1
|
Uebbing S, Kocher AA, Baumgartner M, Ji Y, Bai S, Xing X, Nottoli T, Noonan JP. Evolutionary Innovations in Conserved Regulatory Elements Associate With Developmental Genes in Mammals. Mol Biol Evol 2024; 41:msae199. [PMID: 39302728 PMCID: PMC11465374 DOI: 10.1093/molbev/msae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024] Open
Abstract
Transcriptional enhancers orchestrate cell type- and time point-specific gene expression programs. Genetic variation within enhancer sequences is an important contributor to phenotypic variation including evolutionary adaptations and human disease. Certain genes and pathways may be more prone to regulatory evolution than others, with different patterns across diverse organisms, but whether such patterns exist has not been investigated at a sufficient scale. To address this question, we identified signatures of accelerated sequence evolution in conserved enhancer elements throughout the mammalian phylogeny at an unprecedented scale. While different genes and pathways were enriched for regulatory evolution in different parts of the tree, we found a striking overall pattern of pleiotropic genes involved in gene regulatory and developmental processes being enriched for accelerated enhancer evolution. These genes were connected to more enhancers than other genes, which was the basis for having an increased amount of sequence acceleration over all their enhancers combined. We provide evidence that sequence acceleration is associated with turnover of regulatory function. Detailed study of one acceleration event in an enhancer of HES1 revealed that sequence evolution led to a new activity domain in the developing limb that emerged concurrently with the evolution of digit reduction in hoofed mammals. Our results provide evidence that enhancer evolution has been a frequent contributor to regulatory innovation at conserved developmental signaling genes in mammals.
Collapse
Affiliation(s)
- Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Biology, Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Acadia A Kocher
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Yu Ji
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Suxia Bai
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA
| | - Xiaojun Xing
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA
| | - Timothy Nottoli
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
McKean DM, Zhang Q, Narayan P, Morton SU, Strohmenger V, Tang VT, McAllister S, Sharma A, Quiat D, Reichart D, DeLaughter DM, Wakimoto H, Gorham JM, Brown K, McDonough B, Willcox JA, Jang MY, DePalma SR, Ward T, Kim R, Cleveland JD, Seidman J, Seidman CE. Increased endothelial sclerostin caused by elevated DSCAM mediates multiple trisomy 21 phenotypes. J Clin Invest 2024; 134:e167811. [PMID: 38828726 PMCID: PMC11142749 DOI: 10.1172/jci167811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/11/2024] [Indexed: 06/05/2024] Open
Abstract
Trisomy 21 (T21), a recurrent aneuploidy occurring in 1:800 births, predisposes to congenital heart disease (CHD) and multiple extracardiac phenotypes. Despite a definitive genetic etiology, the mechanisms by which T21 perturbs development and homeostasis remain poorly understood. We compared the transcriptome of CHD tissues from 49 patients with T21 and 226 with euploid CHD (eCHD). We resolved cell lineages that misexpressed T21 transcripts by cardiac single-nucleus RNA sequencing and RNA in situ hybridization. Compared with eCHD samples, T21 samples had increased chr21 gene expression; 11-fold-greater levels (P = 1.2 × 10-8) of SOST (chr17), encoding the Wnt inhibitor sclerostin; and 1.4-fold-higher levels (P = 8.7 × 10-8) of the SOST transcriptional activator ZNF467 (chr7). Euploid and T21 cardiac endothelial cells coexpressed SOST and ZNF467; however, T21 endothelial cells expressed 6.9-fold more SOST than euploid endothelial cells (P = 2.7 × 10-27). Wnt pathway genes were downregulated in T21 endothelial cells. Expression of DSCAM, residing within the chr21 CHD critical region, correlated with SOST (P = 1.9 × 10-5) and ZNF467 (P = 2.9 × 10-4). Deletion of DSCAM from T21 endothelial cells derived from human induced pluripotent stem cells diminished sclerostin secretion. As Wnt signaling is critical for atrioventricular canal formation, bone health, and pulmonary vascular homeostasis, we concluded that T21-mediated increased sclerostin levels would inappropriately inhibit Wnt activities and promote Down syndrome phenotypes. These findings imply therapeutic potential for anti-sclerostin antibodies in T21.
