1
|
Cali E, Quirin T, Rocca C, Efthymiou S, Riva A, Marafi D, Zaki MS, Suri M, Dominguez R, Elbendary HM, Alavi S, Abdel-Hamid MS, Morsy H, Mau-Them FT, Nizon M, Tesner P, Ryba L, Zafar F, Rana N, Saadi NW, Firoozfar Z, Gencpinar P, Unay B, Ustun C, Bruel AL, Coubes C, Stefanich J, Sezer O, Agolini E, Novelli A, Vasco G, Lettori D, Milh M, Villard L, Zeidler S, Opperman H, Strehlow V, Issa MY, El Khassab H, Chand P, Ibrahim S, Rashidi-Nezhad A, Miryounesi M, Larki P, Morrison J, Cristian I, Thiffault I, Bertsch NL, Noh GJ, Pappas J, Moran E, Marinakis NM, Traeger-Synodinos J, Hosseini S, Abbaszadegan MR, Caumes R, Vissers LELM, Neshatdoust M, Montazer Zohour M, El Fahime E, Canavati C, Kamal L, Kanaan M, Askander O, Voinova V, Levchenko O, Haider S, Halbach SS, Elias Maia R, Mansoor S, Jain V, Tawde S, Challa VSR, Gowda VK, Srinivasan VM, Victor LA, Pinero-Banos B, Hague J, ElAwady HA, Maria de Miranda Henriques-Souza A, Cheema HA, Anjum MN, Idkaidak S, Alqarajeh F, Atawneh O, Mor-Shaked H, Harel T, Zifarelli G, Bauer P, Kok F, Kitajima JP, Monteiro F, Josahkian J, Lesca G, Chatron N, Ville D, Murphy D, Neul JL, Mullegama SV, Begtrup A, et alCali E, Quirin T, Rocca C, Efthymiou S, Riva A, Marafi D, Zaki MS, Suri M, Dominguez R, Elbendary HM, Alavi S, Abdel-Hamid MS, Morsy H, Mau-Them FT, Nizon M, Tesner P, Ryba L, Zafar F, Rana N, Saadi NW, Firoozfar Z, Gencpinar P, Unay B, Ustun C, Bruel AL, Coubes C, Stefanich J, Sezer O, Agolini E, Novelli A, Vasco G, Lettori D, Milh M, Villard L, Zeidler S, Opperman H, Strehlow V, Issa MY, El Khassab H, Chand P, Ibrahim S, Rashidi-Nezhad A, Miryounesi M, Larki P, Morrison J, Cristian I, Thiffault I, Bertsch NL, Noh GJ, Pappas J, Moran E, Marinakis NM, Traeger-Synodinos J, Hosseini S, Abbaszadegan MR, Caumes R, Vissers LELM, Neshatdoust M, Montazer Zohour M, El Fahime E, Canavati C, Kamal L, Kanaan M, Askander O, Voinova V, Levchenko O, Haider S, Halbach SS, Elias Maia R, Mansoor S, Jain V, Tawde S, Challa VSR, Gowda VK, Srinivasan VM, Victor LA, Pinero-Banos B, Hague J, ElAwady HA, Maria de Miranda Henriques-Souza A, Cheema HA, Anjum MN, Idkaidak S, Alqarajeh F, Atawneh O, Mor-Shaked H, Harel T, Zifarelli G, Bauer P, Kok F, Kitajima JP, Monteiro F, Josahkian J, Lesca G, Chatron N, Ville D, Murphy D, Neul JL, Mullegama SV, Begtrup A, Herman I, Mitani T, Posey JE, Tay CG, Javed I, Carr L, Kanani F, Beecroft F, Hane L, Abdelkreem E, Macek M, Bispo L, Elmaksoud MA, Hashemi-Gorji F, Pehlivan D, Amor DJ, Jamra RA, Chung WK, Ghayoor Karimiani E, Campeau PM, Alkuraya FS, Pagnamenta AT, Gleeson JG, Lupski JR, Striano P, Moreno-De-Luca A, Lafontaine DLJ, Houlden H, Maroofian R. Clinical and genetic delineation of autosomal recessive and dominant ACTL6B-related developmental brain disorders. Genet Med 2025; 27:101251. [PMID: 39275948 PMCID: PMC12042808 DOI: 10.1016/j.gim.2024.101251] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
PURPOSE This study aims to comprehensively delineate the phenotypic spectrum of ACTL6B-related disorders, previously associated with both autosomal recessive and autosomal dominant neurodevelopmental disorders. Molecularly, the role of the nucleolar protein ACTL6B in contributing to the disease has remained unclear. METHODS We identified 105 affected individuals, including 39 previously reported cases, and systematically analyzed detailed clinical and genetic data for all individuals. Additionally, we conducted knockdown experiments in neuronal cells to investigate the role of ACTL6B in ribosome biogenesis. RESULTS Biallelic variants in ACTL6B are associated with severe-to-profound global developmental delay/intellectual disability, infantile intractable seizures, absent speech, autistic features, dystonia, and increased lethality. De novo monoallelic variants result in moderate-to-severe global developmental delay/intellectual disability, absent speech, and autistic features, whereas seizures and dystonia were less frequently observed. Dysmorphic facial features and brain abnormalities, including hypoplastic corpus callosum, and parenchymal volume loss/atrophy, are common findings in both groups. We reveal that in the nucleolus, ACTL6B plays a crucial role in ribosome biogenesis, particularly in pre-rRNA processing. CONCLUSION This study provides a comprehensive characterization of the clinical spectrum of both autosomal recessive and dominant forms of ACTL6B-associated disorders. It offers a comparative analysis of their respective phenotypes provides a plausible molecular explanation and suggests their inclusion within the expanding category of "ribosomopathies."
