1
|
Kiyokawa K, Sakuma T, Moriguchi K, Sugiyama M, Akao T, Yamamoto T, Suzuki K. Conversion of polyploid and alloploid Saccharomyces sensu stricto strains to leu2 mutants by genome DNA editing. Appl Microbiol Biotechnol 2024; 108:416. [PMID: 38995331 PMCID: PMC11245423 DOI: 10.1007/s00253-024-13242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
A large number of recombinant plasmids for the yeast Saccharomyces cerevisiae have been constructed and accumulated over the past four decades. It is desirable to apply the recombinant plasmid resources to Saccharomyces sensu stricto species group, which contains an increasing number of natural isolate and industrial strains. The application to the group encounters a difficulty. Natural isolates and industrial strains are exclusively prototrophic and polyploid, whereas direct application of most conventional plasmid resources imposes a prerequisite in host yeast strains of an auxotrophic mutation (i.e., leu2) that is rescued by a selection gene (e.g., LEU2) on the recombinant plasmids. To solve the difficulty, we aimed to generate leu2 mutants from yeast strains belonging to the yeast Saccharomyces sensu stricto species group by DNA editing. First, we modified an all-in-one type CRISPR-Cas9 plasmid pML104 by adding an antibiotic-resistance gene and designing guide sequences to target the LEU2 gene and to enable wide application in this yeast group. Then, the resulting CRISPR-Cas9 plasmids were exploited to seven strains belonging to five species of the group, including natural isolate, industrial, and allopolyploid strains. Colonies having the designed mutations in the gene appeared successfully by introducing the plasmids and assisting oligonucleotides to the strains. Most of the plasmids and resultant leu2- mutants produced in this study will be deposited in several repository organizations. KEY POINTS: • All-in-one type CRISPR-Cas9 plasmids targeting LEU2 gene were designed for broad application to Saccharomyces sensu stricto group species strains • Application of the plasmids generated leu2 mutants from strains including natural isolates, industrial, and allopolyploid strains • The easy conversion to leu2 mutants permits free access to recombinant plasmids having a LEU2 gene.
Collapse
Affiliation(s)
- Kazuya Kiyokawa
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, 731-5193, Japan
| | - Tetsushi Sakuma
- Program of Mathematical and Life Sciences and Frontier Development Program for Genome Editing, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Kazuki Moriguchi
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Minetaka Sugiyama
- Department of Food Sciences and Biotechnology, Faculty of Life Sciences, Hiroshima Institute of Technology, Hiroshima City, Hiroshima, 731-5193, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, Higashi-Hiroshima City, Hiroshima, 739-0046, Japan
| | - Takashi Yamamoto
- Program of Mathematical and Life Sciences and Frontier Development Program for Genome Editing, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, 731-5193, Japan
| | - Katsunori Suzuki
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
2
|
Timouma S, Balarezo-Cisneros LN, Schwartz JM, Delneri D. Development of a genome-scale metabolic model for the lager hybrid yeast S. pastorianus to understand the evolution of metabolic pathways in industrial settings. mSystems 2024; 9:e0042924. [PMID: 38819150 PMCID: PMC11237392 DOI: 10.1128/msystems.00429-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
In silico tools such as genome-scale metabolic models have shown to be powerful for metabolic engineering of microorganisms. Saccharomyces pastorianus is a complex aneuploid hybrid between the mesophilic Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus. This species is of biotechnological importance because it is the primary yeast used in lager beer fermentation and is also a key model for studying the evolution of hybrid genomes, including expression pattern of ortholog genes, composition of protein complexes, and phenotypic plasticity. Here, we created the iSP_1513 GSMM for S. pastorianus CBS1513 to allow top-down computational approaches to predict the evolution of metabolic pathways and to aid strain optimization in production processes. The iSP_1513 comprises 4,062 reactions, 1,808 alleles, and 2,747 metabolites, and takes into account the functional redundancy in the gene-protein-reaction rule caused by the presence of orthologous genes. Moreover, a universal algorithm to constrain GSMM reactions using transcriptome data was developed as a python library and enabled the integration of temperature as parameter. Essentiality data sets, growth data on various carbohydrates and volatile metabolites secretion were used to validate the model and showed the potential of media engineering to improve specific flavor compounds. The iSP_1513 also highlighted the different contributions of the parental sub-genomes to the oxidative and non-oxidative parts of the pentose phosphate pathway. Overall, the iSP_1513 GSMM represent an important step toward understanding the metabolic capabilities, evolutionary trajectories, and adaptation potential of S. pastorianus in different industrial settings. IMPORTANCE Genome-scale metabolic models (GSMM) have been successfully applied to predict cellular behavior and design cell factories in several model organisms, but no models to date are currently available for hybrid species due to their more complex genetics and general lack of molecular data. In this study, we generated a bespoke GSMM, iSP_1513, for this industrial aneuploid hybrid Saccharomyces pastorianus, which takes into account the aneuploidy and functional redundancy from orthologous parental alleles. This model will (i) help understand the metabolic capabilities and adaptive potential of S. pastorianus (domestication processes), (ii) aid top-down predictions for strain development (industrial biotechnology), and (iii) allow predictions of evolutionary trajectories of metabolic pathways in aneuploid hybrids (evolutionary genetics).