Collapse
Affiliation(s)
- David M. McKean
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Qi Zhang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Priyanka Narayan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Weill Cornell Medicine, New York, New York, USA
| | - Sarah U. Morton
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Viktoria Strohmenger
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Walter Brendle Centre of Experimental Medicine, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Vi T. Tang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sophie McAllister
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Ananya Sharma
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Quiat
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Daniel Reichart
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua M. Gorham
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Kemar Brown
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Barbara McDonough
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jon A. Willcox
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Min Young Jang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven R. DePalma
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts, USA
| | - Tarsha Ward
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Richard Kim
- Section of Cardiothoracic Surgery, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - John D. Cleveland
- Section of Cardiothoracic Surgery, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - J.G. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Uebbing S, Kocher AA, Baumgartner M, Ji Y, Bai S, Xing X, Nottoli T, Noonan JP. Evolutionary innovation in conserved regulatory elements across the mammalian tree of life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578197. [PMID: 38352419 PMCID: PMC10862883 DOI: 10.1101/2024.01.31.578197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Transcriptional enhancers orchestrate cell type- and time point-specific gene expression programs. Evolution of enhancer sequences can alter target gene expression without causing detrimental misexpression in other contexts. It has long been thought that this modularity allows evolutionary changes in enhancers to escape pleiotropic constraints, which is especially important for evolutionary constrained developmental patterning genes. However, there is still little data supporting this hypothesis. Here we identified signatures of accelerated evolution in conserved enhancer elements across the mammalian phylogeny. We found that pleiotropic genes involved in gene regulatory and developmental processes were enriched for accelerated sequence evolution within their enhancer elements. These genes were associated with an excess number of enhancers compared to other genes, and due to this they exhibit a substantial degree of sequence acceleration over all their enhancers combined. We provide evidence that sequence acceleration is associated with turnover of regulatory function. We studied one acceleration event in depth and found that its sequence evolution led to the emergence of a new enhancer activity domain that may be involved in the evolution of digit reduction in hoofed mammals. Our results provide tangible evidence that enhancer evolution has been a frequent contributor to modifications involving constrained developmental signaling genes in mammals.
Collapse
Affiliation(s)
- Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
- Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Acadia A Kocher
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
- Present address: Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Yu Ji
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
| | - Suxia Bai
- Yale Genome Editing Center, Yale School of Medicine, New Haven CT, USA
| | - Xiaojun Xing
- Yale Genome Editing Center, Yale School of Medicine, New Haven CT, USA
| | - Timothy Nottoli
- Yale Genome Editing Center, Yale School of Medicine, New Haven CT, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven CT, USA
- Wu Tsai Institute, Yale University, New Haven CT, USA
| |
Collapse
|
4
|
Fleck JS, Jansen SMJ, Wollny D, Zenk F, Seimiya M, Jain A, Okamoto R, Santel M, He Z, Camp JG, Treutlein B. Inferring and perturbing cell fate regulomes in human brain organoids. Nature 2023; 621:365-372. [PMID: 36198796 PMCID: PMC10499607 DOI: 10.1038/s41586-022-05279-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 08/25/2022] [Indexed: 02/06/2023]
Abstract
Self-organizing neural organoids grown from pluripotent stem cells1-3 combined with single-cell genomic technologies provide opportunities to examine gene regulatory networks underlying human brain development. Here we acquire single-cell transcriptome and accessible chromatin data over a dense time course in human organoids covering neuroepithelial formation, patterning, brain regionalization and neurogenesis, and identify temporally dynamic and brain-region-specific regulatory regions. We developed Pando-a flexible framework that incorporates multi-omic data and predictions of transcription-factor-binding sites to infer a global gene regulatory network describing organoid development. We use pooled genetic perturbation with single-cell transcriptome readout to assess transcription factor requirement for cell fate and state regulation in organoids. We find that certain factors regulate the abundance of cell fates, whereas other factors affect neuronal cell states after differentiation. We show that the transcription factor GLI3 is required for cortical fate establishment in humans, recapitulating previous research performed in mammalian model systems. We measure transcriptome and chromatin accessibility in normal or GLI3-perturbed cells and identify two distinct GLI3 regulomes that are central to telencephalic fate decisions: one regulating dorsoventral patterning with HES4/5 as direct GLI3 targets, and one controlling ganglionic eminence diversification later in development. Together, we provide a framework for how human model systems and single-cell technologies can be leveraged to reconstruct human developmental biology.
