1
|
Yoo D, Rhie A, Hebbar P, Antonacci F, Logsdon GA, Solar SJ, Antipov D, Pickett BD, Safonova Y, Montinaro F, Luo Y, Malukiewicz J, Storer JM, Lin J, Sequeira AN, Mangan RJ, Hickey G, Monfort Anez G, Balachandran P, Bankevich A, Beck CR, Biddanda A, Borchers M, Bouffard GG, Brannan E, Brooks SY, Carbone L, Carrel L, Chan AP, Crawford J, Diekhans M, Engelbrecht E, Feschotte C, Formenti G, Garcia GH, de Gennaro L, Gilbert D, Green RE, Guarracino A, Gupta I, Haddad D, Han J, Harris RS, Hartley GA, Harvey WT, Hiller M, Hoekzema K, Houck ML, Jeong H, Kamali K, Kellis M, Kille B, Lee C, Lee Y, Lees W, Lewis AP, Li Q, Loftus M, Loh YHE, Loucks H, Ma J, Mao Y, Martinez JFI, Masterson P, McCoy RC, McGrath B, McKinney S, Meyer BS, Miga KH, Mohanty SK, Munson KM, Pal K, Pennell M, Pevzner PA, Porubsky D, Potapova T, Ringeling FR, Rocha JL, Ryder OA, Sacco S, Saha S, Sasaki T, Schatz MC, Schork NJ, Shanks C, Smeds L, Son DR, Steiner C, Sweeten AP, Tassia MG, Thibaud-Nissen F, Torres-González E, Trivedi M, Wei W, Wertz J, Yang M, Zhang P, Zhang S, Zhang Y, Zhang Z, et alYoo D, Rhie A, Hebbar P, Antonacci F, Logsdon GA, Solar SJ, Antipov D, Pickett BD, Safonova Y, Montinaro F, Luo Y, Malukiewicz J, Storer JM, Lin J, Sequeira AN, Mangan RJ, Hickey G, Monfort Anez G, Balachandran P, Bankevich A, Beck CR, Biddanda A, Borchers M, Bouffard GG, Brannan E, Brooks SY, Carbone L, Carrel L, Chan AP, Crawford J, Diekhans M, Engelbrecht E, Feschotte C, Formenti G, Garcia GH, de Gennaro L, Gilbert D, Green RE, Guarracino A, Gupta I, Haddad D, Han J, Harris RS, Hartley GA, Harvey WT, Hiller M, Hoekzema K, Houck ML, Jeong H, Kamali K, Kellis M, Kille B, Lee C, Lee Y, Lees W, Lewis AP, Li Q, Loftus M, Loh YHE, Loucks H, Ma J, Mao Y, Martinez JFI, Masterson P, McCoy RC, McGrath B, McKinney S, Meyer BS, Miga KH, Mohanty SK, Munson KM, Pal K, Pennell M, Pevzner PA, Porubsky D, Potapova T, Ringeling FR, Rocha JL, Ryder OA, Sacco S, Saha S, Sasaki T, Schatz MC, Schork NJ, Shanks C, Smeds L, Son DR, Steiner C, Sweeten AP, Tassia MG, Thibaud-Nissen F, Torres-González E, Trivedi M, Wei W, Wertz J, Yang M, Zhang P, Zhang S, Zhang Y, Zhang Z, Zhao SA, Zhu Y, Jarvis ED, Gerton JL, Rivas-González I, Paten B, Szpiech ZA, Huber CD, Lenz TL, Konkel MK, Yi SV, Canzar S, Watson CT, Sudmant PH, Molloy E, Garrison E, Lowe CB, Ventura M, O'Neill RJ, Koren S, Makova KD, Phillippy AM, Eichler EE. Complete sequencing of ape genomes. Nature 2025; 641:401-418. [PMID: 40205052 PMCID: PMC12058530 DOI: 10.1038/s41586-025-08816-3] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/19/2025] [Indexed: 04/11/2025]
Abstract
The most dynamic and repetitive regions of great ape genomes have traditionally been excluded from comparative studies1-3. Consequently, our understanding of the evolution of our species is incomplete. Here we present haplotype-resolved reference genomes and comparative analyses of six ape species: chimpanzee, bonobo, gorilla, Bornean orangutan, Sumatran orangutan and siamang. We achieve chromosome-level contiguity with substantial sequence accuracy (<1 error in 2.7 megabases) and completely sequence 215 gapless chromosomes telomere-to-telomere. We resolve challenging regions, such as the major histocompatibility complex and immunoglobulin loci, to provide in-depth evolutionary insights. Comparative analyses enabled investigations of the evolution and diversity of regions previously uncharacterized or incompletely studied without bias from mapping to the human reference genome. Such regions include newly minted gene families in lineage-specific segmental duplications, centromeric DNA, acrocentric chromosomes and subterminal heterochromatin. This resource serves as a comprehensive baseline for future evolutionary studies of humans and our closest living ape relatives.