Collapse
Affiliation(s)
- Soukaina Timouma
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Laura Natalia Balarezo-Cisneros
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jean-Marc Schwartz
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Amaro-Reyes A, Marcial-Ramírez D, Vázquez-Landaverde PA, Utrilla J, Escamilla-García M, Regalado C, Macias-Bobadilla G, Campos-Guillén J, Ramos-López MA, Favela-Camacho SE. Electrostatic Fermentation: Molecular Response Insights for Tailored Beer Production. Foods 2024; 13:600. [PMID: 38397576 PMCID: PMC10887865 DOI: 10.3390/foods13040600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Electrostatic fermentation avoids the cellular redox imbalance of traditional fermentation, but knowledge gaps exist. This study explores the impact of electrostatic fermentation on the growth, volatile profile, and genetic response of Saccharomyces pastorianus Saflager S-23. The applied voltage (15 and 30 V) in the electrostatic fermentation system increased the growth and substrate utilization of S. pastorianus while decreasing ethanol production. The aromas typically associated with traditional fermentation, such as alcoholic, grape, apple, and sweet notes, were diminished, while aromas like roses, fruits, flowers, and bananas were augmented in electrostatic fermentation. RNA-seq analysis revealed upregulation of genes involved in cell wall structure, oxidoreductase activity, and iron ion binding, while genes associated with protein synthesis, growth control, homeostasis, and membrane function were downregulated under the influence of applied voltage. The electrostatic fermentation system modulates genetic responses and metabolic pathways in yeast, rendering it a promising method for tailored beer production. Demonstrating feasibility under industrial-scale and realistic conditions is crucial for advancing towards commercialization.
Collapse
Affiliation(s)
- Aldo Amaro-Reyes
- Faculty of Chemistry, Autonomous University of Queretaro, C.U., Cerro de las Campanas S/N, Las Campanas, Querétaro 76010, QRO, Mexico; (M.E.-G.); (J.C.-G.); (M.A.R.-L.)
- Department of Food Research and Postgraduate Studies, Faculty of Chemistry, Autonomous University of Queretaro, C.U., Cerro de las Campanas S/N, Las Campanas, Querétaro 76010, QRO, Mexico; (D.M.-R.); (C.R.)
| | - Diana Marcial-Ramírez
- Department of Food Research and Postgraduate Studies, Faculty of Chemistry, Autonomous University of Queretaro, C.U., Cerro de las Campanas S/N, Las Campanas, Querétaro 76010, QRO, Mexico; (D.M.-R.); (C.R.)
| | - Pedro Alberto Vázquez-Landaverde
- Center for Research in Applied Science and Advanced Technology, Querétaro Unit, National Polytechnic Institute, Cerro Blanco 141, Colinas del Cimatario, Querétaro 76090, QRO, Mexico;
| | - José Utrilla
- Synthetic Biology Program, Center for Genomic Sciences, National Autonomous University of Mexico, Avenida Universidad 2001, Chamilpa, Cuernavaca 62210, MOR, Mexico;
| | - Monserrat Escamilla-García
- Faculty of Chemistry, Autonomous University of Queretaro, C.U., Cerro de las Campanas S/N, Las Campanas, Querétaro 76010, QRO, Mexico; (M.E.-G.); (J.C.-G.); (M.A.R.-L.)
| | - Carlos Regalado
- Department of Food Research and Postgraduate Studies, Faculty of Chemistry, Autonomous University of Queretaro, C.U., Cerro de las Campanas S/N, Las Campanas, Querétaro 76010, QRO, Mexico; (D.M.-R.); (C.R.)
