 background. The hsdR and res mutations affected only restriction in the wild-type background, but the brxC and pglZ mutations for the poorly understood BREX system also reduced modification. Amino acids in an unannotated conserved region of PglX in the BREX system were then randomized. Mutations were identified that specifically affected restriction at 37°C but were found to be temperature sensitive for restriction and methylation when tested at 30°C and 42°C. These mutations in PglX are consistent with a domain that communicates DNA methylation information to other BREX effector proteins. Finally, mutations generated in the specificity domain of PglX may have changed the DNA binding site recognized by the BREX system. IMPORTANCE The restriction system mutants constructed in this study will be useful for cloning DNA and transferring plasmids from other bacterial species into Salmonella. We verified which mutations in strain LB5000 resulted in loss of restriction for each restriction-modification system and the BREX system by moving these mutations to a wild-type Salmonella background. The methylase PglX was then mutagenized, which adds to our knowledge of the BREX system that is found in many bacteria but is not well understood. These PglX mutations affected restriction and methylation at different temperatures, which suggests that the C-terminal region of PglX may coordinate interactions between the methylase and other BREX system proteins.
Collapse
Affiliation(s)
| | - Kelly T. Hughes
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Theodore G. Liou
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Center for Quantitative Biology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Kelly A, Went SC, Mariano G, Shaw LP, Picton DM, Duffner SJ, Coates I, Herdman-Grant R, Gordeeva J, Drobiazko A, Isaev A, Lee YJ, Luyten Y, Morgan RD, Weigele P, Severinov K, Wenner N, Hinton JCD, Blower TR. Diverse Durham collection phages demonstrate complex BREX defense responses. Appl Environ Microbiol 2023; 89:e0062323. [PMID: 37668405 PMCID: PMC10537673 DOI: 10.1128/aem.00623-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/10/2023] [Indexed: 09/06/2023] Open
Abstract
Bacteriophages (phages) outnumber bacteria ten-to-one and cause infections at a rate of 1025 per second. The ability of phages to reduce bacterial populations makes them attractive alternative antibacterials for use in combating the rise in antimicrobial resistance. This effort may be hindered due to bacterial defenses such as Bacteriophage Exclusion (BREX) that have arisen from the constant evolutionary battle between bacteria and phages. For phages to be widely accepted as therapeutics in Western medicine, more must be understood about bacteria-phage interactions and the outcomes of bacterial phage defense. Here, we present the annotated genomes of 12 novel bacteriophage species isolated from water sources in Durham, UK, during undergraduate practical classes. The collection includes diverse species from across known phylogenetic groups. Comparative analyses of two novel phages from the collection suggest they may be founding members of a new genus. Using this Durham phage collection, we determined that particular BREX defense systems were likely to confer a varied degree of resistance against an invading phage. We concluded that the number of BREX target motifs encoded in the phage genome was not proportional to the degree of susceptibility. IMPORTANCE Bacteriophages have long been the source of tools for biotechnology that are in everyday use in molecular biology research laboratories worldwide. Phages make attractive new targets for the development of novel antimicrobials. While the number of phage genome depositions has increased in recent years, the expected bacteriophage diversity remains underrepresented. Here we demonstrate how undergraduates can contribute to the identification of novel phages and that a single City in England can provide ample phage diversity and the opportunity to find novel technologies. Moreover, we demonstrate that the interactions and intricacies of the interplay between bacterial phage defense systems such as Bacteriophage Exclusion (BREX) and phages are more complex than originally thought. Further work will be required in the field before the dynamic interactions between phages and bacterial defense systems are fully understood and integrated with novel phage therapies.