Collapse
Affiliation(s)
- DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Prajna Hebbar
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Francesca Antonacci
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven J Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dmitry Antipov
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon D Pickett
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yana Safonova
- Computer Science and Engineering Department, Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Francesco Montinaro
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Yanting Luo
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Joanna Malukiewicz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
- German Primate Center, Primate Genetics Laboratory, Goettingen, Germany
| | - Jessica M Storer
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Jiadong Lin
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Riley J Mangan
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genetics Training Program, Harvard Medical School, Boston, MA, USA
| | - Glenn Hickey
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | | | - Anton Bankevich
- Computer Science and Engineering Department, Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Christine R Beck
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Arjun Biddanda
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Gerard G Bouffard
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emry Brannan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Shelise Y Brooks
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lucia Carbone
- Department of Medicine, KCVI, Oregon Health Sciences University, Portland, OR, USA
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Laura Carrel
- PSU Medical School, Penn State University School of Medicine, Hershey, PA, USA
| | - Agnes P Chan
- The Translational Genomics Research Institute, City of Hope National Medical Center, Phoenix, AZ, USA
| | - Juyun Crawford
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Eric Engelbrecht
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Gage H Garcia
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Luciana de Gennaro
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | - David Gilbert
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ishaan Gupta
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, USA
| | - Diana Haddad
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Junmin Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Robert S Harris
- Department of Biology, Penn State University, University Park, PA, USA
| | | | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Hyeonsoo Jeong
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kaivan Kamali
- Department of Biology, Penn State University, University Park, PA, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bryce Kille
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Chul Lee
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Youngho Lee
- Laboratory of Bioinformatics and Population Genetics, Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - William Lees
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
- Bioengineering Program, Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Alexandra P Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Qiuhui Li
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Mark Loftus
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Yong Hwee Eddie Loh
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Hailey Loucks
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Center for Genomic Research, International Institutes of Medicine, Fourth Affiliated Hospital, Zhejiang University, Yiwu, China
- Shanghai Jiao Tong University Chongqing Research Institute, Chongqing, China
| | - Juan F I Martinez
- Computer Science and Engineering Department, Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Patrick Masterson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Barbara McGrath
- Department of Biology, Penn State University, University Park, PA, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Britta S Meyer
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Karen H Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Saswat K Mohanty
- Department of Biology, Penn State University, University Park, PA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Karol Pal
- Department of Biology, Penn State University, University Park, PA, USA
| | - Matt Pennell
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Francisca R Ringeling
- Faculty of Informatics and Data Science, University of Regensburg, Regensburg, Germany
| | - Joana L Rocha
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Samuel Sacco
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Swati Saha
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas J Schork
- The Translational Genomics Research Institute, City of Hope National Medical Center, Phoenix, AZ, USA
| | - Cole Shanks
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Linnéa Smeds
- Department of Biology, Penn State University, University Park, PA, USA
| | - Dongmin R Son
- Department of Ecology, Evolution and Marine Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | | | - Alexander P Sweeten
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael G Tassia
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Mihir Trivedi
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Wenjie Wei
- School of Life Sciences, Westlake University, Hangzhou, China
- National Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Julie Wertz
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Muyu Yang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Panpan Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Shilong Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zhenmiao Zhang
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, USA
| | - Sarah A Zhao
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yixin Zhu
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Iker Rivas-González
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Zachary A Szpiech
- Department of Biology, Penn State University, University Park, PA, USA
| | - Christian D Huber
- Department of Biology, Penn State University, University Park, PA, USA
| | - Tobias L Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Miriam K Konkel
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Stefan Canzar
- Faculty of Informatics and Data Science, University of Regensburg, Regensburg, Germany
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Erin Molloy
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Mario Ventura
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Rachel J O'Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kateryna D Makova
- Department of Biology, Penn State University, University Park, PA, USA.
| | - Adam M Phillippy
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Wen Z, Cai X, Liu Z, Tan L, Kong Y, Wang Y, Zhao Y. Genomic analyses reveal a lack of widespread strong selection in indigenous chickens. Poult Sci 2025; 104:105081. [PMID: 40138972 PMCID: PMC11985164 DOI: 10.1016/j.psj.2025.105081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
The study of domestication has been revolutionized with the advent of molecular genetics. Chickens, with their clear domestication history, emerge as an excellent model for study into the paths of evolution in domestication and improvement. Here we used genomic data from wild, indigenous, and commercial chickens to better understand how genetic drift and selection translate into their differentiations. Our investigation into the patterns of allelic change and divergence reveals a polygenic architecture governing genetic differentiation during domestication and improvement. We uncover distinctive population-specific differentiations in terms of genes and functions among wild, indigenous, and commercial chickens. Using Runs Of Homozygosity (ROH) based mixed model approach developed in this study, we identified only directional selection signatures occurring in wild and commercial chickens. Notably, our findings suggest that indigenous chickens serve as reservoirs of genetic diversity, necessary for rapid adaptation to new environments or subsequent modern breeding. This work provides unprecedented insights into the chicken domestication and improvement, and it illuminates our understanding of the domestication of other animal species.
Collapse
Affiliation(s)
- Zilong Wen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xinyu Cai
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zexuan Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lizhi Tan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Kong
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuzhan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiqiang Zhao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; National Research Facility for Phenotypic and Genotypic Analysis of Model Animals (Beijing), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Arnab SP, Campelo dos Santos AL, Fumagalli M, DeGiorgio M. Efficient Detection and Characterization of Targets of Natural Selection Using Transfer Learning. Mol Biol Evol 2025; 42:msaf094. [PMID: 40341942 PMCID: PMC12062966 DOI: 10.1093/molbev/msaf094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025] Open
Abstract
Natural selection leaves detectable patterns of altered spatial diversity within genomes, and identifying affected regions is crucial for understanding species evolution. Recently, machine learning approaches applied to raw population genomic data have been developed to uncover these adaptive signatures. Convolutional neural networks (CNNs) are particularly effective for this task, as they handle large data arrays while maintaining element correlations. However, shallow CNNs may miss complex patterns due to their limited capacity, while deep CNNs can capture these patterns but require extensive data and computational power. Transfer learning addresses these challenges by utilizing a deep CNN pretrained on a large dataset as a feature extraction tool for downstream classification and evolutionary parameter prediction. This approach reduces extensive training data generation requirements and computational needs while maintaining high performance. In this study, we developed TrIdent, a tool that uses transfer learning to enhance detection of adaptive genomic regions from image representations of multilocus variation. We evaluated TrIdent across various genetic, demographic, and adaptive settings, in addition to unphased data and other confounding factors. TrIdent demonstrated improved detection of adaptive regions compared to recent methods using similar data representations. We further explored model interpretability through class activation maps and adapted TrIdent to infer selection parameters for identified adaptive candidates. Using whole-genome haplotype data from European and African populations, TrIdent effectively recapitulated known sweep candidates and identified novel cancer, and other disease-associated genes as potential sweeps.
Collapse
Affiliation(s)
- Sandipan Paul Arnab
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Matteo Fumagalli
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- The Alan Turing Institute, London, UK
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
4
|
Rehmann CT, Small ST, Ralph PL, Kern AD. Sweeps in space: leveraging geographic data to identify beneficial alleles in Anopheles gambiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637123. [PMID: 39975147 PMCID: PMC11839090 DOI: 10.1101/2025.02.07.637123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
As organisms adapt to environmental changes, natural selection modifies the frequency of non-neutral alleles. For beneficial mutations, the outcome of this process may be a selective sweep, in which an allele rapidly increases in frequency and perhaps reaches fixation within a population. Selective sweeps have well-studied effects on patterns of local genetic variation in panmictic populations, but much less is known about the dynamics of sweeps in continuous space. In particular, because limited movement across a landscape leads to unique patterns of population structure, spatial dynamics may influence the trajectory of selected mutations. Here, we use forward-in-time, individual-based simulations in continuous space to study the impact of space on beneficial mutations as they sweep through a population. In particular, we show that selection changes the joint distribution of allele frequency and geographic range occupied by a focal allele and demonstrate that this signal can be used to identify selective sweeps. We then leverage this signal to identify in-progress selective sweeps within the malaria vector Anopheles gambiae , a species under strong selection pressure from vector control measures. By considering space, we identify multiple previously undescribed variants with potential phenotypic consequences, including mutations impacting known IR-associated genes and altering protein structure and properties. Our results demonstrate a novel signal for detecting selection in spatial population genetic data that may have implications for genomic surveillance and understanding geographic patterns of genetic variation.