Collapse
Affiliation(s)
- Elisa Cali
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London, United Kingdom
| | - Tania Quirin
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Clarissa Rocca
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London, United Kingdom
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London, United Kingdom
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mohnish Suri
- UK National Paediatric Ataxia Telangiectasia Clinic, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom; Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hasnaa M Elbendary
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Shahryar Alavi
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London, United Kingdom; Palindrome, Isfahan, Iran
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre Cairo, Egypt
| | - Heba Morsy
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London, United Kingdom; Human Genetics Department, Medical Research Institute, Alexandria University, Egypt
| | - Frederic Tran Mau-Them
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, Dijon, France; INSERM UMR1231 GAD, Dijon, France
| | - Mathilde Nizon
- Service de génétique médicale, CHU de Nantes, Nantes, France; Institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Pavel Tesner
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Lukáš Ryba
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Faisal Zafar
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, Pakistan
| | - Nuzhat Rana
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, Pakistan
| | - Nebal W Saadi
- College of Medicine/University of Baghdad, Unit of Pediatric Neurology, Children Welfare Teaching Hospital, Baghdad, Iraq
| | | | - Pinar Gencpinar
- İzmir Katip Çelebi University Tepecik Training and Research Department of Pediatric Neurology, Izmir, Turkey
| | - Bulent Unay
- University of Health Sciences, Gülhane Faculty of Medicine, Department of Child Neurology, Ankara, Turkey
| | - Canan Ustun
- University of Health Sciences, Gülhane Faculty of Medicine, Department of Child Neurology, Ankara, Turkey
| | - Ange-Line Bruel
- Unité Fontctionnelle d'Innovation diagnostiques des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France; INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement" Dijon, France
| | - Christine Coubes
- Département de Génétique Médicale, Maladies rares et Médecine Personnalisée, et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHRU de Montpellier, Montpellier, France
| | | | - Ozlem Sezer
- Department of Medical Genetics, Samsun University, Faculty of Medicine, Samsun, Turkey
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Gessica Vasco
- Department of Neurosciences, Unit of Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Donatella Lettori
- Department of Neurosciences, Unit of Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mathieu Milh
- Aix-Marseille Univ, APHM, department of Pediatrics Neurology. Timone children Hospital. Marseille, France
| | - Laurent Villard
- Aix Marseille Univ, Inserm, MMG, Marseille, France Service de Génétique Médicale, AP-HM, Hôpital de La Timone, Marseille, France
| | - Shimriet Zeidler
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Henry Opperman
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Vincent Strehlow
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Mahmoud Y Issa
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | | | - Prem Chand
- Department of Paediatric and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | - Shahnaz Ibrahim
- Department of Paediatric and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | - Ali Rashidi-Nezhad
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Genetics Ward, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Larki
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jennifer Morrison
- Division of Genetics, Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL
| | - Ingrid Cristian
- Division of Genetics, Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL
| | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO; Kansas City School of Medicine, University of Missouri, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO
| | | | - Grace J Noh
- Department of Genetics, Southern California Permanente Medical Group, Fontana, CA
| | - John Pappas
- Clinical Genetic Services, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY; Clinical Genetics, NYU Orthopedic Hospital, New York, NY
| | - Ellen Moran
- Clinical Genetics, Center for Children, Hassenfeld Children's Hospital, New York University, New York, NY
| | - Nikolaos M Marinakis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Susan Hosseini
- Pardis Pathobiology and Genetics Laboratory, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Lisenka E L M Vissers
- Department of Human Genetics, Radboudumc University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Maedeh Neshatdoust
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mostafa Montazer Zohour
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Elmostafa El Fahime
- Centre Mohamed VI for Research and Innovation (CM6RI) and University Mohamed VI for Health Science (UM6SS), Benguerir, Morocco
| | - Christina Canavati
- Molecular Genetics Laboratory, Istishari Arab Hospital, Ramallah, Palestine
| | - Lara Kamal
- Molecular Genetics Laboratory, Istishari Arab Hospital, Ramallah, Palestine
| | - Moien Kanaan
- Molecular Genetics Laboratory, Istishari Arab Hospital, Ramallah, Palestine
| | - Omar Askander
- Faculty of Medical Sciences, Mohammed 6 Polytechnic University of Benguerir, Ben Guerir, Morocco
| | - Victoria Voinova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov, Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia; Mental Health Research Center, Moscow, Russia
| | | | - Shahzhad Haider
- Paediatrics Wah Medical College NUMS, Wah Cantonment, Punjab, Pakistan
