1
|
Kiuru C, Constantino L, Cole G, Karisa J, Wanjiku C, Okoko M, Candrinho B, Saute F, Rabinovich NR, Chaccour C, Maia MF. Multiple insecticide resistance in Anopheles funestus from Mopeia, Central Mozambique. Malar J 2025; 24:81. [PMID: 40087723 PMCID: PMC11907927 DOI: 10.1186/s12936-025-05321-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND The main malaria vector control methods implemented in Mozambique are insecticide-treated nets (ITN's) and indoor residual spraying (IRS). These insecticide-based interventions are currently threatened by the rapidly spreading insecticide resistance in several major malaria vectors. Monitoring of insecticide resistance is necessary to inform the selection of insecticides by control programmes. This study describes the insecticide resistance profiles of the main malaria vector, Anopheles funestus sensu lato. in Mopeia district, a malaria holoendemic area of the Zambezia province of Mozambique. METHODS Anopheles adults and larvae were collected from 15 sentinel sites across the district between October 2021 and September 2022. Wild-caught, unfed female adults were collected using CDC-light traps and pooled over three days before exposure to the test insecticide. For mosquitoes collected as larvae, F0 adults aged 3-5 days post-emergence were used for insecticide susceptibility testing. Resistance to bendiocarb, DDT, deltamethrin and pirimiphos-methyl was evaluated using the standard WHO tube bioassay. The mechanism of resistance was probed using the PBO (piperonyl butoxide) synergistic bioassay. The presence and frequency of different genetic mutations associated with insecticide resistance was assessed using polymerase chain reaction, including A296S-Rdl, L119F-GSTe2 and 6.5 kb SV (structural variation) insertion. RESULTS A total of 1349 female Anopheles mosquitoes (controls included) were used for susceptibility tests with discriminating insecticide concentrations. Phenotypic resistance to bendiocarb, DDT, deltamethrin and pirimiphos-methyl was observed, with 37%, 79%, 14% and 67% mortality rate respectively. Pre-exposure to PBO partially restored susceptibility to deltamethrin to a mortality rate of 80%. The frequency of the insecticide resistance mutations was 0.49, 0.05 and 0.92, for A296S-Rdl, L119F-GSTe2 and 6.5 kb SV insertion, respectively. CONCLUSION Malaria vectors in Mopeia exhibit resistance to all four major public health insecticide classes: pyrethroids, organophosphates, organochlorides and carbamates. This highlights the urgent need to adopt new insecticide classes for vector control interventions. The partial restoration of susceptibility by PBO suggests resistance is being driven by various mechanisms including the involvement of metabolic resistance through cytochrome P450 monooxygenase enzymes and glutathione S-transferases.
Collapse
Affiliation(s)
- Caroline Kiuru
- Centro de Investigação Em Saúde de Manhiça (CISM), Maputo, Mozambique.
- Barcelona Institute for Global Health (Isglobal), Barcelona, Spain.
| | - Luis Constantino
- Centro de Investigação Em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Gildo Cole
- Centro de Investigação Em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Jonathan Karisa
- KEMRI Wellcome Trust Research Programme (KWTRP), Kilifi, Kenya
| | | | - Miguel Okoko
- KEMRI Centre for Vector-Borne Disease Control, Kwale, Kenya
| | - Baltazar Candrinho
- National Malaria Control Program, Ministry of Health, Maputo, Mozambique
| | - Francisco Saute
- Centro de Investigação Em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | - Carlos Chaccour
- Barcelona Institute for Global Health (Isglobal), Barcelona, Spain
- Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain
| | - Marta Ferreira Maia
- KEMRI Wellcome Trust Research Programme (KWTRP), Kilifi, Kenya.