Collapse
|
5
|
Arnab SP, Dos Santos ALC, Fumagalli M, DeGiorgio M. Efficient detection and characterization of targets of natural selection using transfer learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641710. [PMID: 40093065 PMCID: PMC11908262 DOI: 10.1101/2025.03.05.641710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Natural selection leaves detectable patterns of altered spatial diversity within genomes, and identifying affected regions is crucial for understanding species evolution. Recently, machine learning approaches applied to raw population genomic data have been developed to uncover these adaptive signatures. Convolutional neural networks (CNNs) are particularly effective for this task, as they handle large data arrays while maintaining element correlations. However, shallow CNNs may miss complex patterns due to their limited capacity, while deep CNNs can capture these patterns but require extensive data and computational power. Transfer learning addresses these challenges by utilizing a deep CNN pre-trained on a large dataset as a feature extraction tool for downstream classification and evolutionary parameter prediction. This approach reduces extensive training data generation requirements and computational needs while maintaining high performance. In this study, we developed TrIdent, a tool that uses transfer learning to enhance detection of adaptive genomic regions from image representations of multilocus variation. We evaluated TrIdent across various genetic, demographic, and adaptive settings, in addition to unphased data and other confounding factors. TrIdent demonstrated improved detection of adaptive regions compared to recent methods using similar data representations. We further explored model interpretability through class activation maps and adapted TrIdent to infer selection parameters for identified adaptive candidates. Using whole-genome haplotype data from European and African populations, TrIdent effectively recapitulated known sweep candidates and identified novel cancer, and other disease-associated genes as potential sweeps.
Collapse
Affiliation(s)
- Sandipan Paul Arnab
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Matteo Fumagalli
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- The Alan Turing Institute, London, UK
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
6
|
Assis BA, Sullivan AP, Marciniak S, Bergey CM, Garcia V, Szpiech ZA, Langkilde T, Perry GH. Genomic signatures of adaptation in native lizards exposed to human-introduced fire ants. Nat Commun 2025; 16:89. [PMID: 39746982 PMCID: PMC11695932 DOI: 10.1038/s41467-024-55020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 11/25/2024] [Indexed: 01/04/2025] Open
Abstract
Understanding the process of genetic adaptation in response to human-mediated ecological change will help elucidate the eco-evolutionary impacts of human activity. In the 1930s red imported fire ants (Solenopsis invicta) were accidently introduced to the Southeastern USA, where today they are both venomous predators and toxic prey to native eastern fence lizards (Sceloporus undulatus). Here, we investigate potential lizard adaptation to invasive fire ants by generating whole-genome sequences from 420 lizards across three populations: one with long exposure to fire ants, and two unexposed populations. Signatures of positive selection exclusive to the exposed population overlap immune system, growth factor pathway, and morphological development genes. Among invaded lizards, longer limbs (used to remove stinging ants) are associated with increased survival. We identify alleles associated with longer limbs that are highly differentiated from the unexposed populations, a pattern counter to the pre-invasion latitudinal cline for limb lengths based on museum specimens. While we cannot rule out other environmental differences between populations driving these patterns, these results do constitute plausible genetic adaptations in lizards invaded by fire ants.
Collapse
Affiliation(s)
- Braulio A Assis
- Department of Biology, The Pennsylvania State University, University Park, PA, USA.
- Department of Anthropology, The Pennsylvania State University, University Park, PA, USA.
| | - Alexis P Sullivan
- Department of Biology, The Pennsylvania State University, University Park, PA, USA.
- Institute for Systems Genetics, NYU Langone Health, New York City, NY, USA.
| | - Stephanie Marciniak
- Department of Anthropology, The Pennsylvania State University, University Park, PA, USA
- Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
| | - Christina M Bergey
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Anthropology, The Pennsylvania State University, University Park, PA, USA
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Vanessa Garcia
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Zachary A Szpiech
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Tracy Langkilde
- Department of Biology, The Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| | - George H Perry
- Department of Biology, The Pennsylvania State University, University Park, PA, USA.
- Department of Anthropology, The Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
7
|
Amin MR, Hasan M, DeGiorgio M. Digital Image Processing to Detect Adaptive Evolution. Mol Biol Evol 2024; 41:msae242. [PMID: 39565932 PMCID: PMC11631197 DOI: 10.1093/molbev/msae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/28/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
In recent years, advances in image processing and machine learning have fueled a paradigm shift in detecting genomic regions under natural selection. Early machine learning techniques employed population-genetic summary statistics as features, which focus on specific genomic patterns expected by adaptive and neutral processes. Though such engineered features are important when training data are limited, the ease at which simulated data can now be generated has led to the recent development of approaches that take in image representations of haplotype alignments and automatically extract important features using convolutional neural networks. Digital image processing methods termed α-molecules are a class of techniques for multiscale representation of objects that can extract a diverse set of features from images. One such α-molecule method, termed wavelet decomposition, lends greater control over high-frequency components of images. Another α-molecule method, termed curvelet decomposition, is an extension of the wavelet concept that considers events occurring along curves within images. We show that application of these α-molecule techniques to extract features from image representations of haplotype alignments yield high true positive rate and accuracy to detect hard and soft selective sweep signatures from genomic data with both linear and nonlinear machine learning classifiers. Moreover, we find that such models are easy to visualize and interpret, with performance rivaling those of contemporary deep learning approaches for detecting sweeps.