| | - Gonzalo Macias-Bobadilla
- Division of Postgraduate Studies, Faculty of Engineering, Autonomous University of Querétaro, Cerro de las Campanas S/N, Las Campanas, Querétaro 76010, QRO, Mexico;
| | - Juan Campos-Guillén
- Faculty of Chemistry, Autonomous University of Queretaro, C.U., Cerro de las Campanas S/N, Las Campanas, Querétaro 76010, QRO, Mexico; (M.E.-G.); (J.C.-G.); (M.A.R.-L.)
| | - Miguel Angel Ramos-López
- Faculty of Chemistry, Autonomous University of Queretaro, C.U., Cerro de las Campanas S/N, Las Campanas, Querétaro 76010, QRO, Mexico; (M.E.-G.); (J.C.-G.); (M.A.R.-L.)
| | - Sarai E. Favela-Camacho
- Institute of Engineering and Technology, Autonomous University of Ciudad Juárez, Avenida del Charro s/n y, Calle Henry Dunant, Omega, Cd Juárez 32584, CHIH, Mexico;
| |
Collapse
|
4
|
Crandall JG, Fisher KJ, Sato TK, Hittinger CT. Ploidy evolution in a wild yeast is linked to an interaction between cell type and metabolism. PLoS Biol 2023; 21:e3001909. [PMID: 37943740 PMCID: PMC10635434 DOI: 10.1371/journal.pbio.3001909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
Ploidy is an evolutionarily labile trait, and its variation across the tree of life has profound impacts on evolutionary trajectories and life histories. The immediate consequences and molecular causes of ploidy variation on organismal fitness are frequently less clear, although extreme mating type skews in some fungi hint at links between cell type and adaptive traits. Here, we report an unusual recurrent ploidy reduction in replicate populations of the budding yeast Saccharomyces eubayanus experimentally evolved for improvement of a key metabolic trait, the ability to use maltose as a carbon source. We find that haploids have a substantial, but conditional, fitness advantage in the absence of other genetic variation. Using engineered genotypes that decouple the effects of ploidy and cell type, we show that increased fitness is primarily due to the distinct transcriptional program deployed by haploid-like cell types, with a significant but smaller contribution from absolute ploidy. The link between cell-type specification and the carbon metabolism adaptation can be traced to the noncanonical regulation of a maltose transporter by a haploid-specific gene. This study provides novel mechanistic insight into the molecular basis of an environment-cell type fitness interaction and illustrates how selection on traits unexpectedly linked to ploidy states or cell types can drive karyotypic evolution in fungi.
Collapse
Affiliation(s)
- Johnathan G. Crandall
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kaitlin J. Fisher
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Trey K. Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
5
|
Wang X, Zhang Y, Wang Y, Fu X, Mu Y, Guo L, Liu X, Wu X, Chen Y. Revealing Potential Genes Affecting Flocculation and/or Viability of Saccharomyces pastorianus by Comparative Genomic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15417-15428. [PMID: 37814909 DOI: 10.1021/acs.jafc.3c06585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Yeast flocculation and viability are critical factors in beer production. Adequate flocculation of yeast at the end of fermentation helps to reduce off-flavors and cell separation, while high viability is beneficial for yeast reuse. In this study, we used comparative genomics to analyze the genome information on Saccharomyces pastorianus W01, and its spontaneous mutant W02 with appropriate weakened flocculation ability (better off-flavor reduction performance) and unwanted decreased viability, to investigate the effect of different gene expressions on yeast flocculation or/and viability. Our results indicate that knockout of CNE1, CIN5, SIN3, HP-3, YPR170W-B, and SCEPF1_0274000100 and overexpression of CNE1 and ALD2 significantly decreased the flocculation ability of W01, while knockout of EPL1 increased the flocculation ability of W01. Meanwhile, knockout of CIN5, YPR170W-B, OST5, SFT1, SCEPF1_0274000100, and EPL1 and overexpression of SWC3, ALD2, and HP-2 decreased the viability of W01. CIN5, EPL1, SCEPF1_0274000100, ALD2, and YPR170W-B have all been shown to affect yeast flocculation ability and viability.