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Djoko Tagne CS, Kouamo MFM, Tchouakui M, Muhammad A, Mugenzi LJL, Tatchou-Nebangwa NMT, Thiomela RF, Gadji M, Wondji MJ, Hearn J, Desire MH, Ibrahim SS, Wondji CS. A single mutation G454A in the P450 CYP9K1 drives pyrethroid resistance in the major malaria vector Anopheles funestus reducing bed net efficacy. Genetics 2025; 229:1-40. [PMID: 39509710 PMCID: PMC11708915 DOI: 10.1093/genetics/iyae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Metabolic mechanisms conferring pyrethroid resistance in malaria vectors are jeopardizing the effectiveness of insecticide-based interventions, and identification of their markers is a key requirement for robust resistance management. Here, using a field-lab-field approach, we demonstrated that a single mutation G454A in the P450 CYP9K1 is driving pyrethroid resistance in the major malaria vector Anopheles funestus in East and Central Africa. Drastic reduction in CYP9K1 diversity was observed in Ugandan samples collected in 2014, with the selection of a predominant haplotype (G454A mutation at 90%), which was completely absent in the other African regions. However, 6 years later (2020) the Ugandan 454A-CYP9K1 haplotype was found predominant in Cameroon (84.6%), but absent in Malawi (Southern Africa) and Ghana (West Africa). Comparative in vitro heterologous expression and metabolism assays revealed that the mutant 454A-CYP9K1 (R) allele significantly metabolizes more type II pyrethroid (deltamethrin) compared with the wild G454-CYP9K1 (S) allele. Transgenic Drosophila melanogaster flies expressing 454A-CYP9K1 (R) allele exhibited significantly higher type I and II pyrethroids resistance compared to flies expressing the wild G454-CYP9K1 (S) allele. Furthermore, laboratory testing and field experimental hut trials in Cameroon demonstrated that mosquitoes harboring the resistant 454A-CYP9K1 allele significantly survived pyrethroids exposure (odds ratio = 567, P < 0.0001). This study highlights the rapid spread of pyrethroid-resistant CYP9K1 allele, under directional selection in East and Central Africa, contributing to reduced bed net efficacy. The newly designed DNA-based assay here will add to the toolbox of resistance monitoring and improving its management strategies.
Collapse
Affiliation(s)
- Carlos S Djoko Tagne
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Bamenda, P.O. Box 39 Bambili, Bamenda, Cameroon
| | - Mersimine F M Kouamo
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Biotechnology Research, Bayero University, Kano, PMB 3011, Kano, Nigeria
| | - Leon J L Mugenzi
- Syngenta Crop Protection Department, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
| | - Nelly M T Tatchou-Nebangwa
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O Box 63, Buea, Cameroon
| | - Riccado F Thiomela
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Mahamat Gadji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Murielle J Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Jack Hearn
- Centre for Epidemiology and Planetary Health, Scotland’s Rural College (SRUC), RAVIC, Inverness IV2 5NA, UK
| | - Mbouobda H Desire
- Department of Biochemistry, Faculty of Science, University of Bamenda, P.O. Box 39 Bambili, Bamenda, Cameroon
| | - Sulaiman S Ibrahim
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biochemistry, Bayero University, PMB 3011 Kano, Nigeria
| | - Charles S Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
3
|
Oruni A, Tchouakui M, Tagne CSD, Hearn J, Kayondo J, Wondji CS. Temporal evolution of insecticide resistance and bionomics in Anopheles funestus, a key malaria vector in Uganda. Sci Rep 2024; 14:32027. [PMID: 39738472 PMCID: PMC11685729 DOI: 10.1038/s41598-024-83689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Insecticide resistance escalation is decreasing the efficacy of vector control tools. Monitoring vector resistance is paramount in order to understand its evolution and devise effective counter-solutions. In this study, we monitored insecticide resistance patterns, vector population bionomics and genetic variants associated with resistance over 3 years from 2021 to 2023 in Uganda. Anopheles funestus s.s was the predominant species in Mayuge but with evidence of hybridization with other species of the An. funestus group. Sporozoite infection rates were relatively very high with a peak of 20.41% in March 2022. Intense pyrethroid resistance was seen against pyrethroids up to 10-times the diagnostic concentration but partial recovery of susceptibility in PBO synergistic assays. Among bednets, only PBO-based nets (PermaNet 3.0 Top and Olyset Plus) and chlorfenapyr-based net (Interceptor G2) had high mortality rates. Mosquitoes were fully susceptible to chlorfenapyr and organophosphates, moderately resistant to clothianidin and resistant to carbamates. The allele frequency of key P450, CYP9K1, resistance marker was constantly very high but that for CYP6P9A/b were very low. Interestingly, we report the first detection of resistance alleles for Ace1 gene (RS = ~ 13%) and Rdl gene (RS = ~ 21%, RR = ~ 4%) in Uganda. The qRT-PCR revealed that Cytochrome P450s CYP9K1, CYP6P9A, CYP6P9b, CYP6P5 and CYP6M7 were consistently upregulated while a glutathione-S-transferase gene (GSTE2) showed low expression. Our study shows the complexity of insecticide resistance patterns and underlying mechanisms, hence constant and consistent spatial and temporal monitoring is crucial to rapidly detect changing resistance profiles which is key in informing deployment of counter interventions.
