1
|
Kirangwa J, Laetsch DR, King E, Stevens L, Blaxter M, Holovachov O, Schiffer P. Evolutionary plasticity in nematode Hox gene complements and genomic loci arrangement. Sci Rep 2024; 14:29513. [PMID: 39604390 PMCID: PMC11603191 DOI: 10.1038/s41598-024-79962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Hox genes are central to metazoan body plan formation, patterning and evolution, playing a critical role in cell fate decisions early in embryonic development in invertebrates and vertebrates. While the archetypical Hox gene cluster consists of members of nine ortholog groups (HOX1-HOX9), arrayed in close linkage in the order in which they have their anterior-posterior patterning effects, nematode Hox gene sets do not fit this model. The Caenorhabditis elegans Hox gene set is not clustered and contains only six Hox genes from four of the ancestral groups. The pattern observed in C. elegans is not typical of the phylum, and variation in orthologue set presence and absence and in genomic organisation has been reported. Recent advances in genome sequencing have resulted in the availability of many novel genome assemblies in Nematoda, especially from taxonomic groups that had not been analysed previously. Here, we explored Hox gene complements in high-quality genomes of 80 species from all major clades of Nematoda to understand the evolution of this key set of body pattern genes and especially to probe the origins of the "dispersed" cluster observed in C. elegans. We also included the recently available high-quality genomes of some Nematomorpha as an outgroup. We find that nematodes can have Hox genes from up to six orthology groups. While nematode Hox "clusters" are often interrupted by unrelated genes we identify species in which the cluster is intact and not dispersed.
Collapse
Affiliation(s)
- Joseph Kirangwa
- Institut für Zoologie, Universität zu Köln, Zülpicher str. 47b, 50674, Cologne, Germany.
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL, Edinburgh, Scotland
| | - Erna King
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Lewis Stevens
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Mark Blaxter
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Oleksandr Holovachov
- Department of Zoology, Swedish Museum of Natural History, 104 05, Stockholm, Sweden
| | - Philipp Schiffer
- Institut für Zoologie, Universität zu Köln, Zülpicher str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
2
|
Kratsios P, Hobert O. Almost 40 years of studying homeobox genes in C. elegans. Development 2024; 151:dev204328. [PMID: 39475047 PMCID: PMC11698070 DOI: 10.1242/dev.204328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Homeobox genes are among the most deeply conserved families of transcription factor-encoding genes. Following their discovery in Drosophila, homeobox genes arrived on the Caenorhabditis elegans stage with a vengeance. Between 1988 and 1990, just a few years after their initial discovery in flies and vertebrates, positional cloning and sequence-based searches showed that C. elegans contains HOX cluster genes, an apparent surprise given the simplicity and non-segmented body plan of the nematode, as well as many other non-clustered homeobox genes of all major subfamilies (e.g. LIM, POU, etc.). Not quite 40 years later, we have an exceptionally deep understanding of homeodomain protein expression and function in C. elegans, revealing their prevalent role in nervous system development. In this Spotlight, we provide a historical perspective and a non-comprehensive journey through the C. elegans homeobox field and discuss open questions and future directions.
Collapse
Affiliation(s)
- Paschalis Kratsios
- Department of Neurobiology, University of Chicago, 947 E. 58th St., Chicago, IL 60637, USA
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, 1212 Amsterdam Avenue, New York, NY 10025, USA
| |
Collapse
|
3
|
Poole RJ, Flames N, Cochella L. Neurogenesis in Caenorhabditis elegans. Genetics 2024; 228:iyae116. [PMID: 39167071 PMCID: PMC11457946 DOI: 10.1093/genetics/iyae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 08/23/2024] Open
Abstract
Animals rely on their nervous systems to process sensory inputs, integrate these with internal signals, and produce behavioral outputs. This is enabled by the highly specialized morphologies and functions of neurons. Neuronal cells share multiple structural and physiological features, but they also come in a large diversity of types or classes that give the nervous system its broad range of functions and plasticity. This diversity, first recognized over a century ago, spurred classification efforts based on morphology, function, and molecular criteria. Caenorhabditis elegans, with its precisely mapped nervous system at the anatomical level, an extensive molecular description of most of its neurons, and its genetic amenability, has been a prime model for understanding how neurons develop and diversify at a mechanistic level. Here, we review the gene regulatory mechanisms driving neurogenesis and the diversification of neuron classes and subclasses in C. elegans. We discuss our current understanding of the specification of neuronal progenitors and their differentiation in terms of the transcription factors involved and ensuing changes in gene expression and chromatin landscape. The central theme that has emerged is that the identity of a neuron is defined by modules of gene batteries that are under control of parallel yet interconnected regulatory mechanisms. We focus on how, to achieve these terminal identities, cells integrate information along their developmental lineages. Moreover, we discuss how neurons are diversified postembryonically in a time-, genetic sex-, and activity-dependent manner. Finally, we discuss how the understanding of neuronal development can provide insights into the evolution of neuronal diversity.