Collapse
Affiliation(s)
- Md Ruhul Amin
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mahmudul Hasan
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
8
|
Witt KE, Villanea FA. Computational Genomics and Its Applications to Anthropological Questions. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 186 Suppl 78:e70010. [PMID: 40071816 PMCID: PMC11898561 DOI: 10.1002/ajpa.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/14/2024] [Accepted: 12/19/2024] [Indexed: 03/15/2025]
Abstract
The advent of affordable genome sequencing and the development of new computational tools have established a new era of genomic knowledge. Sequenced human genomes number in the tens of thousands, including thousands of ancient human genomes. The abundance of data has been met with new analysis tools that can be used to understand populations' demographic and evolutionary histories. Thus, a variety of computational methods now exist that can be leveraged to answer anthropological questions. This includes novel likelihood and Bayesian methods, machine learning techniques, and a vast array of population simulators. These computational tools provide powerful insights gained from genomic datasets, although they are generally inaccessible to those with less computational experience. Here, we outline the theoretical workings behind computational genomics methods, limitations and other considerations when applying these computational methods, and examples of how computational methods have already been applied to anthropological questions. We hope this review will empower other anthropologists to utilize these powerful tools in their own research.
Collapse
Affiliation(s)
- Kelsey E. Witt
- Department of Genetics and Biochemistry and Center for Human GeneticsClemson UniversityClemsonSouth CarolinaUSA
| | | |
Collapse
|
9
|
Whitehouse LS, Ray DD, Schrider DR. Tree Sequences as a General-Purpose Tool for Population Genetic Inference. Mol Biol Evol 2024; 41:msae223. [PMID: 39460991 PMCID: PMC11600592 DOI: 10.1093/molbev/msae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
As population genetic data increase in size, new methods have been developed to store genetic information in efficient ways, such as tree sequences. These data structures are computationally and storage efficient but are not interchangeable with existing data structures used for many population genetic inference methodologies such as the use of convolutional neural networks applied to population genetic alignments. To better utilize these new data structures, we propose and implement a graph convolutional network to directly learn from tree sequence topology and node data, allowing for the use of neural network applications without an intermediate step of converting tree sequences to population genetic alignment format. We then compare our approach to standard convolutional neural network approaches on a set of previously defined benchmarking tasks including recombination rate estimation, positive selection detection, introgression detection, and demographic model parameter inference. We show that tree sequences can be directly learned from using a graph convolutional network approach and can be used to perform well on these common population genetic inference tasks with accuracies roughly matching or even exceeding that of a convolutional neural network-based method. As tree sequences become more widely used in population genetic research, we foresee developments and optimizations of this work to provide a foundation for population genetic inference moving forward.
Collapse
Affiliation(s)
- Logan S Whitehouse
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dylan D Ray
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel R Schrider
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Yoo D, Rhie A, Hebbar P, Antonacci F, Logsdon GA, Solar SJ, Antipov D, Pickett BD, Safonova Y, Montinaro F, Luo Y, Malukiewicz J, Storer JM, Lin J, Sequeira AN, Mangan RJ, Hickey G, Anez GM, Balachandran P, Bankevich A, Beck CR, Biddanda A, Borchers M, Bouffard GG, Brannan E, Brooks SY, Carbone L, Carrel L, Chan AP, Crawford J, Diekhans M, Engelbrecht E, Feschotte C, Formenti G, Garcia GH, de Gennaro L, Gilbert D, Green RE, Guarracino A, Gupta I, Haddad D, Han J, Harris RS, Hartley GA, Harvey WT, Hiller M, Hoekzema K, Houck ML, Jeong H, Kamali K, Kellis M, Kille B, Lee C, Lee Y, Lees W, Lewis AP, Li Q, Loftus M, Loh YHE, Loucks H, Ma J, Mao Y, Martinez JFI, Masterson P, McCoy RC, McGrath B, McKinney S, Meyer BS, Miga KH, Mohanty SK, Munson KM, Pal K, Pennell M, Pevzner PA, Porubsky D, Potapova T, Ringeling FR, Roha JL, Ryder OA, Sacco S, Saha S, Sasaki T, Schatz MC, Schork NJ, Shanks C, Smeds L, Son DR, Steiner C, Sweeten AP, Tassia MG, Thibaud-Nissen F, Torres-González E, Trivedi M, Wei W, Wertz J, Yang M, Zhang P, Zhang S, Zhang Y, Zhang Z, et alYoo D, Rhie A, Hebbar P, Antonacci F, Logsdon GA, Solar SJ, Antipov D, Pickett BD, Safonova Y, Montinaro F, Luo Y, Malukiewicz J, Storer JM, Lin J, Sequeira AN, Mangan RJ, Hickey G, Anez GM, Balachandran P, Bankevich A, Beck CR, Biddanda A, Borchers M, Bouffard GG, Brannan E, Brooks SY, Carbone L, Carrel L, Chan AP, Crawford J, Diekhans M, Engelbrecht E, Feschotte C, Formenti G, Garcia GH, de Gennaro L, Gilbert D, Green RE, Guarracino A, Gupta I, Haddad D, Han J, Harris RS, Hartley GA, Harvey WT, Hiller M, Hoekzema K, Houck ML, Jeong H, Kamali K, Kellis M, Kille B, Lee C, Lee Y, Lees W, Lewis AP, Li Q, Loftus M, Loh YHE, Loucks H, Ma J, Mao Y, Martinez JFI, Masterson P, McCoy RC, McGrath B, McKinney S, Meyer BS, Miga KH, Mohanty SK, Munson KM, Pal K, Pennell M, Pevzner PA, Porubsky D, Potapova T, Ringeling FR, Roha JL, Ryder OA, Sacco S, Saha S, Sasaki T, Schatz MC, Schork NJ, Shanks C, Smeds L, Son DR, Steiner C, Sweeten AP, Tassia MG, Thibaud-Nissen F, Torres-González E, Trivedi M, Wei W, Wertz J, Yang M, Zhang P, Zhang S, Zhang Y, Zhang Z, Zhao SA, Zhu Y, Jarvis ED, Gerton JL, Rivas-González I, Paten B, Szpiech ZA, Huber CD, Lenz TL, Konkel MK, Yi SV, Canzar S, Watson CT, Sudmant PH, Molloy E, Garrison E, Lowe CB, Ventura M, O’Neill RJ, Koren S, Makova KD, Phillippy AM, Eichler EE. Complete sequencing of ape genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605654. [PMID: 39131277 PMCID: PMC11312596 DOI: 10.1101/2024.07.31.605654] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
We present haplotype-resolved reference genomes and comparative analyses of six ape species, namely: chimpanzee, bonobo, gorilla, Bornean orangutan, Sumatran orangutan, and siamang. We achieve chromosome-level contiguity with unparalleled sequence accuracy (<1 error in 500,000 base pairs), completely sequencing 215 gapless chromosomes telomere-to-telomere. We resolve challenging regions, such as the major histocompatibility complex and immunoglobulin loci, providing more in-depth evolutionary insights. Comparative analyses, including human, allow us to investigate the evolution and diversity of regions previously uncharacterized or incompletely studied without bias from mapping to the human reference. This includes newly minted gene families within lineage-specific segmental duplications, centromeric DNA, acrocentric chromosomes, and subterminal heterochromatin. This resource should serve as a definitive baseline for all future evolutionary studies of humans and our closest living ape relatives.