| | - Sara S Halbach
- University of Chicago Medicine, University of Chicago, Chicago, IL
| | - Rayana Elias Maia
- Department of Paediatrics and Genetics, Universidade Federal de Paraiba, Joao Pessoa, Paraiba, Brazil
| | - Salehi Mansoor
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vivek Jain
- Department of Pediatric Neurology, Neo Clinic Children's Hospital, Jaipur, India
| | - Sanjukta Tawde
- Department of Human Genetics, The University of Chicago, Illinois
| | | | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, India
| | | | - Lucas Alves Victor
- Department of Pediatric Neurology - Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Boa Vista, Recife, Brazil
| | - Benito Pinero-Banos
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Jennifer Hague
- Clinical Genetics service, Northampton General Hospital, Northampton, United Kingdom
| | | | | | - Huma Arshad Cheema
- Department of Pediatric Gastroenterology Hepatology and Genetic diseases Children's Hospital and University of Child Health Sciences Lahore, Pakistan
| | - Muhammad Nadeem Anjum
- Department of Pediatric Gastroenterology Hepatology and Genetic diseases Children's Hospital and University of Child Health Sciences Lahore, Pakistan
| | | | | | | | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israe
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israe
| | | | | | | | | | | | | | - Gaetan Lesca
- Hospices Civils de Lyon, Service de Génétique, Bron, France; Pathophysiology and Genetics of Neuron and Muscle (PGNM, UCBL - CNRS UMR5261 - INSERM U1315), Université Claude Bernard Lyon 1, Lyon, France
| | - Nicolas Chatron
- Hospices Civils de Lyon, Service de Génétique, Bron, France; Pathophysiology and Genetics of Neuron and Muscle (PGNM, UCBL - CNRS UMR5261 - INSERM U1315), Université Claude Bernard Lyon 1, Lyon, France
| | - Dorothe Ville
- Department of Neuropediatric, University Hospital of Lyon, Lyon, France
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jeffrey L Neul
- Department of Pediatrics, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN
| | | | | | - Isabella Herman
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Chee Geap Tay
- Clinical Research Centre, Sunway Medical Centre, Malaysia
| | - Iram Javed
- Department of Paediatric Neurology, Children Hospital and Institute of Child Health, Faisalabad, Pakistan
| | - Lucinda Carr
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Farah Kanani
- West Midlands Clinical Genetics Service, Birmingham Women's Hospital, Birmingham, United Kingdom
| | - Fiona Beecroft
- West Midlands Clinical Genetics Service, Birmingham Women's Hospital, Birmingham, United Kingdom
| | - Lee Hane
- Division of Medical Genetics, 3billion, Inc, Seoul, South Korea
| | - Elsayed Abdelkreem
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Milan Macek
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Luciana Bispo
- Laboratório Mendelics, Department of Genetic, São Paulo, Brazil
| | - Marwa Abd Elmaksoud
- Neurology Unit, Department of Pediatrics, Faculty of Medicine, Alexandria University, Egypt
| | - Farzad Hashemi-Gorji
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - David J Amor
- Department of Paediatrics, Murdoch Children's Research Institute and University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Eshan Ghayoor Karimiani
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran; Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London, United Kingdom; Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Philippe M Campeau
- CHU Sainte-Justine Research Center, Montreal, QC, Canada; Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Alistair T Pagnamenta
- NIHR Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA; Rady Children's Institute for Genomic Medicine, San Diego, CA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Andres Moreno-De-Luca
- Department of Radiology, Neuroradiology Section, Kingston Health Sciences Centre, Queen's University Faculty of Health Sciences, Kingston, Ontario, Canada
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London, United Kingdom
| | - Reza Maroofian
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London, United Kingdom.
| |
Collapse
|
2
|
Hamar R, Varga M. The zebrafish ( Danio rerio) snoRNAome. NAR Genom Bioinform 2025; 7:lqaf013. [PMID: 40046902 PMCID: PMC11880993 DOI: 10.1093/nargab/lqaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/08/2025] [Accepted: 02/14/2025] [Indexed: 04/16/2025] Open
Abstract
Small nucleolar RNAs (snoRNAs) are one of the most abundant and evolutionary ancient group of functional non-coding RNAs. They were originally described as guides of post-transcriptional rRNA modifications, but emerging evidence suggests that snoRNAs fulfil an impressive variety of cellular functions. To reveal the true complexity of snoRNA-dependent functions, we need to catalogue first the complete repertoire of snoRNAs in a given cellular context. While the systematic mapping and characterization of "snoRNAomes" for some species have been described recently, this has not been done hitherto for the zebrafish (Danio rerio). Using size-fractionated RNA sequencing data from adult zebrafish tissues, we created an interactive "snoRNAome" database for this species. Our custom-designed analysis pipeline allowed us to identify with high-confidence 67 previously unannotated snoRNAs in the zebrafish genome, resulting in the most complete set of snoRNAs to date in this species. Reanalyzing multiple previously published datasets, we also provide evidence for the dynamic expression of some snoRNAs during the early stages of zebrafish development and tissue-specific expression patterns for others in adults. To facilitate further investigations into the functions of snoRNAs in zebrafish, we created a novel interactive database, snoDanio, which can be used to explore small RNA expression from transcriptomic data.