Collapse
Affiliation(s)
- Richard J Poole
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia 46012, Spain
| | - Luisa Cochella
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Ma F, Zheng C. Single-cell phylotranscriptomics of developmental and cell type evolution. Trends Genet 2024; 40:495-510. [PMID: 38490933 DOI: 10.1016/j.tig.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
Single-cell phylotranscriptomics is an emerging tool to reveal the molecular and cellular mechanisms of evolution. We summarize its utility in studying the hourglass pattern of ontogenetic evolution and for understanding the evolutionary history of cell types. The developmental hourglass model suggests that the mid-embryonic stage is the most conserved period of development across species, which is supported by morphological and molecular studies. Single-cell phylotranscriptomic analysis has revealed previously underappreciated heterogeneity in transcriptome ages among lineages and cell types throughout development, and has identified the lineages and tissues that drive the whole-organism hourglass pattern. Single-cell transcriptome age analyses also provide important insights into the origin of germ layers, the different selective forces on tissues during adaptation, and the evolutionary relationships between cell types.
Collapse
Affiliation(s)
- Fuqiang Ma
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Smith JJ, Taylor SR, Blum JA, Feng W, Collings R, Gitler AD, Miller DM, Kratsios P. A molecular atlas of adult C. elegans motor neurons reveals ancient diversity delineated by conserved transcription factor codes. Cell Rep 2024; 43:113857. [PMID: 38421866 PMCID: PMC11091551 DOI: 10.1016/j.celrep.2024.113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Motor neurons (MNs) constitute an ancient cell type targeted by multiple adult-onset diseases. It is therefore important to define the molecular makeup of adult MNs in animal models and extract organizing principles. Here, we generate a comprehensive molecular atlas of adult Caenorhabditis elegans MNs and a searchable database. Single-cell RNA sequencing of 13,200 cells reveals that ventral nerve cord MNs cluster into 29 molecularly distinct subclasses. Extending C. elegans Neuronal Gene Expression Map and Network (CeNGEN) findings, all MN subclasses are delineated by distinct expression codes of either neuropeptide or transcription factor gene families. Strikingly, combinatorial codes of homeodomain transcription factor genes succinctly delineate adult MN diversity in both C. elegans and mice. Further, molecularly defined MN subclasses in C. elegans display distinct patterns of connectivity. Hence, our study couples the connectivity map of the C. elegans motor circuit with a molecular atlas of its constituent MNs and uncovers organizing principles and conserved molecular codes of adult MN diversity.
Collapse
Affiliation(s)
- Jayson J Smith
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; University of Chicago Neuroscience Institute, Chicago, IL 60637, USA
| | - Seth R Taylor
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA; Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Jacob A Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; University of Chicago Neuroscience Institute, Chicago, IL 60637, USA
| | - Rebecca Collings
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA; Program in Neuroscience, Vanderbilt University, Nashville, TN 37240, USA.