Collapse
Affiliation(s)
- DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Prajna Hebbar
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Francesca Antonacci
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, 70124, Italy
| | - Glennis A. Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19103, USA
| | - Steven J. Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dmitry Antipov
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brandon D. Pickett
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yana Safonova
- Computer Science and Engineering Department, Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA 16801, USA
| | - Francesco Montinaro
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, 70124, Italy
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Yanting Luo
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joanna Malukiewicz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Jessica M. Storer
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Jiadong Lin
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Abigail N. Sequeira
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Riley J. Mangan
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Genetics Training Program, Harvard Medical School, Boston, MA 02115, USA
| | - Glenn Hickey
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | | | | | - Anton Bankevich
- Computer Science and Engineering Department, Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA 16801, USA
| | - Christine R. Beck
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Arjun Biddanda
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Matthew Borchers
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Gerard G. Bouffard
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emry Brannan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Shelise Y. Brooks
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lucia Carbone
- Department of Medicine, KCVI, Oregon Health Sciences University, Portland, OR, USA
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Laura Carrel
- PSU Medical School, Penn State University School of Medicine, Hershey, PA, USA
| | - Agnes P. Chan
- The Translational Genomics Research Institute, a part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Juyun Crawford
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Eric Engelbrecht
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10021, USA
| | - Gage H. Garcia
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Luciana de Gennaro
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, 70124, Italy
| | - David Gilbert
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | | | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ishaan Gupta
- Department of Computer Science and Engineering, University of California San Diego, CA, USA
| | - Diana Haddad
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Junmin Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Robert S. Harris
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Gabrielle A. Hartley
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - William T. Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Research Institute, Goethe University, Frankfurt, Germany
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Marlys L. Houck
- San Diego Zoo Wildlife Alliance, Escondido, CA, 92027-7000, USA
| | - Hyeonsoo Jeong
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Kaivan Kamali
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bryce Kille
- Department of Computer Science, Rice University, Houston, TX 77005, USA
| | - Chul Lee
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Youngho Lee
- Laboratory of bioinformatics and population genetics, Interdisciplinary program in bioinformatics, Seoul National University, Republic of Korea
| | - William Lees
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
- Bioengineering Program, Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Alexandra P. Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Qiuhui Li
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mark Loftus
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Yong Hwee Eddie Loh
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Hailey Loucks
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, PA, USA
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Center for Genomic Research, International Institutes of Medicine, Fourth Affiliated Hospital, Zhejiang University, Yiwu, Zhejiang, China
- Shanghai Jiao Tong University Chongqing Research Institute, Chongqing, China
| | - Juan F. I. Martinez
- Computer Science and Engineering Department, Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA 16801, USA
| | - Patrick Masterson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Rajiv C. McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Barbara McGrath
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Britta S. Meyer
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Karen H. Miga
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Saswat K. Mohanty
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Katherine M. Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Karol Pal
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Pavel A. Pevzner
- Department of Computer Science and Engineering, University of California San Diego, CA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Francisca R. Ringeling
- Faculty of Informatics and Data Science, University of Regensburg, 93053 Regensburg, Germany
| | - Joana L. Roha
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA
| | - Oliver A. Ryder
- San Diego Zoo Wildlife Alliance, Escondido, CA, 92027-7000, USA
| | - Samuel Sacco
- University of California Santa Cruz, Santa Cruz, CA, USA
| | - Swati Saha
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nicholas J. Schork
- The Translational Genomics Research Institute, a part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Cole Shanks
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Linnéa Smeds
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Dongmin R. Son
- Department of Ecology, Evolution and Marine Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Cynthia Steiner
- San Diego Zoo Wildlife Alliance, Escondido, CA, 92027-7000, USA
| | - Alexander P. Sweeten
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael G. Tassia
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Mihir Trivedi
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Wenjie Wei
- School of Life Sciences, Westlake University, Hangzhou 310024, China
- National Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Julie Wertz
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Muyu Yang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, PA, USA
| | - Panpan Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Shilong Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, PA, USA
| | - Zhenmiao Zhang
- Department of Computer Science and Engineering, University of California San Diego, CA, USA
| | - Sarah A. Zhao
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yixin Zhu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Erich D. Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Iker Rivas-González
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Zachary A. Szpiech
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Christian D. Huber
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Tobias L. Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Miriam K. Konkel
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Soojin V. Yi
- Department of Ecology, Evolution and Marine Biology, Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Stefan Canzar
- Faculty of Informatics and Data Science, University of Regensburg, 93053 Regensburg, Germany
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Peter H. Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, USA
| | - Erin Molloy
- Department of Computer Science, University of Maryland, College Park, MD 20742, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Craig B. Lowe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mario Ventura
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, 70124, Italy
| | - Rachel J. O’Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
- Departments of Molecular and Cell Biology, UConn Storrs, CT, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kateryna D. Makova
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Adam M. Phillippy
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Whitehouse LS, Ray D, Schrider DR. Tree sequences as a general-purpose tool for population genetic inference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.20.581288. [PMID: 39185244 PMCID: PMC11343121 DOI: 10.1101/2024.02.20.581288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
As population genetics data increases in size new methods have been developed to store genetic information in efficient ways, such as tree sequences. These data structures are computationally and storage efficient, but are not interchangeable with existing data structures used for many population genetic inference methodologies such as the use of convolutional neural networks (CNNs) applied to population genetic alignments. To better utilize these new data structures we propose and implement a graph convolutional network (GCN) to directly learn from tree sequence topology and node data, allowing for the use of neural network applications without an intermediate step of converting tree sequences to population genetic alignment format. We then compare our approach to standard CNN approaches on a set of previously defined benchmarking tasks including recombination rate estimation, positive selection detection, introgression detection, and demographic model parameter inference. We show that tree sequences can be directly learned from using a GCN approach and can be used to perform well on these common population genetics inference tasks with accuracies roughly matching or even exceeding that of a CNN-based method. As tree sequences become more widely used in population genetics research we foresee developments and optimizations of this work to provide a foundation for population genetics inference moving forward.