Collapse
Affiliation(s)
- Ambrose Oruni
- Entomology Department, Uganda Virus Research Institute, P.O. BOX 49, Entebbe, Uganda.
- Centre for Research in Infectious Diseases, LSTM-Research Unit, P.O BOX 3591, Yaoundé, Cameroon.
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases, LSTM-Research Unit, P.O BOX 3591, Yaoundé, Cameroon
| | - Carlos S Djoko Tagne
- Centre for Research in Infectious Diseases, LSTM-Research Unit, P.O BOX 3591, Yaoundé, Cameroon
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Centre for Epidemiology and Planetary Health, Scotland's Rural College (SRUC), Inverness, IV2 5NA, UK
| | - Jonathan Kayondo
- Entomology Department, Uganda Virus Research Institute, P.O. BOX 49, Entebbe, Uganda
| | - Charles S Wondji
- Centre for Research in Infectious Diseases, LSTM-Research Unit, P.O BOX 3591, Yaoundé, Cameroon.
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
- International Institute of Tropical Agriculture (IITA), P.O. Box 2008, Yaoundé, Cameroon.
| |
Collapse
|
4
|
Tatchou-Nebangwa NMT, Mugenzi LMJ, Muhammad A, Nebangwa DN, Kouamo MFM, Tagne CSD, Tekoh TA, Tchouakui M, Ghogomu SM, Ibrahim SS, Wondji CS. Two highly selected mutations in the tandemly duplicated CYP6P4a and CYP6P4b genes drive pyrethroid resistance in Anopheles funestus in West Africa. BMC Biol 2024; 22:286. [PMID: 39696366 DOI: 10.1186/s12915-024-02081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Gaining a comprehensive understanding of the genetic mechanisms underlying insecticide resistance in malaria vectors is crucial for optimising the effectiveness of insecticide-based vector control methods and developing diagnostic tools for resistance management. Considering the heterogeneity of metabolic resistance in major malaria vectors, the implementation of tailored resistance management strategies is essential for successful vector control. Here, we provide evidence demonstrating that two highly selected mutations in CYP6P4a and CYP6P4b are driving pyrethroid insecticide resistance in the major malaria vector Anopheles funestus, in West Africa. RESULTS Continent-wide polymorphism survey revealed escalated signatures of directional selection of both genes between 2014 and 2021. In vitro insecticide metabolism assays with recombinant enzymes from both genes showed that mutant alleles under selection exhibit higher metabolic efficiency than their wild-type counterparts. Using the GAL4-UAS expression system, transgenic Drosophila flies overexpressing mutant alleles exhibited increased resistance to pyrethroids. These findings were consistent with in silico predictions which highlighted changes in enzyme active site architecture that enhance the affinity of mutant alleles for type I and II pyrethroids. Furthermore, we designed two DNA-based assays for the detection of CYP6P4a-M220I and CYP6P4b-D284E mutations, showing their current confinement to West Africa. Genotype/phenotype correlation analyses revealed that these markers are strongly associated with resistance to types I and II pyrethroids and combine to drastically reduce killing effects of pyrethroid bed nets. CONCLUSIONS Overall, this study demonstrated that CYP6P4a and CYP6P4b contribute to pyrethroid resistance in An. funestus and provided two additional insecticide resistance molecular diagnostic tools that would contribute to monitoring and better management of resistance.
Collapse
Affiliation(s)
- Nelly M T Tatchou-Nebangwa
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon.
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Leon M J Mugenzi
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, CH4332, Switzerland
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK
- Centre for Biotechnology Research, Bayero University, Kano PMB, Kano, 3011, Nigeria
| | - Derrick N Nebangwa
- Randall Center for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Mersimine F M Kouamo
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
| | - Carlos S Djoko Tagne
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
- Department of Biochemistry, Faculty of Science, University of Bamenda, Bamenda, Cameroon
| | - Theofelix A Tekoh
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
| | - Stephen M Ghogomu
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Sulaiman S Ibrahim
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
- Department of Biochemistry, Bayero University, Kano PMB, Kano, 3011, Nigeria
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon.
