1
|
Brunner A, Gauliard C, Tutagata J, Bordenstein SR, Bordenstein SR, Trouche B, Reveillaud J. Wolbachia and its pWCP plasmid show differential dynamics during the development of Culex mosquitoes. Microbiol Spectr 2025; 13:e0004625. [PMID: 40162749 PMCID: PMC12054023 DOI: 10.1128/spectrum.00046-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Mosquitoes are major vectors of pathogens such as arboviruses and parasites, causing significant health impacts each year. Wolbachia, an intracellular bacterium widely distributed among arthropods, represents a promising vector control solution. This bacterium can reduce the transmission of dengue, Zika, and chikungunya arboviruses and manipulate the reproduction of its host through its prophage WO. Although research on the Wolbachia mobilome primarily focuses on WO and the phenotypes it induces, the function of Wolbachia plasmid pWCP, recently discovered and reported to be strikingly conserved worldwide, remains unknown. In this study, we analyzed the presence and abundance of pWCP as well as Wolbachia in two different species of Culex mosquitoes, one of the most widespread genera in the world and a vector of numerous diseases. We compared the relative densities of the bacterium and its mobile genetic element in Culex pipiens molestus and Culex quinquefasciatus, a facultatively autogenous and an anautogenous species, respectively, throughout their development from the larval stage L1 to the adult individual specimen using quantitative Polymerase Chain Reaction (PCR). Our results suggest that 2-5 copies of pWCP occur in Wolbachia cells on average, and the plasmid co-replicates with Wolbachia cells. Moreover, Wolbachia and pWCP exhibit differential levels of abundance at specific development stages throughout the mosquito's life cycle in each species. These findings indicate important, and likely beneficial, roles for the plasmid in the bacterium's biology in different mosquito species as well as complex interaction dynamics between Wolbachia and its host during its life cycle.IMPORTANCEMosquitoes of the Culex genus are critical vectors for numerous diseases, causing significant public health concerns. The intracellular bacterium Wolbachia has emerged as a promising vector control solution due to its ability to interfere with pathogen transmission and manipulate mosquito reproduction. However, unlike the extensively studied WO phage, the biological significance and function of Wolbachia's pWCP plasmid, a recently discovered and strikingly conserved mobile genetic element in Culex species, remain unknown. This study investigates the developmental dynamics of pWCP and Wolbachia in two Culex mosquito species, Culex pipiens molestus and Culex quinquefasciatus across their life cycle. In general, the abundance levels of Wolbachia and the plasmid were found to vary across life stages and differ between the two species. However, a relatively small number of pWCP copies were observed per Wolbachia cell, together with a co-replication of the plasmid with the bacterium for most developmental stages. Altogether, these findings suggest a likely beneficial and non-parasitic role for pWCP in Wolbachia's biology, which may contribute to the intricate interactions between the bacterium and its mosquito hosts.
Collapse
Affiliation(s)
- Alice Brunner
- Mivegec, Université de Montpellier, INRAE, CNRS, IRD, Montpellier, France
| | - Camille Gauliard
- Mivegec, Université de Montpellier, INRAE, CNRS, IRD, Montpellier, France
| | - Jordan Tutagata
- Mivegec, Université de Montpellier, INRAE, CNRS, IRD, Montpellier, France
| | - Seth R. Bordenstein
- Departments of Biology and Entomology, One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sarah R. Bordenstein
- Departments of Biology and Entomology, One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Blandine Trouche
- Mivegec, Université de Montpellier, INRAE, CNRS, IRD, Montpellier, France
| | - Julie Reveillaud
- Mivegec, Université de Montpellier, INRAE, CNRS, IRD, Montpellier, France
| |
Collapse
|
2
|