Collapse
Affiliation(s)
- Logan S. Whitehouse
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA, 120 Mason Farm Rd, Chapel Hill, NC 27514
| | - Dylan Ray
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA, 120 Mason Farm Rd, Chapel Hill, NC 27514
| | - Daniel R. Schrider
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA, 120 Mason Farm Rd, Chapel Hill, NC 27514
| |
Collapse
|
12
|
Zhao S, Chi L, Fu M, Chen H. HaploSweep: Detecting and Distinguishing Recent Soft and Hard Selective Sweeps through Haplotype Structure. Mol Biol Evol 2024; 41:msae192. [PMID: 39288167 PMCID: PMC11452351 DOI: 10.1093/molbev/msae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/29/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Identifying soft selective sweeps using genomic data is a challenging yet crucial task in population genetics. In this study, we present HaploSweep, a novel method for detecting and categorizing soft and hard selective sweeps based on haplotype structure. Through simulations spanning a broad range of selection intensities, softness levels, and demographic histories, we demonstrate that HaploSweep outperforms iHS, nSL, and H12 in detecting soft sweeps. HaploSweep achieves high classification accuracy-0.9247 for CHB, 0.9484 for CEU, and 0.9829 YRI-when applied to simulations in line with the human Out-of-Africa demographic model. We also observe that the classification accuracy remains consistently robust across different demographic models. Additionally, we introduce a refined method to accurately distinguish soft shoulders adjacent to hard sweeps from soft sweeps. Application of HaploSweep to genomic data of CHB, CEU, and YRI populations from the 1000 genomes project has led to the discovery of several new genes that bear strong evidence of population-specific soft sweeps (HRNR, AMBRA1, CBFA2T2, DYNC2H1, and RANBP2 etc.), with prevalent associations to immune functions and metabolic processes. The validated performance of HaploSweep, demonstrated through both simulated and real data, underscores its potential as a valuable tool for detecting and comprehending the role of soft sweeps in adaptive evolution.
Collapse
Affiliation(s)
- Shilei Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianjiang Chi
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mincong Fu
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
13
|
Bolognini D, Halgren A, Lou RN, Raveane A, Rocha JL, Guarracino A, Soranzo N, Chin CS, Garrison E, Sudmant PH. Recurrent evolution and selection shape structural diversity at the amylase locus. Nature 2024; 634:617-625. [PMID: 39232174 PMCID: PMC11485256 DOI: 10.1038/s41586-024-07911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
The adoption of agriculture triggered a rapid shift towards starch-rich diets in human populations1. Amylase genes facilitate starch digestion, and increased amylase copy number has been observed in some modern human populations with high-starch intake2, although evidence of recent selection is lacking3,4. Here, using 94 long-read haplotype-resolved assemblies and short-read data from approximately 5,600 contemporary and ancient humans, we resolve the diversity and evolutionary history of structural variation at the amylase locus. We find that amylase genes have higher copy numbers in agricultural populations than in fishing, hunting and pastoral populations. We identify 28 distinct amylase structural architectures and demonstrate that nearly identical structures have arisen recurrently on different haplotype backgrounds throughout recent human history. AMY1 and AMY2A genes each underwent multiple duplication/deletion events with mutation rates up to more than 10,000-fold the single-nucleotide polymorphism mutation rate, whereas AMY2B gene duplications share a single origin. Using a pangenome-based approach, we infer structural haplotypes across thousands of humans identifying extensively duplicated haplotypes at higher frequency in modern agricultural populations. Leveraging 533 ancient human genomes, we find that duplication-containing haplotypes (with more gene copies than the ancestral haplotype) have rapidly increased in frequency over the past 12,000 years in West Eurasians, suggestive of positive selection. Together, our study highlights the potential effects of the agricultural revolution on human genomes and the importance of structural variation in human adaptation.
Collapse
Affiliation(s)
| | - Alma Halgren
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Runyang Nicolas Lou
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - Joana L Rocha
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nicole Soranzo
- Human Technopole, Milan, Italy
- Wellcome Sanger Institute, Hinxton, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge Biomedical Campus, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Chen-Shan Chin
- Foundation for Biological Data Science, Belmont, CA, USA
| | - Erik Garrison
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Peter H Sudmant
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
14
|
Igoshin AV, Romashov GA, Yurchenko AA, Yudin NS, Larkin DM. Scans for Signatures of Selection in Genomes of Wagyu and Buryat Cattle Breeds Reveal Candidate Genes and Genetic Variants for Adaptive Phenotypes and Production Traits. Animals (Basel) 2024; 14:2059. [PMID: 39061521 PMCID: PMC11274160 DOI: 10.3390/ani14142059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Past and ongoing selection shapes the genomes of livestock breeds. Identifying such signatures of selection allows for uncovering the genetic bases of affected phenotypes, including economically important traits and environmental adaptations, for the further improvement of breed genetics to respond to climate and economic challenges. Turano-Mongolian cattle are a group of taurine breeds known for their adaptation to extreme environmental conditions and outstanding production performance. Buryat Turano-Mongolian cattle are among the few breeds adapted to cold climates and poor forage. Wagyu, on the other hand, is famous for high productivity and unique top-quality marbled meat. We used hapFLK, the de-correlated composite of multiple signals (DCMS), PBS, and FST methods to search for signatures of selection in their genomes. The scans revealed signals in genes related to cold adaptation (e.g., STAT3, DOCK5, GSTM3, and CXCL8) and food digestibility (SI) in the Buryat breed, and growth and development traits (e.g., RBFOX2 and SHOX2) and marbling (e.g., DGAT1, IQGAP2, RSRC1, and DIP2B) in Wagyu. Several putatively selected genes associated with reproduction, immunity, and resistance to pathogens were found in both breed genomes. The results of our work could be used for creating new productive adapted breeds or improving the extant breeds.