Collapse
Affiliation(s)
- Renáta Hamar
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| | - Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| |
Collapse
|
3
|
Milenkovic I, Cruciani S, Llovera L, Lucas MC, Medina R, Pauli C, Heid D, Muley T, Schneider MA, Klotz LV, Allgäuer M, Lattuca R, Lafontaine DLJ, Müller-Tidow C, Novoa EM. Epitranscriptomic rRNA fingerprinting reveals tissue-of-origin and tumor-specific signatures. Mol Cell 2025; 85:177-190.e7. [PMID: 39662470 DOI: 10.1016/j.molcel.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/13/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
Mammalian ribosomal RNA (rRNA) molecules are highly abundant RNAs, decorated with over 220 rRNA modifications. Previous works have shown that some rRNA modification types can be dynamically regulated; however, how and when the mammalian rRNA modification landscape is remodeled remains largely unexplored. Here, we employ direct RNA sequencing to chart the human and mouse rRNA epitranscriptome across tissues, developmental stages, cell types, and disease. Our analyses reveal multiple rRNA sites that are differentially modified in a tissue- and/or developmental stage-specific manner, including previously unannotated modified sites. We demonstrate that rRNA modification patterns can be used for tissue and cell-type identification, which we hereby term "epitranscriptomic fingerprinting." We then explore rRNA modification patterns in normal-tumor matched samples from lung cancer patients, finding that epitranscriptomic fingerprinting accurately classifies clinical samples into normal and tumor groups from only 250 reads per sample, demonstrating the potential of rRNA modifications as diagnostic biomarkers.
Collapse
Affiliation(s)
- Ivan Milenkovic
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Sonia Cruciani
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Laia Llovera
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Morghan C Lucas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Rebeca Medina
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Cornelius Pauli
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany; Division of Mechanisms Regulation Gene Expression, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Daniel Heid
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany; Division of Mechanisms Regulation Gene Expression, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Thomas Muley
- Translational Lung Research Center (TLRC-H), German Center for Lung Research (DZL), Heidelberg 69120, Germany; Translational Research Unit and Lung Biobank Heidelberg, Thoraxklinik at Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Marc A Schneider
- Translational Lung Research Center (TLRC-H), German Center for Lung Research (DZL), Heidelberg 69120, Germany; Translational Research Unit and Lung Biobank Heidelberg, Thoraxklinik at Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Laura V Klotz
- Department of Surgery, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Allgäuer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Ruben Lattuca
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, 6041 Gosselies, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, 6041 Gosselies, Belgium
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain; ICREA, Passeig Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
4
|
Chen J, Li Y, Wang Y, Wang H, Yang J, Pan X, Zhao Y, Xu H, Jiang P, Qian P, Wang H, Xie Z, Lei K. Fibrillarin homologs regulate translation in divergent cell lineages during planarian homeostasis and regeneration. EMBO J 2024; 43:6591-6625. [PMID: 39567829 PMCID: PMC11649923 DOI: 10.1038/s44318-024-00315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Tissue homeostasis and regeneration involve complex cellular changes. The role of rRNA modification-dependent translational regulation in these processes remains largely unknown. Planarians, renowned for their ability to undergo remarkable tissue regeneration, provide an ideal model for the analysis of differential rRNA regulation in diverse cell types during tissue homeostasis and regeneration. We investigated the role of RNA 2'-O-methyltransferase, Fibrillarin (FBL), in the planarian Schmidtea mediterranea and identified two FBL homologs: Smed-fbl-1 (fbl-1) and Smed-fbl-2 (fbl-2). Both are essential for planarian regeneration, but play distinct roles: fbl-1 is crucial for progenitor cell differentiation, while fbl-2 is important for late-stage epidermal lineage specification. Different 2'-O-methylation patterns were observed upon fbl-1 and fbl-2 knockdown, suggesting their roles in translation of specific mRNA pools during regeneration. Ribo-seq analysis further revealed differing impacts of fbl-1 and fbl-2 knockdown on gene translation. These findings indicate divergent roles of the duplicate fbl genes in specific cell lineage development in planarians and suggest a role of rRNA modifications in translational regulation during tissue maintenance and regeneration.
Collapse
Affiliation(s)
- Jiajia Chen
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yucong Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Fudan University, Shanghai, China
| | - Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangzhou, China
| | - Hui Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Jiaqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangzhou, China
| | - Xue Pan
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yun Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Fudan University, Shanghai, China
| | - Hao Xu
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Penglei Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangzhou, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangzhou, China
| | - Kai Lei
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Verma AK, Roy B, Dwivedi Y. Decoding the molecular script of 2'-O-ribomethylation: Implications across CNS disorders. Heliyon 2024; 10:e39036. [PMID: 39524798 PMCID: PMC11550049 DOI: 10.1016/j.heliyon.2024.e39036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Emerging evidence underscores the critical role of impaired mRNA translation in various neurobiological conditions. Ribosomal RNA (rRNA), essential for protein synthesis, undergoes crucial post-transcriptional modifications such as 2'-O-ribose methylation, pseudouridylation, and base modifications. These modifications, particularly 2'-O-ribose methylation is vital for stabilizing rRNA structures and optimizing translation efficiency by regulating RNA integrity and its interactions with proteins. Concentrated in key regions like decoding sites and the peptidyl transferase center, dysregulation of these modifications can disrupt ribosomal function, contributing to the pathogenesis of diverse neurological conditions, including mental health disorders, developmental abnormalities, and neurodegenerative diseases. Mechanistically, 2'-O-ribose methylation involves interactions between small nucleolar RNAs (snoRNAs), snoRNPs, and fibrillarin, forming a complex regulatory network crucial for maintaining ribosomal integrity and function. Recent research highlights the association of defective ribosome biogenesis with a spectrum of CNS disorders, emphasizing the importance of understanding rRNA mechanisms in disease pathology. This review focuses on the pivotal role of 2'-O-ribose methylation in shaping ribosomal function and its potential implications for unraveling the pathophysiology of CNS disorders. Insights gained from studying these RNA modifications could pave the way for new therapeutic strategies targeting ribosomal dysfunction and associated neuropathological conditions, advancing precision medicine and therapeutic interventions.
