1
|
Blankers T, Shaw KL. The biogeographic and evolutionary processes shaping population divergence in Laupala. Mol Ecol 2024; 33:e17444. [PMID: 38984705 DOI: 10.1111/mec.17444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Speciation generates biodiversity and the mechanisms involved are thought to vary across the tree of life and across environments. For example, well-studied adaptive radiations are thought to be fuelled by divergent ecological selection, but additionally are influenced heavily by biogeographic, genomic and demographic factors. Mechanisms of non-adaptive radiations, producing ecologically cryptic taxa, have been less well-studied but should likewise be influenced by these latter factors. Comparing among contexts can help pinpoint universal mechanisms and outcomes, especially if we integrate biogeographic, ecological and evolutionary processes. We investigate population divergence in the swordtail cricket Laupala cerasina, a wide-spread endemic on Hawai'i Island and one of 38 ecologically cryptic Laupala species. The nine sampled populations show striking population genetic structure at small spatio-temporal scales. The rapid differentiation among populations and species of Laupala shows that neither a specific geographical context nor ecological opportunity are pre-requisites for rapid divergence. Spatio-temporal patterns in population divergence, population size change, and gene flow are aligned with the chronosequence of the four volcanoes on which L. cerasina occurs and reveal the composite effects of geological dynamics and Quaternary climate change on population dynamics. Spatio-temporal patterns in genetic variation along the genome reveal the interplay of genetic and genomic architecture in shaping population divergence. In early phases of divergence, we find elevated differentiation in genomic regions harbouring mating song loci. In later stages of divergence, we find a signature of linked selection that interacts with recombination rate variation. Comparing our findings with recent work on complementary systems supports the conclusion that mostly universal factors influence the speciation process.
Collapse
Affiliation(s)
- Thomas Blankers
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Kerry L Shaw
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Tomlin CM, Rajaraman S, Sebesta JT, Scheen AC, Bendiksby M, Low YW, Salojärvi J, Michael TP, Albert VA, Lindqvist C. Allopolyploid origin and diversification of the Hawaiian endemic mints. Nat Commun 2024; 15:3109. [PMID: 38600100 PMCID: PMC11006916 DOI: 10.1038/s41467-024-47247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Island systems provide important contexts for studying processes underlying lineage migration, species diversification, and organismal extinction. The Hawaiian endemic mints (Lamiaceae family) are the second largest plant radiation on the isolated Hawaiian Islands. We generated a chromosome-scale reference genome for one Hawaiian species, Stenogyne calaminthoides, and resequenced 45 relatives, representing 34 species, to uncover the continental origins of this group and their subsequent diversification. We further resequenced 109 individuals of two Stenogyne species, and their purported hybrids, found high on the Mauna Kea volcano on the island of Hawai'i. The three distinct Hawaiian genera, Haplostachys, Phyllostegia, and Stenogyne, are nested inside a fourth genus, Stachys. We uncovered four independent polyploidy events within Stachys, including one allopolyploidy event underlying the Hawaiian mints and their direct western North American ancestors. While the Hawaiian taxa may have principally diversified by parapatry and drift in small and fragmented populations, localized admixture may have played an important role early in lineage diversification. Our genomic analyses provide a view into how organisms may have radiated on isolated island chains, settings that provided one of the principal natural laboratories for Darwin's thinking about the evolutionary process.
Collapse
Affiliation(s)
- Crystal M Tomlin
- Department of Biological Sciences, University at Buffalo, New York, USA
| | - Sitaram Rajaraman
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | | | - Mika Bendiksby
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Yee Wen Low
- Singapore Botanic Gardens, National Parks Board, Singapore, Singapore
| | - Jarkko Salojärvi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, New York, USA.