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; University of Chicago Neuroscience Institute, Chicago, IL 60637, USA.
| |
Collapse
|
6
|
Destain H, Prahlad M, Kratsios P. Maintenance of neuronal identity in C. elegans and beyond: Lessons from transcription and chromatin factors. Semin Cell Dev Biol 2024; 154:35-47. [PMID: 37438210 PMCID: PMC10592372 DOI: 10.1016/j.semcdb.2023.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
Neurons are remarkably long-lived, non-dividing cells that must maintain their functional features (e.g., electrical properties, chemical signaling) for extended periods of time - decades in humans. How neurons accomplish this incredible feat is poorly understood. Here, we review recent advances, primarily in the nematode C. elegans, that have enhanced our understanding of the molecular mechanisms that enable post-mitotic neurons to maintain their functionality across different life stages. We begin with "terminal selectors" - transcription factors necessary for the establishment and maintenance of neuronal identity. We highlight new findings on five terminal selectors (CHE-1 [Glass], UNC-3 [Collier/Ebf1-4], LIN-39 [Scr/Dfd/Hox4-5], UNC-86 [Acj6/Brn3a-c], AST-1 [Etv1/ER81]) from different transcription factor families (ZNF, COE, HOX, POU, ETS). We compare the functions of these factors in specific neuron types of C. elegans with the actions of their orthologs in other invertebrate (D. melanogaster) and vertebrate (M. musculus) systems, highlighting remarkable functional conservation. Finally, we reflect on recent findings implicating chromatin-modifying proteins, such as histone methyltransferases and Polycomb proteins, in the control of neuronal terminal identity. Altogether, these new studies on transcription factors and chromatin modifiers not only shed light on the fundamental problem of neuronal identity maintenance, but also outline mechanistic principles of gene regulation that may operate in other long-lived, post-mitotic cell types.
Collapse
Affiliation(s)
- Honorine Destain
- Department of Neurobiology, University of Chicago, Chicago, IL, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL, USA; University of Chicago Neuroscience Institute, Chicago, IL, USA
| | - Manasa Prahlad
- Department of Neurobiology, University of Chicago, Chicago, IL, USA; Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA; University of Chicago Neuroscience Institute, Chicago, IL, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL, USA; Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA; University of Chicago Neuroscience Institute, Chicago, IL, USA.
| |
Collapse
|
7
|
Smith JJ, Kratsios P. Hox gene functions in the C. elegans nervous system: From early patterning to maintenance of neuronal identity. Semin Cell Dev Biol 2024; 152-153:58-69. [PMID: 36496326 PMCID: PMC10244487 DOI: 10.1016/j.semcdb.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The nervous system emerges from a series of genetic programs that generate a remarkable array of neuronal cell types. Each cell type must acquire a distinct anatomical position, morphology, and function, enabling the generation of specialized circuits that drive animal behavior. How are these diverse cell types and circuits patterned along the anterior-posterior (A-P) axis of the animal body? Hox genes encode transcription factors that regulate cell fate and patterning events along the A-P axis of the nervous system. While most of our understanding of Hox-mediated control of neuronal development stems from studies in segmented animals like flies, mice, and zebrafish, important new themes are emerging from work in a non-segmented animal: the nematode Caenorhabditis elegans. Studies in C. elegans support the idea that Hox genes are needed continuously and across different life stages in the nervous system; they are not only required in dividing progenitor cells, but also in post-mitotic neurons during development and adult life. In C. elegans embryos and young larvae, Hox genes control progenitor cell specification, cell survival, and neuronal migration, consistent with their neural patterning roles in other animals. In late larvae and adults, C. elegans Hox genes control neuron type-specific identity features critical for neuronal function, thereby extending the Hox functional repertoire beyond early patterning. Here, we provide a comprehensive review of Hox studies in the C. elegans nervous system. To relate to readers outside the C. elegans community, we highlight conserved roles of Hox genes in patterning the nervous system of invertebrate and vertebrate animals. We end by calling attention to new functions in adult post-mitotic neurons for these paradigmatic regulators of cell fate.
Collapse
Affiliation(s)
- Jayson J Smith
- Department of Neurobiology, University of Chicago, 947 East 58th Street, Chicago, IL 60637, USA; University of Chicago Neuroscience Institute, 947 East 58th Street, Chicago, IL 60637, USA.