Collapse
Affiliation(s)
- Anuj K. Verma
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
6
|
Rajan AAN, Hutchins EJ. Post-transcriptional regulation as a conserved driver of neural crest and cancer-cell migration. Curr Opin Cell Biol 2024; 89:102400. [PMID: 39032482 PMCID: PMC11346372 DOI: 10.1016/j.ceb.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Cells have evolved mechanisms to migrate for diverse biological functions. A process frequently deployed during metazoan cell migration is the epithelial-mesenchymal transition (EMT). During EMT, adherent epithelial cells undergo coordinated cellular transitions to mesenchymalize and reduce their intercellular attachments. This is achieved via tightly regulated changes in gene expression, which modulates cell-cell and cell-matrix adhesion to allow movement. The acquisition of motility and invasive properties following EMT allows some mesenchymal cells to migrate through complex environments to form tissues during embryogenesis; however, these processes may also be leveraged by cancer cells, which often co-opt these endogenous programs to metastasize. Post-transcriptional regulation is now emerging as a major conserved mechanism by which cells modulate EMT and migration, which we discuss here in the context of vertebrate development and cancer.
Collapse
Affiliation(s)
- Arvind Arul Nambi Rajan
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Erica J Hutchins
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Li Y, Yi Y, Gao X, Wang X, Zhao D, Wang R, Zhang LS, Gao B, Zhang Y, Zhang L, Cao Q, Chen K. 2'-O-methylation at internal sites on mRNA promotes mRNA stability. Mol Cell 2024; 84:2320-2336.e6. [PMID: 38906115 PMCID: PMC11196006 DOI: 10.1016/j.molcel.2024.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/13/2024] [Accepted: 04/17/2024] [Indexed: 06/23/2024]
Abstract
2'-O-methylation (Nm) is a prominent RNA modification well known in noncoding RNAs and more recently also found at many mRNA internal sites. However, their function and base-resolution stoichiometry remain underexplored. Here, we investigate the transcriptome-wide effect of internal site Nm on mRNA stability. Combining nanopore sequencing with our developed machine learning method, NanoNm, we identify thousands of Nm sites on mRNAs with a single-base resolution. We observe a positive effect of FBL-mediated Nm modification on mRNA stability and expression level. Elevated FBL expression in cancer cells is associated with increased expression levels for 2'-O-methylated mRNAs of cancer pathways, implying the role of FBL in post-transcriptional regulation. Lastly, we find that FBL-mediated 2'-O-methylation connects to widespread 3' UTR shortening, a mechanism that globally increases RNA stability. Collectively, we demonstrate that FBL-mediated Nm modifications at mRNA internal sites regulate gene expression by enhancing mRNA stability.
Collapse
Affiliation(s)
- Yanqiang Li
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Yang Yi
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xinlei Gao
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Xin Wang
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Dongyu Zhao
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Rui Wang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Li-Sheng Zhang
- Department of Chemistry, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, Chicago, IL, USA
| | - Boyang Gao
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, Chicago, IL, USA
| | - Yadong Zhang
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Lili Zhang
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Qi Cao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Boston, MA, USA; Prostate Cancer Program, Dana-Farber/Harvard Cancer Center, Boston, MA, USA.
| |
Collapse
|
8
|
Sklias A, Cruciani S, Marchand V, Spagnuolo M, Lavergne G, Bourguignon V, Brambilla A, Dreos R, Marygold S, Novoa E, Motorin Y, Roignant JY. Comprehensive map of ribosomal 2'-O-methylation and C/D box snoRNAs in Drosophila melanogaster. Nucleic Acids Res 2024; 52:2848-2864. [PMID: 38416577 PMCID: PMC11014333 DOI: 10.1093/nar/gkae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024] Open
Abstract
During their maturation, ribosomal RNAs (rRNAs) are decorated by hundreds of chemical modifications that participate in proper folding of rRNA secondary structures and therefore in ribosomal function. Along with pseudouridine, methylation of the 2'-hydroxyl ribose moiety (Nm) is the most abundant modification of rRNAs. The majority of Nm modifications in eukaryotes are placed by Fibrillarin, a conserved methyltransferase belonging to a ribonucleoprotein complex guided by C/D box small nucleolar RNAs (C/D box snoRNAs). These modifications impact interactions between rRNAs, tRNAs and mRNAs, and some are known to fine tune translation rates and efficiency. In this study, we built the first comprehensive map of Nm sites in Drosophila melanogaster rRNAs using two complementary approaches (RiboMethSeq and Nanopore direct RNA sequencing) and identified their corresponding C/D box snoRNAs by whole-transcriptome sequencing. We de novo identified 61 Nm sites, from which 55 are supported by both sequencing methods, we validated the expression of 106 C/D box snoRNAs and we predicted new or alternative rRNA Nm targets for 31 of them. Comparison of methylation level upon different stresses show only slight but specific variations, indicating that this modification is relatively stable in D. melanogaster. This study paves the way to investigate the impact of snoRNA-mediated 2'-O-methylation on translation and proteostasis in a whole organism.