Montenegro D, Cortés-Cortés G, Balbuena-Alonso MG, Warner C, Camps M. Wolbachia-based emerging strategies for control of vector-transmitted disease. Acta Trop 2024; 260:107410. [PMID: 39349234 PMCID: PMC11637914 DOI: 10.1016/j.actatropica.2024.107410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Dengue fever is a mosquito-transmitted disease of great public health importance. Dengue lacks adequate vaccine protection and insecticide-based methods of mosquito control are proving increasingly ineffective. Here we review the emerging use of mosquitoes transinfected with the obligate intracellular bacterium Wolbachia pipientis for vector control. Wolbachia often induces cytoplasmic incompatibility in its mosquito hosts, resulting in infertile progeny between an infected male and an uninfected female. Wolbachia infection also suppresses the replication of pathogens in the mosquito, a process known as "pathogen blocking". Two strategies have emerged. The first one releases Wolbachia carriers (both male and female) to replace the wild mosquito population, a process driven by cytoplasmic incompatibility and that becomes irreversible once a threshold is reached. This suppresses disease transmission mainly by pathogen blocking and frequently requires a single intervention. The second strategy floods the field population with an exclusively male population of Wolbachia-carrying mosquitoes to generate infertile hybrid progeny. In this case, transmission suppression depends largely on decreasing the population density of mosquitoes driven by infertility and requires continued mosquito release. The efficacy of both Wolbachia-based approaches has been conclusively demonstrated by randomized and non-randomized studies of deployments across the world. However, results conducted in one setting cannot be directly or easily extrapolated to other settings because dengue incidence is highly affected by the conditions into which the mosquitoes are released. Compared to traditional vector control methods, Wolbachia-based approaches are much more environmentally friendly and can be effective in the medium/long term. On the flip side, they are much more complex and cost-intensive operations, requiring a substantial investment, infrastructure, trained personnel, coordination between agencies, and community engagement. Finally, we discuss recent evidence suggesting that the release of Wolbachia-transinfected mosquitoes has a moderate potential risk of spreading potentially dangerous genes in the environment.
Collapse
Affiliation(s)
- Diego Montenegro
- Corporación Innovation Hub, Monteria 230001, Colombia; Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA; Grupo de Investigación: Salud y Tecnología 4.0. Fundación Chilloa, Santa Marta 470001, Colombia
| | - Gerardo Cortés-Cortés
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA; Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, San Manuel, Puebla 72570, Mexico
| | - María Guadalupe Balbuena-Alonso
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA; Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, San Manuel, Puebla 72570, Mexico
| | - Caison Warner
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
3
|
Owashi Y, Arai H, Adachi-Hagimori T, Kageyama D. Rickettsia induces strong cytoplasmic incompatibility in a predatory insect. Proc Biol Sci 2024; 291:20240680. [PMID: 39079670 PMCID: PMC11288687 DOI: 10.1098/rspb.2024.0680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/21/2024] [Indexed: 08/03/2024] Open
Abstract
Rickettsia, a group of intracellular bacteria found in eukaryotes, exhibits diverse lifestyles, with some acting as vertebrate pathogens transmitted by arthropod vectors and others serving as maternally transmitted arthropod endosymbionts, some of which manipulate host reproduction for their own benefit. Two phenotypes, namely male-killing and parthenogenesis induction are known as Rickettsia-induced host reproductive manipulations, but it remains unknown whether Rickettsia can induce other types of host manipulation. In this study, we discovered that Rickettsia induced strong cytoplasmic incompatibility (CI), in which uninfected females produce no offspring when mated with infected males, in the predatory insect Nesidiocoris tenuis (Hemiptera: Miridae). Molecular phylogenetic analysis revealed that the Rickettsia strain was related to Rickettsia bellii, a common insect endosymbiont. Notably, this strain carried plasmid-encoded homologues of the CI-inducing factors (namely cifA-like and cifB-like genes), typically found in Wolbachia, which are well-known CI-inducing endosymbionts. Protein domain prediction revealed that the cifB-like gene encodes PD-(D/E)XK nuclease and deubiquitinase domains, which are responsible for Wolbachia-induced CI, as well as ovarian tumour-like (OTU-like) cysteine protease and ankyrin repeat domains. These findings suggest that Rickettsia and Wolbachia endosymbionts share underlying mechanisms of CI and that CI-inducing ability was acquired by microbes through horizontal plasmid transfer.