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
5
|
Gadji M, Kengne-Ouafo JA, Tchouakui M, Wondji MJ, Mugenzi LMJ, Hearn J, Boyomo O, Wondji CS. Genome-wide association studies unveil major genetic loci driving insecticide resistance in Anopheles funestus in four eco-geographical settings across Cameroon. BMC Genomics 2024; 25:1202. [PMID: 39695386 PMCID: PMC11654272 DOI: 10.1186/s12864-024-11148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Insecticide resistance is jeopardising malaria control efforts in Africa. Deciphering the evolutionary dynamics of mosquito populations country-wide is essential for designing effective and sustainable national and subnational tailored strategies to accelerate malaria elimination efforts. Here, we employed genome-wide association studies through pooled template sequencing to compare four eco-geographically different populations of the major vector, Anopheles funestus, across a South North transect in Cameroon, aiming to identify genomic signatures of adaptive responses to insecticides. RESULTS Our analysis revealed limited population structure within Northern and Central regions (FST<0.02), suggesting extensive gene flow, while populations from the Littoral/Coastal region exhibited more distinct genetic patterns (FST>0.049). Greater genetic differentiation was observed at known resistance-associated loci, resistance-to-pyrethroids 1 (rp1) (2R chromosome) and CYP9 (X chromosome), with varying signatures of positive selection across populations. Allelic variation between variants underscores the pervasive impact of selection pressures, with rp1 variants more prevalent in Central and Northern populations (FST>0.3), and the CYP9 associated variants more pronounced in the Littoral/Coastal region (FST =0.29). Evidence of selective sweeps was supported by negative Tajima's D and reduced genetic diversity in all populations, particularly in Central (Elende) and Northern (Tibati) regions. Genomic variant analysis identified novel missense mutations and signatures of complex genomic alterations such as duplications, deletions, transposable element (TE) insertions, and chromosomal inversions, all associated with selective sweeps. A 4.3 kb TE insertion was fixed in all populations with Njombe Littoral/Coastal population, showing higher frequency of CYP9K1 (G454A), a known resistance allele and TE upstream compared to elsewhere. CONCLUSION Our study uncovered regional variations in insecticide resistance candidate variants, emphasizing the need for a streamlined DNA-based diagnostic assay for genomic surveillance across Africa. These findings will contribute to the development of tailored resistance management strategies crucial for addressing the dynamic challenges of malaria control in Cameroon.
Collapse
Affiliation(s)
- Mahamat Gadji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- The University of Yaoundé 1, P.O BOX 812, Yaoundé, Cameroon.
| | - Jonas A Kengne-Ouafo
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
| | - Murielle J Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
- Liverpool School of Tropical Medicine, Pembroke Place Liverpool L3 5QA UK, Liverpool, UK
| | - Leon M J Mugenzi
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, Switzerland
| | - Jack Hearn
- Centre for Epidemiology and Planetary Health, Scotland's Rural College (SRUC), RAVIC, 9 Inverness Campus, Inverness, UK
| | - Onana Boyomo
- The University of Yaoundé 1, P.O BOX 812, Yaoundé, Cameroon
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- Liverpool School of Tropical Medicine, Pembroke Place Liverpool L3 5QA UK, Liverpool, UK.