Collapse
Affiliation(s)
- Alexander V. Igoshin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Grigorii A. Romashov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Andrey A. Yurchenko
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, 94800 Villejuif, France
| | - Nikolay S. Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Denis M. Larkin
- Royal Veterinary College, University of London, London NW1 0TU, UK
| |
Collapse
|
15
|
Song H, Chu J, Li W, Li X, Fang L, Han J, Zhao S, Ma Y. A Novel Approach Utilizing Domain Adversarial Neural Networks for the Detection and Classification of Selective Sweeps. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304842. [PMID: 38308186 PMCID: PMC11005742 DOI: 10.1002/advs.202304842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/10/2024] [Indexed: 02/04/2024]
Abstract
The identification and classification of selective sweeps are of great significance for improving the understanding of biological evolution and exploring opportunities for precision medicine and genetic improvement. Here, a domain adaptation sweep detection and classification (DASDC) method is presented to balance the alignment of two domains and the classification performance through a domain-adversarial neural network and its adversarial learning modules. DASDC effectively addresses the issue of mismatch between training data and real genomic data in deep learning models, leading to a significant improvement in its generalization capability, prediction robustness, and accuracy. The DASDC method demonstrates improved identification performance compared to existing methods and excels in classification performance, particularly in scenarios where there is a mismatch between application data and training data. The successful implementation of DASDC in real data of three distinct species highlights its potential as a useful tool for identifying crucial functional genes and investigating adaptive evolutionary mechanisms, particularly with the increasing availability of genomic data.
Collapse
Affiliation(s)
- Hui Song
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
| | - Jinyu Chu
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
| | - Wangjiao Li
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Lingzhao Fang
- Center for Quantitative Genetics and GenomicsAarhus UniversityAarhus8000Denmark
| | - Jianlin Han
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
- CAAS‐ILRI Joint Laboratory on Livestock and Forage Genetic ResourcesInstitute of Animal ScienceChinese Academy of Agricultural Sciences (CAAS)Beijing100193China
- Livestock Genetics ProgramInternational Livestock Research Institute (ILRI)Nairobi00100Kenya
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
- Lingnan Modern Agricultural Science and Technology Guangdong LaboratoryGuangzhou510642China
| | - Yunlong Ma
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
- Lingnan Modern Agricultural Science and Technology Guangdong LaboratoryGuangzhou510642China
| |
Collapse
|
16
|
Szpiech ZA. selscan 2.0: scanning for sweeps in unphased data. Bioinformatics 2024; 40:btae006. [PMID: 38180866 PMCID: PMC10789311 DOI: 10.1093/bioinformatics/btae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024] Open
Abstract
SUMMARY Several popular haplotype-based statistics for identifying recent or ongoing positive selection in genomes require knowledge of haplotype phase. Here, we provide an update to selscan which implements a re-definition of these statistics for use in unphased data. AVAILABILITY AND IMPLEMENTATION Source code and binaries are freely available at https://github.com/szpiech/selscan, implemented in C/C++, and supported on Linux, Windows, and MacOS.
Collapse
Affiliation(s)
- Zachary A Szpiech
- Department of Biology, Penn State University, University Park, PA 16802, United States
- Institute for Computational and Data Sciences, Penn State University, University Park, PA 16802, United States
| |
Collapse
|
17
|
Amin MR, Hasan M, Arnab SP, DeGiorgio M. Tensor Decomposition-based Feature Extraction and Classification to Detect Natural Selection from Genomic Data. Mol Biol Evol 2023; 40:msad216. [PMID: 37772983 PMCID: PMC10581699 DOI: 10.1093/molbev/msad216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/10/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
Inferences of adaptive events are important for learning about traits, such as human digestion of lactose after infancy and the rapid spread of viral variants. Early efforts toward identifying footprints of natural selection from genomic data involved development of summary statistic and likelihood methods. However, such techniques are grounded in simple patterns or theoretical models that limit the complexity of settings they can explore. Due to the renaissance in artificial intelligence, machine learning methods have taken center stage in recent efforts to detect natural selection, with strategies such as convolutional neural networks applied to images of haplotypes. Yet, limitations of such techniques include estimation of large numbers of model parameters under nonconvex settings and feature identification without regard to location within an image. An alternative approach is to use tensor decomposition to extract features from multidimensional data although preserving the latent structure of the data, and to feed these features to machine learning models. Here, we adopt this framework and present a novel approach termed T-REx, which extracts features from images of haplotypes across sampled individuals using tensor decomposition, and then makes predictions from these features using classical machine learning methods. As a proof of concept, we explore the performance of T-REx on simulated neutral and selective sweep scenarios and find that it has high power and accuracy to discriminate sweeps from neutrality, robustness to common technical hurdles, and easy visualization of feature importance. Therefore, T-REx is a powerful addition to the toolkit for detecting adaptive processes from genomic data.
Collapse
Affiliation(s)
- Md Ruhul Amin
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mahmudul Hasan
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Sandipan Paul Arnab
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
18
|
Arnab SP, Amin MR, DeGiorgio M. Uncovering Footprints of Natural Selection Through Spectral Analysis of Genomic Summary Statistics. Mol Biol Evol 2023; 40:msad157. [PMID: 37433019 PMCID: PMC10365025 DOI: 10.1093/molbev/msad157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023] Open
Abstract
Natural selection leaves a spatial pattern along the genome, with a haplotype distribution distortion near the selected locus that fades with distance. Evaluating the spatial signal of a population-genetic summary statistic across the genome allows for patterns of natural selection to be distinguished from neutrality. Considering the genomic spatial distribution of multiple summary statistics is expected to aid in uncovering subtle signatures of selection. In recent years, numerous methods have been devised that consider genomic spatial distributions across summary statistics, utilizing both classical machine learning and deep learning architectures. However, better predictions may be attainable by improving the way in which features are extracted from these summary statistics. We apply wavelet transform, multitaper spectral analysis, and S-transform to summary statistic arrays to achieve this goal. Each analysis method converts one-dimensional summary statistic arrays to two-dimensional images of spectral analysis, allowing simultaneous temporal and spectral assessment. We feed these images into convolutional neural networks and consider combining models using ensemble stacking. Our modeling framework achieves high accuracy and power across a diverse set of evolutionary settings, including population size changes and test sets of varying sweep strength, softness, and timing. A scan of central European whole-genome sequences recapitulated well-established sweep candidates and predicted novel cancer-associated genes as sweeps with high support. Given that this modeling framework is also robust to missing genomic segments, we believe that it will represent a welcome addition to the population-genomic toolkit for learning about adaptive processes from genomic data.