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, 947 East 58th Street, Chicago, IL 60637, USA; University of Chicago Neuroscience Institute, 947 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
8
|
Smith JJ, Taylor SR, Blum JA, Gitler AD, Miller DM, Kratsios P. A molecular atlas of adult C. elegans motor neurons reveals ancient diversity delineated by conserved transcription factor codes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552048. [PMID: 37577463 PMCID: PMC10418256 DOI: 10.1101/2023.08.04.552048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Motor neurons (MNs) constitute an ancient cell type targeted by multiple adult-onset diseases. It is therefore important to define the molecular makeup of adult MNs in animal models and extract organizing principles. Here, we generated a comprehensive molecular atlas of adult Caenorhabditis elegans MNs and a searchable database (http://celegans.spinalcordatlas.org). Single-cell RNA-sequencing of 13,200 cells revealed that ventral nerve cord MNs cluster into 29 molecularly distinct subclasses. All subclasses are delineated by unique expression codes of either neuropeptide or transcription factor gene families. Strikingly, we found that combinatorial codes of homeodomain transcription factor genes define adult MN diversity both in C. elegans and mice. Further, molecularly defined MN subclasses in C. elegans display distinct patterns of connectivity. Hence, our study couples the connectivity map of the C. elegans motor circuit with a molecular atlas of its constituent MNs, and uncovers organizing principles and conserved molecular codes of adult MN diversity.
Collapse
Affiliation(s)
- Jayson J. Smith
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
- University of Chicago Neuroscience Institute, Chicago, IL, 60637, USA
| | - Seth R. Taylor
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, 84602, USA
| | - Jacob A. Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - David M. Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
- Program in Neuroscience, Vanderbilt University, Nashville, TN, 37240, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
- University of Chicago Neuroscience Institute, Chicago, IL, 60637, USA
| |
Collapse
|
9
|
Ma F, Zheng C. Transcriptome age of individual cell types in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2023; 120:e2216351120. [PMID: 36812209 PMCID: PMC9992843 DOI: 10.1073/pnas.2216351120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
The phylotranscriptomic analysis of development in several species revealed the expression of older and more conserved genes in midembryonic stages and younger and more divergent genes in early and late embryonic stages, which supported the hourglass mode of development. However, previous work only studied the transcriptome age of whole embryos or embryonic sublineages, leaving the cellular basis of the hourglass pattern and the variation of transcriptome ages among cell types unexplored. By analyzing both bulk and single-cell transcriptomic data, we studied the transcriptome age of the nematode Caenorhabditis elegans throughout development. Using the bulk RNA-seq data, we identified the morphogenesis phase in midembryonic development as the phylotypic stage with the oldest transcriptome and confirmed the results using whole-embryo transcriptome assembled from single-cell RNA-seq data. The variation in transcriptome ages among individual cell types remained small in early and midembryonic development and grew bigger in late embryonic and larval stages as cells and tissues differentiate. Lineages that give rise to certain tissues (e.g., hypodermis and some neurons) but not all recapitulated the hourglass pattern across development at the single-cell transcriptome level. Further analysis of the variation in transcriptome ages among the 128 neuron types in C. elegans nervous system found that a group of chemosensory neurons and their downstream interneurons expressed very young transcriptomes and may contribute to adaptation in recent evolution. Finally, the variation in transcriptome age among the neuron types, as well as the age of their cell fate regulators, led us to hypothesize the evolutionary history of some neuron types.
Collapse
Affiliation(s)
- Fuqiang Ma
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Feng W, Destain H, Smith JJ, Kratsios P. Maintenance of neurotransmitter identity by Hox proteins through a homeostatic mechanism. Nat Commun 2022; 13:6097. [PMID: 36243871 PMCID: PMC9569373 DOI: 10.1038/s41467-022-33781-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Hox transcription factors play fundamental roles during early patterning, but they are also expressed continuously, from embryonic stages through adulthood, in the nervous system. However, the functional significance of their sustained expression remains unclear. In C. elegans motor neurons (MNs), we find that LIN-39 (Scr/Dfd/Hox4-5) is continuously required during post-embryonic life to maintain neurotransmitter identity, a core element of neuronal function. LIN-39 acts directly to co-regulate genes that define cholinergic identity (e.g., unc-17/VAChT, cho-1/ChT). We further show that LIN-39, MAB-5 (Antp/Hox6-8) and the transcription factor UNC-3 (Collier/Ebf) operate in a positive feedforward loop to ensure continuous and robust expression of cholinergic identity genes. Finally, we identify a two-component design principle for homeostatic control of Hox gene expression in adult MNs: Hox transcriptional autoregulation is counterbalanced by negative UNC-3 feedback. These findings uncover a noncanonical role for Hox proteins during post-embryonic life, critically broadening their functional repertoire from early patterning to the control of neurotransmitter identity.