| |
Collapse
|
6
|
Lima CM, Uliassi E, Thoré ES, Bertram MG, Cardoso L, Cordeiro da Silva A, Costi MP, de Koning HP. Environmental impacts of drugs against parasitic vector-borne diseases and the need to integrate sustainability into their development and use. OPEN RESEARCH EUROPE 2024; 4:207. [PMID: 39534878 PMCID: PMC11555358 DOI: 10.12688/openreseurope.18008.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Background The current scientific discourse on environmental impacts of veterinary medicines mostly focuses on ectoparasiticides. Meanwhile, the environmental impacts of widely prescribed drugs for the treatment of human and animal parasitic vector-borne diseases (PVBD) remain largely unexplored. There is thus a need for evidence-based information to support guidelines and protocols for sustainable One Health PVBD drug development and use, while promoting greener research practices. Here, we reflect on the potential environmental impacts of PVBD drugs in current use, and the environmental impact of our research practices for developing new antiparasitics. Methods We conducted a survey of the membership of the "One Health drugs against parasitic vector borne diseases in Europe and beyond" Cooperation in Science and Technology (COST) Action 21111 (OneHealth drugs) to assess the current appreciation of sustainable drug design concepts and the extent to which One Health and sustainability principles are integrated into PVBD drug discovery and development. The survey also explored which human, technical, and funding resources are currently used in Europe and neighbouring countries in PVBD drugs research. Results The survey was conducted and analysed by OneHealth drugs and garnered 89 respondents, representing a response rate of 66% from 32 countries, predominantly European. 87% of participating collaborators worked in Academia; research groups were small (60% with 1-4 researchers) and mostly consist of few researchers, mostly at early career stages (63% <35 years old). Collaborations were mostly between academics, and 60% collaborated with non-European researchers, while funding was mostly from national governments. Motivation for greener research practices was high but there was as yet low implementation of green strategies or the incorporation of ecotoxicological test in drug development workflows, due to cost and unfamiliarity. Conclusions We highlight the need for early-ecotoxicological testing of new drug candidates and suggest best practices as we move towards standardized protocols in developing safe and efficacious PVBD drugs.
Collapse
Affiliation(s)
- Clara M. Lima
- Host-Parasite Interaction Group, Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
- Microbiology Laboratory, Department of Biological Sciences, University of Porto, Porto, 4050-313, Portugal
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Eli S.J. Thoré
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umea, SE-907 36, Sweden
- Laboratory of Adaptive Biodynamics, Research Unit of Environmental and Evolutionary Biology, Institute of Life, Earth and Environment, University of Namur, Namur 5000, Belgium, Namur, 5000, Belgium
| | - Michael G. Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umea, SE-907 36, Sweden
- Department of Zoology, Stockholm University, Stockholm, Stockholm 114 18, Sweden
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Luis Cardoso
- Department of Veterinary Sciences, and Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro, Vila Real, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, University of Trás-os-Montes e Alto Douro, Lisbon, 5000-801 Vila Real, Portugal
| | - Anabela Cordeiro da Silva
- Host-Parasite Interaction Group, Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
- Microbiology Laboratory, Department of Biological Sciences, University of Porto, Porto, 4050-313, Portugal
| | - Maria Paola Costi
- Department of Life Science, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Harry P. de Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, G12 8TA, UK
| |
Collapse
|
7
|
Li J, Jin L, Yan K, Xu P, Pan Y, Shang Q. STAT5B, Akt and p38 Signaling Activate FTZ-F1 to Regulate the Xenobiotic Tolerance-Related Gene SlCyp9a75b in Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20331-20342. [PMID: 39253853 DOI: 10.1021/acs.jafc.4c04465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Cytochrome P450 monooxygenases in insects have been verified to implicated in insecticide and phytochemical detoxification metabolism. However, the regulation of P450s, which are modulated by signal-regulated transcription factors (TFs), is less well studied in insects. Here, we found that the Malpighian tubule specific P450 gene SlCYP9A75b in Spodoptera litura is induced by xenobiotics. The transgenic Drosophila bioassay and RNAi results indicated that this P450 gene contributes to α-cypermethrin, cyantraniliprole, and nicotine tolerance. In addition, functional analysis revealed that the MAPKs p38, PI3K/Akt, and JAK-STAT activate the transcription factor fushi tarazu factor 1 (FTZ-F1) to regulate CYP9A75b expression. These findings provide mechanistic insights into the contributions of CYP9A genes to xenobiotic detoxification and support the possible involvement of different signaling pathways and TFs in tolerance to xenobiotics in insects.