| | | |
Collapse
|
3
|
Seeley MM, Stacy EA, Martin RE, Asner GP. Foliar functional and genetic variation in a keystone Hawaiian tree species estimated through spectroscopy. Oecologia 2023; 202:15-28. [PMID: 37171625 DOI: 10.1007/s00442-023-05374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
Imaging spectroscopy has the potential to map closely related plant taxa at landscape scales. Although spectral investigations at the leaf and canopy levels have revealed relationships between phylogeny and reflectance, understanding how spectra differ across, and are inherited from, genotypes of a single species has received less attention. We used a common-garden population of four varieties of the keystone canopy tree, Metrosideros polymorpha, from Hawaii Island and four F1-hybrid genotypes derived from controlled crosses to determine if reflectance spectra discriminate sympatric, conspecific varieties of this species and their hybrids. With a single exception, pairwise comparisons of leaf reflectance patterns successfully distinguished varieties of M. polymorpha on Hawaii Island as well as populations of the same variety from different islands. Further, spectral variability within a single variety from Hawaii Island and the older island of Oahu was greater than that observed among the four varieties on Hawaii Island. F1 hybrids most frequently displayed leaf spectral patterns intermediate to those of their parent taxa. Spectral reflectance patterns distinguished each of two of the hybrid genotypes from one of their parent varieties, indicating that classifying hybrids may be possible, particularly if sample sizes are increased. This work quantifies a baseline in spectral variability for an endemic Hawaiian tree species and advances the use of imaging spectroscopy in biodiversity studies at the genetic level.
Collapse
Affiliation(s)
- M M Seeley
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, 96720, USA.
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, 85281, USA.
| | - E A Stacy
- School of Life Sciences, University of Nevada, Las Vegas, NV, 89154, USA
| | - R E Martin
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, 96720, USA
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, 85281, USA
| | - G P Asner
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, 96720, USA
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, 85281, USA
| |
Collapse
|
4
|
Kim Y, Kim SH, Yang J, Cho MS, Koldaeva M, Ito T, Maki M, Kim SC. Plastome-based backbone phylogeny of East Asian Phedimus (Subgenus Aizoon: Crassulaceae), with special emphasis on Korean endemics. FRONTIERS IN PLANT SCIENCE 2023; 14:1089165. [PMID: 36998693 PMCID: PMC10043388 DOI: 10.3389/fpls.2023.1089165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Although the monophyly of Phedimus has been strongly demonstrated, the species relationships among approximately 20 species of Phedimus have been difficult to determine because of the uniformity of their floral characteristics and extreme variation of their vegetative characters, often accompanied by high polyploid and aneuploid series and diverse habitats. In this study, we assembled 15 complete chloroplast genomes of Phedimus species from East Asia and generated a plastome-based backbone phylogeny of the subgenus Aizoon. As a proxy for nuclear phylogeny, we reconstructed the nuclear ribosomal DNA internal transcribed spacer (nrDNA ITS) phylogeny independently. The 15 plastomes of subg. Aizoon were highly conserved in structure and organization; hence, the complete plastome phylogeny fully resolved the species relationships with strong support. We found that P. aizoon and P. kamtschaticus were polyphyletic and morphologically distinct or ambiguous species, and they most likely evolved from the two species complex. The crown age of subg. Aizoon was estimated to be 27 Ma, suggesting its origin to be in the late Oligocene; however, the major lineages were diversified during the Miocene. The two Korean endemics, P. takesimensis and P. zokuriensis, were inferred to have originated recently during the Pleistocene, whereas the other endemic, P. latiovalifolium, originated in the late Miocene. Several mutation hotspots and seven positively selected chloroplast genes were identified in the subg. Aizoon.