Collapse
Affiliation(s)
- Athena Sklias
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sonia Cruciani
- Center For Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, Epitranscriptomics and RNA sequencing (EpiRNA-Seq) Core Facility (UAR2008/US40 IBSLor) and UMR7365 IMoPA, Nancy, France
| | - Mariangela Spagnuolo
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Guillaume Lavergne
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Valérie Bourguignon
- Université de Lorraine, CNRS, INSERM, Epitranscriptomics and RNA sequencing (EpiRNA-Seq) Core Facility (UAR2008/US40 IBSLor) and UMR7365 IMoPA, Nancy, France
| | - Alessandro Brambilla
- Proteomics and Modomics Experimental Core (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, Trondheim, Norway
| | - René Dreos
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Steven J Marygold
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Eva Maria Novoa
- Center For Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
- University Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, Epitranscriptomics and RNA sequencing (EpiRNA-Seq) Core Facility (UAR2008/US40 IBSLor) and UMR7365 IMoPA, Nancy, France
| | - Jean-Yves Roignant
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
9
|
Paraqindes H, Mourksi NEH, Ballesta S, Hedjam J, Bourdelais F, Fenouil T, Picart T, Catez F, Combe T, Ferrari A, Kielbassa J, Thomas E, Tonon L, Viari A, Attignon V, Carrere M, Perrossier J, Giraud S, Vanbelle C, Gabut M, Bergeron D, Scott MS, Castro Vega L, Magne N, Huillard E, Sanson M, Meyronet D, Diaz JJ, Ducray F, Marcel V, Durand S. Isocitrate dehydrogenase wt and IDHmut adult-type diffuse gliomas display distinct alterations in ribosome biogenesis and 2'O-methylation of ribosomal RNA. Neuro Oncol 2023; 25:2191-2206. [PMID: 37531290 PMCID: PMC10708943 DOI: 10.1093/neuonc/noad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND High-grade adult-type diffuse gliomas (HGGs) constitute a heterogeneous group of aggressive tumors that are mostly incurable. Recent advances highlighting the contribution of ribosomes to cancer development have offered new clinical perspectives. Here, we uncovered that isocitrate dehydrogenase (IDH)wt and IDHmut HGGs display distinct alterations of ribosome biology, in terms of rRNA epitranscriptomics and ribosome biogenesis, which could constitute novel hallmarks that can be exploited for the management of these pathologies. METHODS We analyzed (1) the ribosomal RNA 2'O-ribose methylation (rRNA 2'Ome) using RiboMethSeq and in-house developed bioinformatics tools (https://github.com/RibosomeCRCL/ribomethseq-nfandrRMSAnalyzer) on 3 independent cohorts compiling 71 HGGs (IDHwt n = 30, IDHmut n = 41) and 9 non-neoplastic samples, (2) the expression of ribosome biogenesis factors using medium throughput RT-qPCR as a readout of ribosome biogenesis, and (3) the sensitivity of 5 HGG cell lines to RNA Pol I inhibitors (CX5461, BMH-21). RESULTS Unsupervised analysis demonstrated that HGGs could be distinguished based on their rRNA 2'Ome epitranscriptomic profile, with IDHwt glioblastomas displaying the most significant alterations of rRNA 2'Ome at specific sites. In contrast, IDHmut HGGs are largely characterized by an overexpression of ribosome biogenesis factors compared to non-neoplastic tissues or IDHwt glioblastomas. Finally, IDHmut HGG-derived spheroids display higher cytotoxicity to CX5461 than IDHwt glioblastoma, while all HGG spheroids display a similar cytotoxicity to BMH-21. CONCLUSIONS In HGGs, IDH mutational status is associated with specific alterations of the ribosome biology and with distinct sensitivities to RNA Pol I inhibitors.