Collapse
Affiliation(s)
- Yuta Owashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Hiroshi Arai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Tetsuya Adachi-Hagimori
- Laboratory of Applied Entomology, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Daisuke Kageyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| |
Collapse
|
4
|
Carlassara M, Khorramnejad A, Oker H, Bahrami R, Lozada-Chávez AN, Mancini MV, Quaranta S, Body MJA, Lahondère C, Bonizzoni M. Population-specific responses to developmental temperature in the arboviral vector Aedes albopictus: Implications for climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17226. [PMID: 38454541 DOI: 10.1111/gcb.17226] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
The increase of environmental temperature due to current global warming is not only favouring the expansion of the distribution range of many insect species, but it is also changing their phenology. Insect phenology is tightly linked to developmental timing, which is regulated by environmental temperatures. However, the degree to which the effects of developmental temperatures extend across developmental stages and their inter-stage relationships have not been thoroughly quantified in mosquitoes. Here, we used the mosquito Aedes albopictus, which is an aggressive invasive species and an arboviral vector, to study how developmental temperature influences fitness across developmental stages, thermal traits, energy reserves, transcriptome and Wolbachia prevalence in laboratory-reared populations originally collected from either temperate or tropical regions. We show that hatchability, larval and pupal viability and developmental speed are strongly influenced by temperature, and these effects extend to wing length, body mass, longevity and content of water, protein and lipids in adults in a population-specific manner. On the contrary, neither adult thermal preference nor heat resistance significantly change with temperature. Wolbachia density was generally lower in adult mosquitoes reared at 18°C than at other tested temperatures, and transcriptome analysis showed enrichment for functions linked to stress responses (i.e. cuticle proteins and chitin, cytochrome p450 and heat shock proteins) in mosquitoes reared at both 18 and 32°C. Our data showed an overall reduced vector fitness performance when mosquitoes were reared at 32°C, and the absence of isomorphy in the relationship between developmental stages and temperature in the laboratory population deriving from larvae collected in northern Italy. Altogether, these results have important implications for reliable model projections of the invasion potentials of Ae. albopictus and its epidemiological impact.
Collapse
Affiliation(s)
- Martina Carlassara
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ayda Khorramnejad
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Helen Oker
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Romina Bahrami
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | | | - Stefano Quaranta
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mélanie J A Body
- Department of Horticulture, Michigan State University, East Lansing, Michigan, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | |
Collapse
|
5
|
Badger JH, Giordano R, Zimin A, Wappel R, Eskipehlivan SM, Muller S, Donthu R, Soto-Adames F, Vieira P, Zasada I, Goodwin S. Direct sequencing of insect symbionts via nanopore adaptive sampling. CURRENT OPINION IN INSECT SCIENCE 2024; 61:101135. [PMID: 37926187 PMCID: PMC11793409 DOI: 10.1016/j.cois.2023.101135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Insect symbionts can alter their host phenotype and their effects can range from beneficial to pathogenic. Moreover, many insects exhibit co-infections, making their study more challenging. Less than 1% of insect species have high-quality referenced genomes available and fewer still also have their symbionts sequenced. Two methods are commonly used to sequence symbionts: whole-genome sequencing to concomitantly capture the host and bacterial genomes, or isolation of the symbiont's genome before sequencing. These methods are limited when dealing with rare or poorly characterized symbionts. Long-read technology is an important tool to generate high-quality genomes as they can overcome high levels of heterozygosity, repeat content, and transposable elements that confound short-read methods. Oxford Nanopore (ONT) adaptive sampling allows a sequencing instrument to select or reject sequences in real time. We describe a method based on ONT adaptive sampling (subtractive) approach that readily permitted the sequencing of the complete genomes of mitochondria, Buchnera and its plasmids (pLeu, pTrp), and Wolbachia genomes in two aphid species, Aphis glycines and Pentalonia nigronervosa. Adaptive sampling is able to retrieve organelles such as mitochondria and symbionts that have high representation in their hosts such as Buchnera and Wolbachia, but is less successful at retrieving symbionts in low concentrations.