Collapse
Affiliation(s)
- Sandipan Paul Arnab
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Md Ruhul Amin
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
19
|
Amin MR, Hasan M, Arnab SP, DeGiorgio M. Tensor decomposition based feature extraction and classification to detect natural selection from genomic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.527731. [PMID: 37034767 PMCID: PMC10081272 DOI: 10.1101/2023.03.27.527731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Inferences of adaptive events are important for learning about traits, such as human digestion of lactose after infancy and the rapid spread of viral variants. Early efforts toward identifying footprints of natural selection from genomic data involved development of summary statistic and likelihood methods. However, such techniques are grounded in simple patterns or theoretical models that limit the complexity of settings they can explore. Due to the renaissance in artificial intelligence, machine learning methods have taken center stage in recent efforts to detect natural selection, with strategies such as convolutional neural networks applied to images of haplotypes. Yet, limitations of such techniques include estimation of large numbers of model parameters under non-convex settings and feature identification without regard to location within an image. An alternative approach is to use tensor decomposition to extract features from multidimensional data while preserving the latent structure of the data, and to feed these features to machine learning models. Here, we adopt this framework and present a novel approach termed T-REx , which extracts features from images of haplotypes across sampled individuals using tensor decomposition, and then makes predictions from these features using classical machine learning methods. As a proof of concept, we explore the performance of T-REx on simulated neutral and selective sweep scenarios and find that it has high power and accuracy to discriminate sweeps from neutrality, robustness to common technical hurdles, and easy visualization of feature importance. Therefore, T-REx is a powerful addition to the toolkit for detecting adaptive processes from genomic data.
Collapse
|
20
|
Joseph SK, Migliore NR, Olivieri A, Torroni A, Owings AC, DeGiorgio M, Ordóñez WG, Aguilú JO, González-Andrade F, Achilli A, Lindo J. Genomic evidence for adaptation to tuberculosis in the Andes before European contact. iScience 2023; 26:106034. [PMID: 36824277 PMCID: PMC9941198 DOI: 10.1016/j.isci.2023.106034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/11/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Most studies focusing on human high-altitude adaptation in the Andean highlands have thus far been focused on Peruvian populations. We present high-coverage whole genomes from Indigenous people living in the Ecuadorian highlands and perform multi-method scans to detect positive natural selection. We identified regions of the genome that show signals of strong selection to both cardiovascular and hypoxia pathways, which are distinct from those uncovered in Peruvian populations. However, the strongest signals of selection were related to regions of the genome that are involved in immune function related to tuberculosis. Given our estimated timing of this selection event, the Indigenous people of Ecuador may have adapted to Mycobacterium tuberculosis thousands of years before the arrival of Europeans. Furthermore, we detect a population collapse that coincides with the arrival of Europeans, which is more severe than other regions of the Andes, suggesting differing effects of contact across high-altitude populations.
Collapse
Affiliation(s)
- Sophie K. Joseph
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| | - Nicola Rambaldi Migliore
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Amanda C. Owings
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | | | - Fabricio González-Andrade
- Translational Medicine Unit, Central University of Ecuador, Faculty of Medical Sciences, Iquique N14-121 y Sodiro-Itchimbia, Sector El Dorado, 170403 Quito, Ecuador
| | - Alessandro Achilli
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - John Lindo
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
21
|
Ghildiyal K, Panigrahi M, Kumar H, Rajawat D, Nayak SS, Lei C, Bhushan B, Dutt T. Selection signatures for fiber production in commercial species: A review. Anim Genet 2023; 54:3-23. [PMID: 36352515 DOI: 10.1111/age.13272] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
Natural fibers derived from diverse animal species have gained increased attention in recent years due to their favorable environmental effects, long-term sustainability benefits, and remarkable physical and mechanical properties that make them valuable raw materials used for textile and non-textile production. Domestication and selective breeding for the economically significant fiber traits play an imperative role in shaping the genomes and, thus, positively impact the overall productivity of the various fiber-producing species. These selection pressures leave unique footprints on the genome due to alteration in the allelic frequencies at specific loci, characterizing selective sweeps. Recent advances in genomics have enabled the discovery of selection signatures across the genome using a variety of methods. The increased demand for 'green products' manufactured from natural fibers necessitates a detailed investigation of the genomes of the various fiber-producing plant and animal species to identify the candidate genes associated with important fiber attributes such as fiber diameter/fineness, color, length, and strength, among others. The objective of this review is to present a comprehensive overview of the concept of selection signature and selective sweeps, discuss the main methods used for its detection, and address the selection signature studies conducted so far in the diverse fiber-producing animal species.
Collapse
Affiliation(s)
- Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | | | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
22
|
Abondio P, Cilli E, Luiselli D. Inferring Signatures of Positive Selection in Whole-Genome Sequencing Data: An Overview of Haplotype-Based Methods. Genes (Basel) 2022; 13:genes13050926. [PMID: 35627311 PMCID: PMC9141518 DOI: 10.3390/genes13050926] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Signatures of positive selection in the genome are a characteristic mark of adaptation that can reveal an ongoing, recent, or ancient response to environmental change throughout the evolution of a population. New sources of food, climate conditions, and exposure to pathogens are only some of the possible sources of selective pressure, and the rise of advantageous genetic variants is a crucial determinant of survival and reproduction. In this context, the ability to detect these signatures of selection may pinpoint genetic variants that are responsible for a significant change in gene regulation, gene expression, or protein synthesis, structure, and function. This review focuses on statistical methods that take advantage of linkage disequilibrium and haplotype determination to reveal signatures of positive selection in whole-genome sequencing data, showing that they emerge from different descriptions of the same underlying event. Moreover, considerations are provided around the application of these statistics to different species, their suitability for ancient DNA, and the usefulness of discovering variants under selection for biomedicine and public health in an evolutionary medicine framework.
Collapse
Affiliation(s)
- Paolo Abondio
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (E.C.); (D.L.)
- Laboratory of Molecular Anthropology and Center for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
- Correspondence:
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (E.C.); (D.L.)
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (E.C.); (D.L.)
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies (FMC), Viale Adriatico 1/N, 61032 Fano, Italy
| |
Collapse
|