Collapse
Affiliation(s)
- Hermes Paraqindes
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Nour-El-Houda Mourksi
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Samantha Ballesta
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Plateforme 3D-ONCO, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Jordan Hedjam
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Fleur Bourdelais
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Tanguy Fenouil
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Hospices Civils de Lyon, Laboratoire de biologie médicale et d’anatomie pathologique, Lyon, France
| | - Thiébaud Picart
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Hospices Civils de Lyon, Laboratoire de biologie médicale et d’anatomie pathologique, Lyon, France
| | - Frédéric Catez
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Théo Combe
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Anthony Ferrari
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Janice Kielbassa
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Emilie Thomas
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Laurie Tonon
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Alain Viari
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
- INRIA Grenoble Rhône-Alpes, Montbonnot-Saint-Martin, France
| | - Valéry Attignon
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Cancer Genomics Platform, Centre de Recherche en Cancérologie de Lyon, CEDEX 08, Lyon, France
| | - Marjorie Carrere
- Cancer Genomics Platform, Centre de Recherche en Cancérologie de Lyon, CEDEX 08, Lyon, France
| | - Jessie Perrossier
- Cancer Genomics Platform, Centre de Recherche en Cancérologie de Lyon, CEDEX 08, Lyon, France
| | - Stéphane Giraud
- Plateforme 3D-ONCO, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Christophe Vanbelle
- Plateforme d’Imagerie Cellulaire, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Mathieu Gabut
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Danny Bergeron
- Département de biochimie et génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Michelle S Scott
- Département de biochimie et génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Luis Castro Vega
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière – Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Nathalie Magne
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière – Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Emmanuelle Huillard
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière – Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Marc Sanson
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière – Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - David Meyronet
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Hospices Civils de Lyon, Laboratoire de biologie médicale et d’anatomie pathologique, Lyon, France
| | - Jean-Jacques Diaz
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - François Ducray
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Hospices Civils de Lyon, Service de neuro-oncologie, Hôpital Pierre Wertheimer, Lyon, France
| | - Virginie Marcel
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Sébastien Durand
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| |
Collapse
|
10
|
Cappe B, Vadi M, Sack E, Wacheul L, Verstraeten B, Dufour S, Franck J, Xie W, Impens F, Hendrix A, Lafontaine DLJ, Vandenabeele P, Riquet FB. Systematic compositional analysis of exosomal extracellular vesicles produced by cells undergoing apoptosis, necroptosis and ferroptosis. J Extracell Vesicles 2023; 12:e12365. [PMID: 37807017 PMCID: PMC10560658 DOI: 10.1002/jev2.12365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
Formation of extracellular vesicles (EVs) has emerged as a novel paradigm in cell-to-cell communication in health and disease. EVs are notably produced during cell death but it had remained unclear whether different modalities of regulated cell death (RCD) influence the biogenesis and composition of EVs. To this end, we performed a comparative analysis of steady-state (ssEVs) and cell death-associated EVs (cdEVs) following TNF-induced necroptosis (necEVs), anti-Fas-induced apoptosis (apoEVs), and ML162-induced ferroptosis (ferEVs) using the same cell line. For each RCD condition, we determined the biophysical and biochemical characteristics of the cell death-associated EVs (cdEVs), the protein cargo, and the presence of methylated ribosomal RNA. We found that the global protein content of all cdEVs was increased compared to steady-state EVs. Qualitatively, the isolated exosomal ssEVs and cdEVs, contained a largely overlapping protein cargo including some quantitative differences in particular proteins. All cdEVs were enriched for proteins involved in RNA splicing and nuclear export, and showed distinctive rRNA methylation patterns compared to ssEVs. Interestingly, necEVs and apoEVs, but strikingly not ferEVs, showed enrichment of proteins involved in ribosome biogenesis. Altogether, our work documents quantitative and qualitative differences between ssEVs and cdEVs.
Collapse
Affiliation(s)
- Benjamin Cappe
- Cell Death and Inflammation UnitVIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Mike Vadi
- Cell Death and Inflammation UnitVIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Eliza Sack
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS)Université libre de Bruxelles (ULB), Biopark campusGosseliesBelgium
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS)Université libre de Bruxelles (ULB), Biopark campusGosseliesBelgium
| | - Bruno Verstraeten
- Cell Death and Inflammation UnitVIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Sara Dufour
- VIB‐UGent Center for Medical BiotechnologyVIBGhentBelgium
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
- VIB Proteomics CoreVIBGhentBelgium
| | - Julien Franck
- University of Lille, Inserm U1192‐Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse‐PRISMLilleFrance
| | - Wei Xie
- Cell Death and Inflammation UnitVIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Francis Impens
- VIB‐UGent Center for Medical BiotechnologyVIBGhentBelgium
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
- VIB Proteomics CoreVIBGhentBelgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
| | - Denis L. J. Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS)Université libre de Bruxelles (ULB), Biopark campusGosseliesBelgium
| | - Peter Vandenabeele
- Cell Death and Inflammation UnitVIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Franck B. Riquet
- Cell Death and Inflammation UnitVIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
- University of Lille, CNRS, UMR 8523‐PhLAM‐Physique des Lasers Atomes et MoléculesLilleFrance
| |
Collapse
|
11
|
Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e288. [PMID: 37256211 PMCID: PMC10225743 DOI: 10.1002/mco2.288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Tumor suppressor p53 can transcriptionally activate downstream genes in response to stress, and then regulate the cell cycle, DNA repair, metabolism, angiogenesis, apoptosis, and other biological responses. p53 has seven functional domains and 12 splice isoforms, and different domains and subtypes play different roles. The activation and inactivation of p53 are finely regulated and are associated with phosphorylation/acetylation modification and ubiquitination modification, respectively. Abnormal activation of p53 is closely related to the occurrence and development of cancer. While targeted therapy of the p53 signaling pathway is still in its early stages and only a few drugs or treatments have entered clinical trials, the development of new drugs and ongoing clinical trials are expected to lead to the widespread use of p53 signaling-targeted therapy in cancer treatment in the future. TRIAP1 is a novel p53 downstream inhibitor of apoptosis. TRIAP1 is the homolog of yeast mitochondrial intermembrane protein MDM35, which can play a tumor-promoting role by blocking the mitochondria-dependent apoptosis pathway. This work provides a systematic overview of recent basic research and clinical progress in the p53 signaling pathway and proposes that TRIAP1 is an important therapeutic target downstream of p53 signaling.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
12
|
Pellegrino S, Dent KC, Spikes T, Warren AJ. Cryo-EM reconstruction of the human 40S ribosomal subunit at 2.15 Å resolution. Nucleic Acids Res 2023; 51:4043-4054. [PMID: 36951107 PMCID: PMC10164566 DOI: 10.1093/nar/gkad194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
The chemical modification of ribosomal RNA and proteins is critical for ribosome assembly, for protein synthesis and may drive ribosome specialisation in development and disease. However, the inability to accurately visualise these modifications has limited mechanistic understanding of the role of these modifications in ribosome function. Here we report the 2.15 Å resolution cryo-EM reconstruction of the human 40S ribosomal subunit. We directly visualise post-transcriptional modifications within the 18S rRNA and four post-translational modifications of ribosomal proteins. Additionally, we interpret the solvation shells in the core regions of the 40S ribosomal subunit and reveal how potassium and magnesium ions establish both universally conserved and eukaryote-specific coordination to promote the stabilisation and folding of key ribosomal elements. This work provides unprecedented structural details for the human 40S ribosomal subunit that will serve as an important reference for unravelling the functional role of ribosomal RNA modifications.