Collapse
Affiliation(s)
- Jonathan H Badger
- Genetics and Microbiome Core, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Rosanna Giordano
- Institute of Environment, Florida International University, Miami, FL, USA
| | - Aleksey Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Robert Wappel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | - Ravikiran Donthu
- Centre for Life Sciences, Mahindra University, Bahadurpally, Hyderabad 500043, India
| | - Felipe Soto-Adames
- Florida Department of Agriculture and Consumer Services, Department of Plant Industry, Gainesville, FL 32614, USA
| | - Paulo Vieira
- USDA-ARS Agricultural Research Center, Mycology & Nematology Genetic Diversity & Biology Laboratory, Beltsville, MD, USA
| | - Inga Zasada
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
6
|
Fallon AM. Wolbachia: Advancing into a Second Century. Methods Mol Biol 2024; 2739:1-13. [PMID: 38006542 DOI: 10.1007/978-1-0716-3553-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Wolbachia pipientis had its scientific debut nearly a century ago and has recently emerged as a target for therapeutic treatment of filarial infections and an attractive tool for control of arthropod pests. Wolbachia was known as a biological entity before DNA was recognized as the molecule that carries the genetic information on which life depends, and before arthropods and nematodes were grouped in the Ecdysozoa. Today, some investigators consider Wolbachia the most abundant endosymbiont on earth, given the numbers of its hosts and its diverse mutualistic, commensal, and parasitic roles in their life histories. Recent advances in molecular technologies have revolutionized our understanding of Wolbachia and its associated reproductive phenotypes. New models have emerged for its investigation, and substantial progress has been made towards Wolbachia-based interventions in medicine and agriculture. Here I introduce Wolbachia, with a focus on aspects of its biology that are covered in greater detail in subsequent chapters.
Collapse
Affiliation(s)
- Ann M Fallon
- Department of Entomology, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
7
|
Muharromah AF, Reyes JIL, Kagia N, Watanabe K. Genome-wide detection of Wolbachia in natural Aedes aegypti populations using ddRAD-Seq. Front Cell Infect Microbiol 2023; 13:1252656. [PMID: 38162582 PMCID: PMC10755911 DOI: 10.3389/fcimb.2023.1252656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Background Wolbachia, an endosymbiotic bacterium, is globally used to control arboviruses because of its ability to block arboviral replication and manipulate the reproduction of Wolbachia host, Aedes aegypti. Polymerase chain reaction (PCR)-based Wolbachia detection has been recently reported from natural Ae. aegypti populations. However, due to the technical limitations of PCR, such as primer incompatibility, PCR-based assays are not sufficiently reliable or accurate. In this study, we examined double digestion restriction site-associated DNA sequencing (ddRAD-Seq) efficiency and limitations in Wolbachia detection and quantification in field-collected Ae. aegypti natural populations in Metro Manila, the Philippines, compared with PCR-based assays. Methods A total of 217 individuals Ae. aegypti were collected from Metropolitan Manila, Philippines. We separated it into 14 populations consisting of 7 female and male populations. We constructed a library for pool ddRAD-Seq per population and also screened for Wolbachia by PCR assays using wsp and 16S rRNA. Wolbachia density per population were measured using RPS17 as the housekeeping gene. Results From 146,239,637 sequence reads obtained, 26,299 and 43,778 reads were mapped across the entire Wolbachia genome (with the wAlbA and wAlbB strains, respectively), suggesting that ddRAD-Seq complements PCR assays and supports more reliable Wolbachia detection from a genome-wide perspective. The number of reads mapped to the Wolbachia genome per population positively correlated with the number of Wolbachia-infected individuals per population based on PCR assays and the relative density of Wolbachia in the Ae. aegypti populations based on qPCR, suggesting ddRAD-Seq-based semi-quantification of Wolbachia by ddRAD-Seq. Male Ae. aegypti exhibited more reads mapped to the Wolbachia genome than females, suggesting higher Wolbachia prevalence rates in their case. We detected 150 single nucleotide polymorphism loci across the Wolbachia genome, allowing for more accurate the detection of four strains: wPip, wRi, TRS of Brugia malayi, and wMel. Conclusions Taken together, our results demonstrate the feasibility of ddRAD-Seq-based Wolbachia detection from field-collected Ae. aegypti mosquitoes.