Collapse
Affiliation(s)
- Jonas Simon Fleck
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | | - Damian Wollny
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Fides Zenk
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Makiko Seimiya
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Akanksha Jain
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Ryoko Okamoto
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Malgorzata Santel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
- Roche Institute for Translational Bioengineering (ITB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
5
|
Kyriazis Z, Kollia P, Grivea I, Stefanou N, Sotiriou S, Dailiana ZH. Polydactyly: Clinical and molecular manifestations. World J Orthop 2023; 14:13-22. [PMID: 36686282 PMCID: PMC9850794 DOI: 10.5312/wjo.v14.i1.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/04/2022] [Accepted: 12/07/2022] [Indexed: 01/13/2023] Open
Abstract
Polydactyly is a malformation during the development of the human limb, which is characterized by the presence of more than the normal number of fingers or toes. It is considered to be one of the most common inherited hand disorders. It can be divided into two major groups: Non-syndromic polydactyly or syndromic polydactyly. According to the anatomical location of the duplicated digits, polydactyly can be generally subdivided into pre-, post-axial, and mesoaxial forms. Non-syndromic polydactyly is often inherited with an autosomal dominant trait and defects during the procedure of anterior-posterior patterning of limb development are incriminated for the final phenotype of the malformation. There are several forms of polydactyly, including hand and foot extra digit manifestations. The deformity affects upper limbs with a higher frequency than the lower, and the left foot is more often involved than the right. The treatment is always surgical. Since the clinical presentation is highly diverse, the treatment combines single or multiple surgical operations, depending on the type of polydactyly. The research attention that congenital limb deformities have recently attracted has resulted in broadening the list of isolated gene mutations associated with the disorders. Next generation sequencing technologies have contributed to the correlation of phenotype and genetic profile of the multiple polydactyly manifestations and have helped in early diagnosis and screening of most non-syndromic and syndromic disorders.
Collapse
Affiliation(s)
- Zisis Kyriazis
- Department of Orthopaedic Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| | - Panagoula Kollia
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Athens 15701, Greece
| | - Ioanna Grivea
- Department of Paediatrics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| | - Nikolaos Stefanou
- Department of Orthopaedic Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| | - Sotirios Sotiriou
- Laboratory of Histology and Embryology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| | - Zoe H Dailiana
- Department of Orthopaedic Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| |
Collapse
|
6
|
Kyriazis Z, Kollia P, Grivea I, Sotiriou S, Dailiana ZH. Genetics of congenital anomalies of the hand. World J Orthop 2022; 13:949-954. [PMID: 36439370 PMCID: PMC9685634 DOI: 10.5312/wjo.v13.i11.949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Congenital anomalies of the hand are malformations occurring during the development of the human limb, and present as isolated disorders or as a part of a syndrome. During the last years, molecular analysis techniques have offered increasing knowledge about the molecular basis of hand malformations. Disturbances in the signaling pathways during the development of the upper limb result in malformations of the upper extremity. At present, several genes have been identified as responsible for hand anomalies and other have been recognized as suspect genes related to them. Different and new high throughput methods have been introduced for the identification of the gene mutations. In the current editorial, we summarize concisely the current molecular status of isolated hand genetic disorders and the recent progress in molecular genetics, including the genes related to the disorder. This progress improves the knowledge of these disorders and has implications on genetic counselling and prenatal diagnosis.
Collapse
Affiliation(s)
- Zisis Kyriazis
- Department of Orthopaedic Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| | - Panagoula Kollia
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens 10679, Greece
| | - Ioanna Grivea
- Department of Paediatrics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| | - Sotirios Sotiriou
- Laboratory of Histology and Embryology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| | - Zoe H Dailiana
- Department of Orthopaedic Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41500, Greece
| |
Collapse
|
7
|
Carraco G, Martins-Jesus AP, Andrade RP. The vertebrate Embryo Clock: Common players dancing to a different beat. Front Cell Dev Biol 2022; 10:944016. [PMID: 36036002 PMCID: PMC9403190 DOI: 10.3389/fcell.2022.944016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Vertebrate embryo somitogenesis is the earliest morphological manifestation of the characteristic patterned structure of the adult axial skeleton. Pairs of somites flanking the neural tube are formed periodically during early development, and the molecular mechanisms in temporal control of this early patterning event have been thoroughly studied. The discovery of a molecular Embryo Clock (EC) underlying the periodicity of somite formation shed light on the importance of gene expression dynamics for pattern formation. The EC is now known to be present in all vertebrate organisms studied and this mechanism was also described in limb development and stem cell differentiation. An outstanding question, however, remains unanswered: what sets the different EC paces observed in different organisms and tissues? This review aims to summarize the available knowledge regarding the pace of the EC, its regulation and experimental manipulation and to expose new questions that might help shed light on what is still to unveil.
Collapse
Affiliation(s)
- Gil Carraco
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | | | - Raquel P. Andrade
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal
- *Correspondence: Raquel P. Andrade,
| |
Collapse
|