Collapse
Affiliation(s)
- Yongsung Kim
- Department of Islands and Coast Biodiversity, Division of Botany, Honam National Institute of Biological Resources, Mokpo, Republic of Korea
| | - Seon-Hee Kim
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, Republic of Korea
| | - Myong-Suk Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Marina Koldaeva
- Botanical Garden-Institute, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Takuro Ito
- Botanical Gardens, Tohoku University, Sendai, Japan
| | | | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
5
|
Cerca J, Cotoras DD, Bieker VC, De-Kayne R, Vargas P, Fernández-Mazuecos M, López-Delgado J, White O, Stervander M, Geneva AJ, Guevara Andino JE, Meier JI, Roeble L, Brée B, Patiño J, Guayasamin JM, Torres MDL, Valdebenito H, Castañeda MDR, Chaves JA, Díaz PJ, Valente L, Knope ML, Price JP, Rieseberg LH, Baldwin BG, Emerson BC, Rivas-Torres G, Gillespie R, Martin MD. Evolutionary genomics of oceanic island radiations. Trends Ecol Evol 2023:S0169-5347(23)00032-0. [PMID: 36870806 DOI: 10.1016/j.tree.2023.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
A recurring feature of oceanic archipelagos is the presence of adaptive radiations that generate endemic, species-rich clades that can offer outstanding insight into the links between ecology and evolution. Recent developments in evolutionary genomics have contributed towards solving long-standing questions at this interface. Using a comprehensive literature search, we identify studies spanning 19 oceanic archipelagos and 110 putative adaptive radiations, but find that most of these radiations have not yet been investigated from an evolutionary genomics perspective. Our review reveals different gaps in knowledge related to the lack of implementation of genomic approaches, as well as undersampled taxonomic and geographic areas. Filling those gaps with the required data will help to deepen our understanding of adaptation, speciation, and other evolutionary processes.
Collapse
Affiliation(s)
- José Cerca
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Darko D Cotoras
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - Vanessa C Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rishi De-Kayne
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Pablo Vargas
- Biodiversity and Conservation, Real Jardín Botánico, 28014 Madrid, Spain
| | - Mario Fernández-Mazuecos
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Darwin 2, 28049 Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid (CIBC-UAM), Calle Darwin 2, 28049 Madrid, Spain
| | - Julia López-Delgado
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Oliver White
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Martin Stervander
- Bird Group, Natural History Museum, Akeman Street, Tring, Hertfordshire HP23 6AP, UK
| | - Anthony J Geneva
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, USA
| | - Juan Ernesto Guevara Andino
- Grupo de Investigación en Biodiversidad Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito, Ecuador
| | - Joana Isabel Meier
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Lizzie Roeble
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Box 11103, 9700, 5 CC Groningen, The Netherlands
| | - Baptiste Brée
- Université de Pau et des Pays de l'Adour (UPPA), Energy Environment Solutions (E2S), Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), 64000 Pau, France
| | - Jairo Patiño
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Calle Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Canary Islands, 38206, Spain
| | - Juan M Guayasamin
- Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida Pampite, Cumbayá, 170901 Quito, Ecuador; Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC) at Chapel Hill, San Cristobal, Galapagos, Ecuador
| | - María de Lourdes Torres
- Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida Pampite, Cumbayá, Quito, Ecuador; Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC) at Chapel Hill, San Cristobal, Galapagos, Ecuador
| | - Hugo Valdebenito
- Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC) at Chapel Hill, San Cristobal, Galapagos, Ecuador; Herbarium of Economic Botany of Ecuador (Herabario QUSF), Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida Pampite, Cumbayá, Quito, Ecuador
| | | | - Jaime A Chaves
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA; Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida Pampite, Cumbayá, 170901 Quito, Ecuador
| | - Patricia Jaramillo Díaz
- Estación Científica Charles Darwin, Fundación Charles Darwin, Santa Cruz, Galápagos, Ecuador; Department of Botany and Plant Physiology, University of Málaga, Málaga, Spain
| | - Luis Valente
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Box 11103, 9700, 5 CC Groningen, The Netherlands
| | - Matthew L Knope
- Department of Biology, University of Hawai'i at Hilo, 200 West Kawili Street, Hilo, 96720, HI, USA
| | - Jonathan P Price
- Department of Biology, University of Hawai'i at Hilo, 200 West Kawili Street, Hilo, 96720, HI, USA
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Bruce G Baldwin
- Jepson Herbarium and Department of Integrative Biology, 1001 Valley Life Sciences Building 2465, University of California, Berkeley, CA 94720-2465, USA
| | - Brent C Emerson
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Spain
| | - Gonzalo Rivas-Torres
- Estación Científica Charles Darwin, Fundación Charles Darwin, Santa Cruz, Galápagos, Ecuador; Estación de Biodiversidad Tiputini, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| | - Rosemary Gillespie
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|