Collapse
Affiliation(s)
- Atikah Fitria Muharromah
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
- Entomology Laboratory, Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jerica Isabel L. Reyes
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| | - Ngure Kagia
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| | - Kozo Watanabe
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| |
Collapse
|
8
|
Li J, Dong B, Zhong Y, Li Z. Transinfected Wolbachia strains induce a complex of cytoplasmic incompatibility phenotypes: Roles of CI factor genes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:370-382. [PMID: 37194361 PMCID: PMC10472523 DOI: 10.1111/1758-2229.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Wolbachia can modulate the reproductive development of their hosts in multiple modes, and cytoplasmic incompatibility (CI) is the most well-studied phenotype. The whitefly Bemisia tabaci is highly receptive to different Wolbachia strains: wCcep strain from the rice moth Corcyra cephalonica and wMel strain from the fruit fly Drosophila melanogaster could successfully establish and induce CI in transinfected whiteflies. Nevertheless, it is unknown what will happen when these two exogenous Wolbachia strains are co-transinfected into a new host. Here, we artificially transinferred wCcep and wMel into the whitefly and established double- and singly-transinfected B. tabaci isofemale lines. Reciprocal crossing experiments showed that wCcep and wMel induced a complex of CI phenotypes in the recipient host, including unidirectional and bidirectional CI. We next sequenced the whole genome of wCcep and performed a comparative analysis of the CI factor genes between wCcep and wMel, indicating that their cif genes were phylogenetically and structurally divergent, which can explain the crossing results. The amino acid sequence identity and structural features of Cif proteins may be useful parameters for predicting their function. Structural comparisons between CifA and CifB provide valuable clues for explaining the induction or rescue of CI observed in crossing experiments between transinfected hosts.
Collapse
Affiliation(s)
- Jing Li
- Department of Entomology and Key Laboratory of Pest Monitoring and Green Management, MOA, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Bei Dong
- Jinan Academy of Agricultural SciencesJinanChina
| | - Yong Zhong
- Pingxiang Customs Comprehensive Technical Service CenterPingxiangChina
| | - Zheng‐Xi Li
- Department of Entomology and Key Laboratory of Pest Monitoring and Green Management, MOA, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| |
Collapse
|
9
|
Beliavskaia A, Tan KK, Sinha A, Husin NA, Lim FS, Loong SK, Bell-Sakyi L, Carlow CKS, AbuBakar S, Darby AC, Makepeace BL, Khoo JJ. Metagenomics of culture isolates and insect tissue illuminate the evolution of Wolbachia, Rickettsia and Bartonella symbionts in Ctenocephalides spp. fleas. Microb Genom 2023; 9:mgen001045. [PMID: 37399133 PMCID: PMC10438800 DOI: 10.1099/mgen.0.001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023] Open
Abstract
While fleas are often perceived simply as a biting nuisance and a cause of allergic dermatitis, they represent important disease vectors worldwide, especially for bacterial zoonoses such as plague (transmitted by rodent fleas) and some of the rickettsioses and bartonelloses. The cosmopolitan cat (Ctenocephalides felis ) and dog (Ctenocephalides canis ) fleas, as well as Ctenocephalides orientis (restricted to tropical and subtropical Asia), breed in human dwellings and are vectors of cat-scratch fever (caused by Bartonella spp.) and Rickettsia spp., including Rickettsia felis (agent of flea-borne spotted fever) and Rickettsia asembonensis , a suspected pathogen. These Rickettsia spp. are members of a phylogenetic clade known as the ‘transitional group’, which includes both human pathogens and arthropod-specific endosymbionts. The relatively depauperate flea microbiome can also contain other endosymbionts, including a diverse range of Wolbachia strains. Here, we present circularized genome assemblies for two C. orientis -derived pathogens (Bartonella clarridgeiae and R. asembonensis ) from Malaysia, a novel Wolbachia strain (w Cori), and the C. orientis mitochondrion; all were obtained by direct metagenomic sequencing of flea tissues. Moreover, we isolated two Wolbachia strains from Malaysian C. felis into tick cell culture and recovered circularized genome assemblies for both, one of which (w CfeF) is newly sequenced. We demonstrate that the three Wolbachia strains are representatives of different major clades (‘supergroups’), two of which appear to be flea-specific. These Wolbachia genomes exhibit unique combinations of features associated with reproductive parasitism or mutualism, including prophage WO, cytoplasmic incompatibility factors and the biotin operon of obligate intracellular microbes. The first circularized assembly for R. asembonensis includes a plasmid with a markedly different structure and gene content compared to the published plasmid; moreover, this novel plasmid was also detected in cat flea metagenomes from the USA. Analysis of loci under positive selection in the transitional group revealed genes involved in host–pathogen interactions that may facilitate host switching. Finally, the first B. clarridgeiae genome from Asia exhibited large-scale genome stability compared to isolates from other continents, except for SNPs in regions predicted to mediate interactions with the vertebrate host. These findings highlight the paucity of data on the genomic diversity of Ctenocephalides -associated bacteria and raise questions regarding how interactions between members of the flea microbiome might influence vector competence.