Collapse
Affiliation(s)
- Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Long Jin
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Pengjun Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
8
|
Gomez A, Gonzalez S, Oke A, Luo J, Duong JB, Esquerra RM, Zimmerman T, Capponi S, Fung JC, Nystul TG. A High-Throughput Method for Quantifying Drosophila Fecundity. TOXICS 2024; 12:658. [PMID: 39330586 PMCID: PMC11436201 DOI: 10.3390/toxics12090658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
The fruit fly, Drosophila melanogaster, is an experimentally tractable model system that has recently emerged as a powerful "new approach methodology" (NAM) for chemical safety testing. As oogenesis is well conserved at the molecular and cellular level, measurements of Drosophila fecundity can be useful for identifying chemicals that affect reproductive health across species. However, standard Drosophila fecundity assays have been difficult to perform in a high-throughput manner because experimental factors such as the physiological state of the flies and environmental cues must be carefully controlled to achieve consistent results. In addition, exposing flies to a large number of different experimental conditions (such as chemical additives in the diet) and manually counting the number of eggs laid to determine the impact on fecundity is time-consuming. We have overcome these challenges by combining a new multiwell fly culture strategy with a novel 3D-printed fly transfer device to rapidly and accurately transfer flies from one plate to another, the RoboCam, a low-cost, custom-built robotic camera to capture images of the wells automatically, and an image segmentation pipeline to automatically identify and quantify eggs. We show that this method is compatible with robust and consistent egg laying throughout the assay period and demonstrate that the automated pipeline for quantifying fecundity is very accurate (r2 = 0.98 for the correlation between the automated egg counts and the ground truth). In addition, we show that this method can be used to efficiently detect the effects on fecundity induced by dietary exposure to chemicals. Taken together, this strategy substantially increases the efficiency and reproducibility of high-throughput egg-laying assays that require exposing flies to multiple different media conditions.
Collapse
Affiliation(s)
- Andreana Gomez
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Sergio Gonzalez
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
- Center for Cellular Construction, San Francisco, CA 94158, USA
| | - Ashwini Oke
- OB/GYN Department, University of California, San Francisco, CA 94143, USA
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Jiayu Luo
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
- Center for Cellular Construction, San Francisco, CA 94158, USA
| | - Johnny B. Duong
- Center for Cellular Construction, San Francisco, CA 94158, USA
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132, USA
| | - Raymond M. Esquerra
- Center for Cellular Construction, San Francisco, CA 94158, USA
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132, USA
| | - Thomas Zimmerman
- Center for Cellular Construction, San Francisco, CA 94158, USA
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132, USA
- IBM Almaden Research Center, San Jose, CA 95120, USA
| | - Sara Capponi
- Center for Cellular Construction, San Francisco, CA 94158, USA
- IBM Almaden Research Center, San Jose, CA 95120, USA
| | - Jennifer C. Fung
- OB/GYN Department, University of California, San Francisco, CA 94143, USA
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- San Francisco EaRTH Center, University of California, San Francisco, CA 94143, USA
| | - Todd G. Nystul
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
- OB/GYN Department, University of California, San Francisco, CA 94143, USA
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- San Francisco EaRTH Center, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Tchouakui M, Ibrahim SS, Mangoua MK, Thiomela RF, Assatse T, Ngongang-Yipmo SL, Muhammad A, Mugenzi LJM, Menze BD, Mzilahowa T, Wondji CS. Substrate promiscuity of key resistance P450s confers clothianidin resistance while increasing chlorfenapyr potency in malaria vectors. Cell Rep 2024; 43:114566. [PMID: 39088320 PMCID: PMC11372441 DOI: 10.1016/j.celrep.2024.114566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/04/2024] [Accepted: 07/16/2024] [Indexed: 08/03/2024] Open
Abstract
Novel insecticides were recently introduced to counter pyrethroid resistance threats in African malaria vectors. To prolong their effectiveness, potential cross-resistance from promiscuous pyrethroid metabolic resistance mechanisms must be elucidated. Here, we demonstrate that the duplicated P450s CYP6P9a/-b, proficient pyrethroid metabolizers, reduce neonicotinoid efficacy in Anopheles funestus while enhancing the potency of chlorfenapyr. Transgenic expression of CYP6P9a/-b in Drosophila confirmed that flies expressing both genes were significantly more resistant to neonicotinoids than controls, whereas the contrasting pattern was observed for chlorfenapyr. This result was also confirmed by RNAi knockdown experiments. In vitro expression of recombinant CYP6P9a and metabolism assays established that it significantly depletes both clothianidin and chlorfenapyr, with metabolism of chlorfenapyr producing the insecticidally active intermediate metabolite tralopyril. This study highlights the risk of cross-resistance between pyrethroid and neonicotinoid and reveals that chlorfenapyr-based control interventions such as Interceptor G2 could remain efficient against some P450-based resistant mosquitoes.