Collapse
Affiliation(s)
- Xinjian Wang
- College of Bioengineering, Tianjin University of Science and Technology, Thirteenth Street, Binhai New District, Tianjin 300457, China
| | - Youdan Zhang
- College of Bioengineering, Tianjin University of Science and Technology, Thirteenth Street, Binhai New District, Tianjin 300457, China
| | - Yupeng Wang
- College of Bioengineering, Tianjin University of Science and Technology, Thirteenth Street, Binhai New District, Tianjin 300457, China
| | - Xiaofen Fu
- Technology Center of Beijing Yanjing Beer Co., Ltd., Beijing Key Laboratory of Beer Brewing Technology, 9 Shuanghe Road, Shunyi District, Beijing 101300, China
| | - Yingjian Mu
- Technology Center of Beijing Yanjing Beer Co., Ltd., Beijing Key Laboratory of Beer Brewing Technology, 9 Shuanghe Road, Shunyi District, Beijing 101300, China
| | - Liyun Guo
- Technology Center of Beijing Yanjing Beer Co., Ltd., Beijing Key Laboratory of Beer Brewing Technology, 9 Shuanghe Road, Shunyi District, Beijing 101300, China
| | - Xiaohang Liu
- College of Bioengineering, Tianjin University of Science and Technology, Thirteenth Street, Binhai New District, Tianjin 300457, China
| | - Xiaole Wu
- College of Bioengineering, Tianjin University of Science and Technology, Thirteenth Street, Binhai New District, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Thirteenth Street, Binhai New District, Tianjin 300457, China
| | - Yefu Chen
- College of Bioengineering, Tianjin University of Science and Technology, Thirteenth Street, Binhai New District, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Thirteenth Street, Binhai New District, Tianjin 300457, China
| |
Collapse
|
6
|
Jallet A, Friedrich A, Schacherer J. Impact of the acquired subgenome on the transcriptional landscape in Brettanomyces bruxellensis allopolyploids. G3 (BETHESDA, MD.) 2023; 13:jkad115. [PMID: 37226280 PMCID: PMC10320193 DOI: 10.1093/g3journal/jkad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/21/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Gene expression variation can provide an overview of the changes in regulatory networks that underlie phenotypic diversity. Certain evolutionary trajectories such as polyploidization events can have an impact on the transcriptional landscape. Interestingly, the evolution of the yeast species Brettanomyces bruxellensis has been punctuated by diverse allopolyploidization events leading to the coexistence of a primary diploid genome associated with various haploid acquired genomes. To assess the impact of these events on gene expression, we generated and compared the transcriptomes of a set of 87 B. bruxellensis isolates, selected as being representative of the genomic diversity of this species. Our analysis revealed that acquired subgenomes strongly impact the transcriptional patterns and allow discrimination of allopolyploid populations. In addition, clear transcriptional signatures related to specific populations have been revealed. The transcriptional variations observed are related to some specific biological processes such as transmembrane transport and amino acids metabolism. Moreover, we also found that the acquired subgenome causes the overexpression of some genes involved in the production of flavor-impacting secondary metabolites, especially in isolates of the beer population.
Collapse
Affiliation(s)
- Arthur Jallet
- CNRS, GMGM UMR 7156, Université de Strasbourg, 67000 Strasbourg, France
| | - Anne Friedrich
- CNRS, GMGM UMR 7156, Université de Strasbourg, 67000 Strasbourg, France
| | - Joseph Schacherer
- CNRS, GMGM UMR 7156, Université de Strasbourg, 67000 Strasbourg, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
7
|
The evolutionary and ecological potential of yeast hybrids. Curr Opin Genet Dev 2022; 76:101958. [PMID: 35834944 DOI: 10.1016/j.gde.2022.101958] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 01/19/2023]
Abstract
Recent findings in yeast genetics and genomics have advanced our understanding of the evolutionary potential unlocked by hybridization, especially in the genus Saccharomyces. We now have a clearer picture of the prevalence of yeast hybrids in the environment, their ecological and evolutionary history, and the genetic mechanisms driving (and constraining) their adaptation. Here, we describe how the instability of hybrid genomes determines fitness across large evolutionary scales, highlight new hybrid strain engineering techniques, and review tools for comparative hybrid genome analysis. The recent push to take yeast research back 'into the wild' has resulted in new genomic and ecological resources. These provide an arena for quantitative genetics and allow us to investigate the architecture of complex traits and mechanisms of adaptation to rapidly changing environments. The vast genetic diversity of hybrid populations can yield insights beyond those possible with isogenic lines. Hybrids offer a limitless supply of genetic variation that can be tapped for industrial strain improvement but also, combined with experimental evolution, can be used to predict population responses to future climate change - a fundamental task for biologists.
Collapse
|