Collapse
Affiliation(s)
- Simone Pellegrino
- Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Cambridge Institute for Medical Research, Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
- Wellcome Trust–Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Kyle C Dent
- Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Cambridge Institute for Medical Research, Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
- Wellcome Trust–Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Tobias Spikes
- Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Cambridge Institute for Medical Research, Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
- Wellcome Trust–Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Alan J Warren
- Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Cambridge Institute for Medical Research, Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
- Wellcome Trust–Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Watt KE, Macintosh J, Bernard G, Trainor PA. RNA Polymerases I and III in development and disease. Semin Cell Dev Biol 2023; 136:49-63. [PMID: 35422389 PMCID: PMC9550887 DOI: 10.1016/j.semcdb.2022.03.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022]
Abstract
Ribosomes are macromolecular machines that are globally required for the translation of all proteins in all cells. Ribosome biogenesis, which is essential for cell growth, proliferation and survival, commences with transcription of a variety of RNAs by RNA Polymerases I and III. RNA Polymerase I (Pol I) transcribes ribosomal RNA (rRNA), while RNA Polymerase III (Pol III) transcribes 5S ribosomal RNA and transfer RNAs (tRNA) in addition to a wide variety of small non-coding RNAs. Interestingly, despite their global importance, disruptions in Pol I and Pol III function result in tissue-specific developmental disorders, with craniofacial anomalies and leukodystrophy/neurodegenerative disease being among the most prevalent. Furthermore, pathogenic variants in genes encoding subunits shared between Pol I and Pol III give rise to distinct syndromes depending on whether Pol I or Pol III function is disrupted. In this review, we discuss the global roles of Pol I and III transcription, the consequences of disruptions in Pol I and III transcription, disorders arising from pathogenic variants in Pol I and Pol III subunits, and mechanisms underpinning their tissue-specific phenotypes.
Collapse
Affiliation(s)
- Kristin En Watt
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Julia Macintosh
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada; Departments of Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada; Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada.
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
14
|
Dash S, Trainor PA. Nucleolin loss of function leads to aberrant Fibroblast Growth Factor signaling and craniofacial anomalies. Development 2022; 149:dev200349. [PMID: 35762670 PMCID: PMC9270975 DOI: 10.1242/dev.200349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/25/2022] [Indexed: 11/23/2022]
Abstract
Ribosomal RNA (rRNA) transcription and ribosome biogenesis are global processes required for growth and proliferation of all cells, yet perturbation of these processes in vertebrates leads to tissue-specific defects termed ribosomopathies. Mutations in rRNA transcription and processing proteins often lead to craniofacial anomalies; however, the cellular and molecular reasons for these defects are poorly understood. Therefore, we examined the function of the most abundant nucleolar phosphoprotein, Nucleolin (Ncl), in vertebrate development. ncl mutant (ncl-/-) zebrafish present with craniofacial anomalies such as mandibulofacial hypoplasia. We observed that ncl-/- mutants exhibited decreased rRNA synthesis and p53-dependent apoptosis, consistent with a role in ribosome biogenesis. However, we found that Nucleolin also performs functions not associated with ribosome biogenesis. We discovered that the half-life of fgf8a mRNA was reduced in ncl-/- mutants, which perturbed Fgf signaling, resulting in misregulated Sox9a-mediated chondrogenesis and Runx2-mediated osteogenesis. Consistent with this model, exogenous FGF8 treatment significantly rescued the cranioskeletal phenotype in ncl-/- zebrafish, suggesting that Nucleolin regulates osteochondroprogenitor differentiation. Our work has therefore uncovered tissue-specific functions for Nucleolin in rRNA transcription and post-transcriptional regulation of growth factor signaling during embryonic craniofacial development.
Collapse
Affiliation(s)
- Soma Dash
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
15
|
Machine learning algorithm for precise prediction of 2’-O-methylation (Nm) sites from experimental RiboMethSeq datasets. Methods 2022; 203:311-321. [DOI: 10.1016/j.ymeth.2022.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/18/2022] Open
|