Collapse
Affiliation(s)
- Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon.
| | - Sulaiman S Ibrahim
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon; Department of Biochemistry, Bayero University, PMB 3011, Kano, Nigeria; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, UK
| | - Mersimine K Mangoua
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon
| | - Riccado F Thiomela
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon; Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Tatiane Assatse
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon; Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Sonia L Ngongang-Yipmo
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon; Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Abdullahi Muhammad
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, UK; Centre for Biotechnology Research, Bayero University, PMB 3011, Kano, Nigeria
| | - Leon J M Mugenzi
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon
| | - Benjamin D Menze
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon
| | - Themba Mzilahowa
- Malaria Alert Centre (MAC), Kamuzu University of Health Sciences (KUHeS), Entomology Department, P.O. Box 265, Blantyre, Malawi
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), Medical Entomology Department, P.O. Box 13501, Yaoundé, Cameroon; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, UK; International Institute of Tropical Agriculture (IITA), P.O. Box 2008, Yaoundé, Cameroon.
| |
Collapse
|
10
|
Ibrahim SS, Kouamo MFM, Muhammad A, Irving H, Riveron JM, Tchouakui M, Wondji CS. Functional Validation of Endogenous Redox Partner Cytochrome P450 Reductase Reveals the Key P450s CYP6P9a/- b as Broad Substrate Metabolizers Conferring Cross-Resistance to Different Insecticide Classes in Anopheles funestus. Int J Mol Sci 2024; 25:8092. [PMID: 39125661 PMCID: PMC11311542 DOI: 10.3390/ijms25158092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 08/12/2024] Open
Abstract
The versatility of cytochrome P450 reductase (CPR) in transferring electrons to P450s from other closely related species has been extensively exploited, e.g., by using An. gambiae CPR (AgCPR), as a homologous surrogate, to validate the role of An. funestus P450s in insecticide resistance. However, genomic variation between the AgCPR and An. funestus CPR (AfCPR) suggests that the full metabolism spectrum of An. funestus P450s might be missed when using AgCPR. To test this hypothesis, we expressed AgCPR and AfCPR side-by-side with CYP6P9a and CYP6P9b and functionally validated their role in the detoxification of insecticides from five different classes. Major variations were observed within the FAD- and NADP-binding domains of AgCPR and AfCPR, e.g., the coordinates of the second FAD stacking residue AfCPR-Y456 differ from that of AgCPR-His456. While no significant differences were observed in the cytochrome c reductase activities, when co-expressed with their endogenous AfCPR, the P450s significantly metabolized higher amounts of permethrin and deltamethrin, with CYP6P9b-AfCPR membrane metabolizing α-cypermethrin as well. Only the CYP6P9a-AfCPR membrane significantly metabolized DDT (producing dicofol), bendiocarb, clothianidin, and chlorfenapyr (bioactivation into tralopyril). This demonstrates the broad substrate specificity of An. funestus CYP6P9a/-b, capturing their role in conferring cross-resistance towards unrelated insecticide classes, which can complicate resistance management.
Collapse
Affiliation(s)
- Sulaiman S. Ibrahim
- Department of Biochemistry, Bayero University, Kano PMB 3011, Nigeria
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
| | - Mersimine F. M. Kouamo
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
- Center of Biotechnology Research, Bayero University, Kano PMB 3011, Nigeria
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
| | - Jacob M. Riveron
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
| | - Magellan Tchouakui
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
| | - Charles S. Wondji
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
| |
Collapse
|
11
|
Li J, Yan K, Jin L, Xu P, Pan Y, Shang Q. A Malpighian Tubule-Specific P450 Gene SlCYP9A75a Contributes to Xenobiotic Tolerance in Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15624-15632. [PMID: 38952111 DOI: 10.1021/acs.jafc.4c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Phytophagous insects are more predisposed to evolve insecticide resistance than other insect species due to the "preadaptation hypothesis". Cytochrome P450 monooxygenases have been strongly implicated in insecticide and phytochemical detoxification in insects. In this study, RNA-seq results reveal that P450s of Spodoptera litura, especially the CYP3 clan, are dominant in cyantraniliprole, nicotine, and gossypol detoxification. The expression of a Malpighian tubule-specific P450 gene, SlCYP9A75a, is significantly upregulated in xenobiotic treatments except α-cypermethrin. The gain-of-function and loss-of-function analyses indicate that SlCYP9A75a contributes to cyantraniliprole, nicotine, and α-cypermethrin tolerance, and SlCYP9A75a is capable of binding to these xenobiotics. This study indicates the roles of inducible SlCYP9A75a in detoxifying man-made insecticides and phytochemicals and may provide an insight into the development of cross-tolerance in omnivorous insects.