Collapse
Affiliation(s)
- Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- University of Chicago Neuroscience Institute, Chicago, IL, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Honorine Destain
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- University of Chicago Neuroscience Institute, Chicago, IL, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Jayson J Smith
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- University of Chicago Neuroscience Institute, Chicago, IL, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, USA.
- University of Chicago Neuroscience Institute, Chicago, IL, USA.
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Widespread employment of conserved C. elegans homeobox genes in neuronal identity specification. PLoS Genet 2022; 18:e1010372. [PMID: 36178933 PMCID: PMC9524666 DOI: 10.1371/journal.pgen.1010372] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
Homeobox genes are prominent regulators of neuronal identity, but the extent to which their function has been probed in animal nervous systems remains limited. In the nematode Caenorhabditis elegans, each individual neuron class is defined by the expression of unique combinations of homeobox genes, prompting the question of whether each neuron class indeed requires a homeobox gene for its proper identity specification. We present here progress in addressing this question by extending previous mutant analysis of homeobox gene family members and describing multiple examples of homeobox gene function in different parts of the C. elegans nervous system. To probe homeobox function, we make use of a number of reporter gene tools, including a novel multicolor reporter transgene, NeuroPAL, which permits simultaneous monitoring of the execution of multiple differentiation programs throughout the entire nervous system. Using these tools, we add to the previous characterization of homeobox gene function by identifying neuronal differentiation defects for 14 homeobox genes in 24 distinct neuron classes that are mostly unrelated by location, function and lineage history. 12 of these 24 neuron classes had no homeobox gene function ascribed to them before, while in the other 12 neuron classes, we extend the combinatorial code of transcription factors required for specifying terminal differentiation programs. Furthermore, we demonstrate that in a particular lineage, homeotic identity transformations occur upon loss of a homeobox gene and we show that these transformations are the result of changes in homeobox codes. Combining the present with past analyses, 113 of the 118 neuron classes of C. elegans are now known to require a homeobox gene for proper execution of terminal differentiation programs. Such broad deployment indicates that homeobox function in neuronal identity specification may be an ancestral feature of animal nervous systems.
Collapse
|
12
|
Murray JI, Preston E, Crawford JP, Rumley JD, Amom P, Anderson BD, Sivaramakrishnan P, Patel SD, Bennett BA, Lavon TD, Hsiao E, Peng F, Zacharias AL. The anterior Hox gene ceh-13 and elt-1/GATA activate the posterior Hox genes nob-1 and php-3 to specify posterior lineages in the C. elegans embryo. PLoS Genet 2022; 18:e1010187. [PMID: 35500030 PMCID: PMC9098060 DOI: 10.1371/journal.pgen.1010187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/12/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
Abstract
Hox transcription factors play a conserved role in specifying positional identity during animal development, with posterior Hox genes typically repressing the expression of more anterior Hox genes. Here, we dissect the regulation of the posterior Hox genes nob-1 and php-3 in the nematode C. elegans. We show that nob-1 and php-3 are co-expressed in gastrulation-stage embryos in cells that previously expressed the anterior Hox gene ceh-13. This expression is controlled by several partially redundant transcriptional enhancers. These enhancers act in a ceh-13-dependant manner, providing a striking example of an anterior Hox gene positively regulating a posterior Hox gene. Several other regulators also act positively through nob-1/php-3 enhancers, including elt-1/GATA, ceh-20/ceh-40/Pbx, unc-62/Meis, pop-1/TCF, ceh-36/Otx, and unc-30/Pitx. We identified defects in both cell position and cell division patterns in ceh-13 and nob-1;php-3 mutants, suggesting that these factors regulate lineage identity in addition to positional identity. Together, our results highlight the complexity and flexibility of Hox gene regulation and function and the ability of developmental transcription factors to regulate different targets in different stages of development.
Collapse
Affiliation(s)
- John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elicia Preston
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jeremy P. Crawford
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jonathan D. Rumley
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Prativa Amom
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Breana D. Anderson
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Priya Sivaramakrishnan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shaili D. Patel
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Barrington Alexander Bennett
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Teddy D. Lavon
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erin Hsiao
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Felicia Peng
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amanda L. Zacharias
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|