Collapse
Affiliation(s)
- Alexandra Beliavskaia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Amit Sinha
- New England Biolabs, Ipswich, Massachusetts, 01938, USA
| | - Nurul Aini Husin
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fang Shiang Lim
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lesley Bell-Sakyi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | | | - Sazaly AbuBakar
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Alistair C. Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Benjamin L. Makepeace
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Jing Jing Khoo
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| |
Collapse
|
10
|
Ghousein A, Tutagata J, Schrieke H, Etienne M, Chaumeau V, Boyer S, Pages N, Roiz D, Eren AM, Cambray G, Reveillaud J. pWCP is a widely distributed and highly conserved Wolbachia plasmid in Culex pipiens and Culex quinquefasciatus mosquitoes worldwide. ISME COMMUNICATIONS 2023; 3:40. [PMID: 37117399 PMCID: PMC10144880 DOI: 10.1038/s43705-023-00248-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Mosquitoes represent the most important pathogen vectors and are responsible for the spread of a wide variety of poorly treatable diseases. Wolbachia are obligate intracellular bacteria that are widely distributed among arthropods and collectively represents one of the most promising solutions for vector control. In particular, Wolbachia has been shown to limit the transmission of pathogens, and to dramatically affect the reproductive behavior of their host through its phage WO. While much research has focused on deciphering and exploring the biocontrol applications of these WO-related phenotypes, the extent and potential impact of the Wolbachia mobilome remain poorly appreciated. Notably, several Wolbachia plasmids, carrying WO-like genes and Insertion Sequences (IS), thus possibly interrelated to other genetic units of the endosymbiont, have been recently discovered. Here we investigated the diversity and biogeography of the first described plasmid of Wolbachia in Culex pipiens (pWCP) in several islands and continental countries around the world-including Cambodia, Guadeloupe, Martinique, Thailand, and Mexico-together with mosquito strains from colonies that evolved for 2 to 30 years in the laboratory. We used PCR and qPCR to determine the presence and copy number of pWCP in individual mosquitoes, and highly accurate Sanger sequencing to evaluate potential variations. Together with earlier observation, our results show that pWCP is omnipresent and strikingly conserved among Wolbachia populations within mosquitoes from distant geographies and environmental conditions. These data suggest a critical role for the plasmid in Wolbachia ecology and evolution, and the potential of a great tool for further genetic dissection and possible manipulation of this endosymbiont.
Collapse
Affiliation(s)
- Amani Ghousein
- MIVEGEC, University of Montpellier, INRAE, CNRS, IRD, Montpellier, France
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U1054, CNRS UMR5048, Montpellier, France
| | - Jordan Tutagata
- MIVEGEC, University of Montpellier, INRAE, CNRS, IRD, Montpellier, France
| | - Hans Schrieke
- MIVEGEC, University of Montpellier, INRAE, CNRS, IRD, Montpellier, France
| | - Manuel Etienne
- Centre de Démoustication et de Recherches Entomologiques - Lutte Anti-Vectorielle (CEDRE - LAV), avenue Pasteur, 97201, Fort-de-France, Martinique, France
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sebastien Boyer
- Institut Pasteur du Cambodge, Medical Entomology Unit, Phnom Penh, Cambodia
| | - Nonito Pages
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Guadeloupe, France
| | - David Roiz
- MIVEGEC, University of Montpellier, INRAE, CNRS, IRD, Montpellier, France
- International Joint Laboratory ELDORADO, IRD/UNAM, Mérida, México
| | - A Murat Eren
- Marine Biological Laboratory, Woods Hole, Massachusetts, MA, USA
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg, Germany
| | - Guillaume Cambray
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U1054, CNRS UMR5048, Montpellier, France
- Diversité des Génomes et Interactions Microorganismes Insectes (DGIMI), University of Montpellier, INRAE UMR 1333, Montpellier, France
| | - Julie Reveillaud
- MIVEGEC, University of Montpellier, INRAE, CNRS, IRD, Montpellier, France.
| |
Collapse
|