1
|
Liu Y, Tian H, Ren S, Chen X, Luo K, Li G, Li B. Developmental Expression Patterns of miRNA in Mythimna separata Walker (Lepidotera: Noctuidae). Genes (Basel) 2025; 16:234. [PMID: 40004562 PMCID: PMC11855462 DOI: 10.3390/genes16020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES miRNAs are a family of single-stranded non-coding RNAs that regulate gene expression by targeting messenger RNAs (mRNAs) for suppression, with an average length of 22 nt. The oriental armyworm, Mythimna separata Walker, is a pest insect with long-distance migratory capability, which causes severe loss of grains and pastures in Eastern Asia, Southeastern Asia, and Oceania. This study aims to elucidate the post-transcriptional regulatory mechanisms of miRNAs in the development of this pest. METHODS We carried out small RNA sequencing on samples from eggs, third instar larvae, pre-pupae, pupae, and adults. RESULTS A total of 400 miRNAs were identified, among which 40 were known and 360 were novel miRNAs. Dynamic trend analysis of miRNAs revealed that 199 miRNAs were highly expressed in eggs (profile 12), while 173 miRNAs were highly expressed in both eggs and pupae (profile 13). The results of differential expression analysis of miRNAs (DEmiR) revealed that 75 miRNAs were significantly more abundant in eggs compared to other developmental stages. Furthermore, more up-regulated miRNAs were observed than down-regulated miRNAs in adults relative to 3rd instar larvae, pre-pupae, and pupae. The core genes for miRNA biosynthesis-Pasha, Dicer1, and Ago1-were highly expressed in eggs but poorly expressed in 3rd instar larvae. KEGG enrichment analyses indicated that several genes in the pentose and glucuronate interconversion pathway, as well as the fructose and mannose metabolism pathway, were regulated by DEmiRs. CONCLUSIONS DEmiRNAs targeted most genes of M. separata, resulting in a complex miRNA-mRNA regulation mode.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Boliao Li
- Key Laboratory of Applied Ecology of Loess Plateau, College of Life Science, Yan’an University, Yan’an 716000, China; (Y.L.); (H.T.); (S.R.); (X.C.); (K.L.); (G.L.)
| |
Collapse
|
2
|
Li P, Zhang H, Tan A, Hu Z, Peng L, Hou Y. Spätzle Regulates Developmental and Immune Trade-Offs Induced by Bacillus thuringiensis Priming in Rhynchophorus ferrugineus. INSECTS 2024; 15:925. [PMID: 39769527 PMCID: PMC11677516 DOI: 10.3390/insects15120925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
The red palm weevil (RPW) is an invasive pest that causes devastating damage to a variety of palm plants, which exhibit specific immune priming to Bacillus thuringiensis (Bt). However, immune priming in RPW may incur a high fitness cost, and its molecular signaling pathways have not yet been reported. Here, we investigated the effect of Bt priming on RPW development and subsequently analyzed the hormonal and immune-related molecular pathways influencing the fitness cost induced by Bt priming. Bt priming delayed the body weight gain of fifth-instar larvae and prolonged their developmental duration. Bt priming significantly reduced the 20-hydroxyecdysone (20E) content in RPW hemolymph, and the expression levels of the 20E biosynthesis-related genes SHADOW and SHADE were significantly downregulated. Furthermore, we analyzed Toll pathway genes influencing Bt priming and found that only Spätzle (SPZ) transcription was significantly activated under Bt priming. After silencing SPZ expression, the negative effects of Bt priming on development, SHADOW expression, and 20E synthesis were eliminated, thereby suggesting that SPZ is a key molecular signal mediating developmental and immune trade-offs induced by Bt priming. Our results elucidate the molecular cascade pathway of immune priming and provide new targets for improving the efficiency of RPW biological controls.
Collapse
Affiliation(s)
- Pengju Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - He Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anran Tan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuolin Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Zhang R, Liu W, Zhang Z. miR-306-5p is involved in chitin metabolism in Aedes albopictus pupae via linc8338-miR-306-5p-XM_019678125.2 axis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105811. [PMID: 38582583 DOI: 10.1016/j.pestbp.2024.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 04/08/2024]
Abstract
Aedes albopictus can transmit several lethal arboviruses. This mosquito has become a sever public health threat due to its rapidly changing global distribution. Chitin, which is the major component of the cuticle and peritrophic membrane (PM), is crucial for the growth and development of insect. microRNAs (miRNAs) play important roles in the posttranscriptional level regulation of gene expression, thereby influencing many biological processes in insects. In this study, an attempt was made to evaluate the role of miR-306-5p in regulating chitin metabolism in Ae. albopictus pupae. Overexpression of miR-306-5p resulted in a significantly reduced survival rate in pupae and an increased malformation rate in adults. Both in vivo and in vitro evidence confirmed the presence of the competing endogenous RNA (ceRNA) regulatory axis (linc8338-miR-306-5p-XM_019678125.2). RNAi of linc8338 and XM_019678125.2 had effects on pupae similar to those of miR-306-5p. The highest expression level of miR-306-5p was found in the midgut, and alteration in the expression of miR-306-5p, XM_019678125.2 and linc8338 induced increased transcript levels of chitin synthase 2 (AaCHS2) and decreased chitinase 10 (AaCht10); as well as increased thickness of the midgut and enlarged midgut epithelial cells. The results of this study highlight the potential of miR-306-5p as a prospective target in mosquito control and confirm that the ceRNA mechanism is involved in chitin metabolism. These findings will provide a basis for further studies to uncover the molecular mechanisms through which ncRNAs regulate chitin metabolism.
Collapse
Affiliation(s)
- Ruiling Zhang
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China; School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China.
| | - Wenjuan Liu
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China
| | - Zhong Zhang
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China.
| |
Collapse
|
4
|
Zhang S, Xie J, Luo R, Zhang H, Zheng W. MiR-2b-2-5p regulates lipid metabolism and reproduction by targeting CREB in Bactrocera dorsalis. RNA Biol 2023; 20:164-176. [PMID: 37092804 PMCID: PMC10128458 DOI: 10.1080/15476286.2023.2204579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In female animals, metabolic homoeostasis and reproductive fitness are critical to population expansion. The trade-off between lipid storage and reproduction inevitably occurs. However, most studies have focused on the complex network of relationships between reproductive and metabolic physiology at the transcriptional level. In this study, we identified a microRNA, miR-2b-2-5p, in a highly invasive quarantine pest, Bactrocera dorsalis. Knockdown of miR-2b-2-5p by antagomiR microinjection impaired ovarian development, reduced fecundity, and decreased triglyceride (TAG) storage in the fat body, whereas overexpression of miR-2b-2-5p by injection of its mimic caused reproductive defects similar to knockdown but increased TAG. Bioinformatics analysis and dual luciferase assay indicated that cyclic AMP response element (CRE)-binding protein (CREB) was the target gene of miR-2b-2-5p. RNAi-mediated knockdown of CREB led to excessive lipid storage and reproductive defects. Further starvation treatment revealed that miR-2b-2-5p functions by fine-tuning CREB expression in response to dietary stimuli. These results suggest that miR-2b-2-5p acts as a monitor to regulate CREB mRNA levels in the fat body, maintaining lipid homoeostasis and keeping the reproductive system on track. Thus, our study not only provides new insights into the interaction between metabolism and reproduction at the posttranscriptional level in B. dorsalis, but also providing a potential eco-friendly control strategy (RNAi-based biopesticides targeting essential miRNAs) for this notorious agricultural pest.
Collapse
Affiliation(s)
- Shengfeng Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junfei Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rengang Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|