Collapse
Affiliation(s)
- Abigail Kelly
- Department of Biosciences, Durham University, Durham, UK
| | - Sam C. Went
- Department of Biosciences, Durham University, Durham, UK
| | - Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Liam P. Shaw
- Department of Biosciences, Durham University, Durham, UK
- Department of Biology, University of Oxford, Oxford, UK
| | | | | | - Isabel Coates
- Department of Biosciences, Durham University, Durham, UK
| | | | - Julia Gordeeva
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alena Drobiazko
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Artem Isaev
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Yan-Jiun Lee
- New England Biolabs, Ipswich, Massachusetts, USA
| | | | | | | | | | - Nicolas Wenner
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Tim R. Blower
- Department of Biosciences, Durham University, Durham, UK
| |
Collapse
|
8
|
Shen BW, Doyle LA, Werther R, Westburg AA, Bies D, Walter S, Luyten Y, Morgan RD, Stoddard B, Kaiser BK. Structure, substrate binding and activity of a unique AAA+ protein: the BrxL phage restriction factor. Nucleic Acids Res 2023; 51:3513-3528. [PMID: 36794719 PMCID: PMC10164562 DOI: 10.1093/nar/gkad083] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Bacteriophage exclusion ('BREX') systems are multi-protein complexes encoded by a variety of bacteria and archaea that restrict phage by an unknown mechanism. One BREX factor, termed BrxL, has been noted to display sequence similarity to various AAA+ protein factors including Lon protease. In this study we describe multiple CryoEM structures of BrxL that demonstrate it to be a chambered, ATP-dependent DNA binding protein. The largest BrxL assemblage corresponds to a dimer of heptamers in the absence of bound DNA, versus a dimer of hexamers when DNA is bound in its central pore. The protein displays DNA-dependent ATPase activity, and ATP binding promotes assembly of the complex on DNA. Point mutations within several regions of the protein-DNA complex alter one or more in vitro behaviors and activities, including ATPase activity and ATP-dependent association with DNA. However, only the disruption of the ATPase active site fully eliminates phage restriction, indicating that other mutations can still complement BrxL function within the context of an otherwise intact BREX system. BrxL displays significant structural homology to MCM subunits (the replicative helicase in archaea and eukaryotes), implying that it and other BREX factors may collaborate to disrupt initiation of phage DNA replication.
Collapse
Affiliation(s)
- Betty W Shen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109, USA
| | - Lindsey A Doyle
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109, USA
| | - Rachel Werther
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109, USA
| | - Abigail A Westburg
- Department of Biology, Seattle University, 901 12th Avenue, Seattle, WA 98122, USA
| | - Daniel P Bies
- Department of Biology, Seattle University, 901 12th Avenue, Seattle, WA 98122, USA
| | - Stephanie I Walter
- Department of Biology, Seattle University, 901 12th Avenue, Seattle, WA 98122, USA
| | - Yvette A Luyten
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | | | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109, USA
| | - Brett K Kaiser
- Department of Biology, Seattle University, 901 12th Avenue, Seattle, WA 98122, USA
| |
Collapse
|
9
|
Beck IN, Picton DM, Blower TR. Crystal structure of the BREX phage defence protein BrxA. Curr Res Struct Biol 2022; 4:211-219. [PMID: 35783086 PMCID: PMC9240713 DOI: 10.1016/j.crstbi.2022.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/13/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
Abstract
Bacteria are constantly challenged by bacteriophage (phage) infection and have developed multitudinous and varied resistance mechanisms. Bacteriophage Exclusion (BREX) systems protect from phage infection by generating methylation patterns at non-palindromic 6 bp sites in host bacterial DNA, to distinguish and block replication of non-self DNA. Type 1 BREX systems are comprised of six conserved core genes. Here, we present the first reported structure of a BREX core protein, BrxA from the phage defence island of Escherichia fergusonii ATCC 35469 plasmid pEFER, solved to 2.09 Å. BrxA is a monomeric protein in solution, with an all α-helical globular fold. Conservation of surface charges and structural homology modelling against known phage defence systems highlighted that BrxA contains two helix-turn-helix motifs, juxtaposed by 180°, positioned to bind opposite sides of a DNA major groove. BrxA was subsequently shown to bind dsDNA. This new understanding of BrxA structure, and first indication of BrxA biological activity, suggests a conserved mode of DNA-recognition has become widespread and implemented by diverse phage defence systems. The crystal structure of BrxA from multi-drug resistant plasmid pEFER of Escherichia fergusonii has been solved to 2.09 Å. BrxA is the first reported structure for a conserved core protein from the widespread BREX phage defence systems. BrxA contains two HTH motifs, analogous to DNA-binding domains of diverse phage defence systems, and is shown to bind dsDNA.
Collapse
|