Collapse
Affiliation(s)
- Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Long Jin
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Pengjun Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, P. R. China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
12
|
Wangrawa DW, Odero JO, Baldini F, Okumu F, Badolo A. Distribution and insecticide resistance profile of the major malaria vector Anopheles funestus group across the African continent. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:119-137. [PMID: 38303659 DOI: 10.1111/mve.12706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
There has been significant progress in malaria control in the last 2 decades, with a decline in mortality and morbidity. However, these gains are jeopardised by insecticide resistance, which negatively impacts the core interventions, such as insecticide-treated nets (ITN) and indoor residual spraying (IRS). While most malaria control and research efforts are still focused on Anopheles gambiae complex mosquitoes, Anopheles funestus remains an important vector in many countries and, in some cases, contributes to most of the local transmission. As countries move towards malaria elimination, it is important to ensure that all dominant vector species, including An. funestus, an important vector in some countries, are targeted. The objective of this review is to compile and discuss information related to A. funestus populations' resistance to insecticides and the mechanisms involved across Africa, emphasising the sibling species and their resistance profiles in relation to malaria elimination goals. Data on insecticide resistance in An. funestus malaria vectors in Africa were extracted from published studies. Online bibliographic databases, including Google Scholar and PubMed, were used to search for relevant studies. Articles published between 2000 and May 2023 reporting resistance of An. funestus to insecticides and associated mechanisms were included. Those reporting only bionomics were excluded. Spatial variation in species distribution and resistance to insecticides was recorded from 174 articles that met the selection criteria. It was found that An. funestus was increasingly resistant to the four classes of insecticides recommended by the World Health Organisation for malaria vector control; however, this varied by country. Insecticide resistance appears to reduce the effectiveness of vector control methods, particularly IRS and ITN. Biochemical resistance due to detoxification enzymes (P450s and glutathione-S-transferases [GSTs]) in An. funestus was widely recorded. However, An. funestus in Africa remains susceptible to other insecticide classes, such as organophosphates and neonicotinoids. This review highlights the increasing insecticide resistance of An. funestus mosquitoes, which are important malaria vectors in Africa, posing a significant challenge to malaria control efforts. While An. funestus has shown resistance to the recommended insecticide classes, notably pyrethroids and, in some cases, organochlorides and carbamates, it remains susceptible to other classes of insecticides such as organophosphates and neonicotinoids, providing potential alternative options for vector control strategies. The study underscores the need for targeted interventions that consider the population structure and geographical distribution of An. funestus, including its sibling species and their insecticide resistance profiles, to effectively achieve malaria elimination goals.
Collapse
Affiliation(s)
- Dimitri W Wangrawa
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- Département des Sciences de la Vie et de la Terre, Université Norbert Zongo, Koudougou, Burkina Faso
| | - Joel O Odero
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Francesco Baldini
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Fredros Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| |
Collapse
|
13
|
Azizi S, Mbewe NJ, Mo H, Edward F, Sumari G, Mwacha S, Msapalla A, Mawa B, Mosha F, Matowo J. Is Anopheles gambiae ( sensu stricto), the principal malaria vector in Africa prone to resistance development against new insecticides? Outcomes from laboratory exposure of An. gambiae ( s.s.) to sub-lethal concentrations of chlorfenapyr and clothianidin. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 5:100172. [PMID: 38444984 PMCID: PMC10912349 DOI: 10.1016/j.crpvbd.2024.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/05/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024]
Abstract
Indiscriminate use of pesticides in the public health and agriculture sectors has contributed to the development of resistance in malaria vectors following exposure to sub-lethal concentrations. To preserve the efficacy of vector control tools and prevent resistance from spreading, early resistance detection is urgently needed to inform management strategies. The introduction of new insecticides for controlling malaria vectors such as clothianidin and chlorfenapyr requires research to identify early markers of resistance which could be used in routine surveillance. This study investigated phenotypic resistance of Anopheles gambiae (sensu stricto) Muleba-Kis strain using both WHO bottle and tube assays following chlorfenapyr, clothianidin, and alpha-cypermethrin selection against larvae and adults under laboratory conditions. High mortality rates were recorded for both chlorfenapyr-selected mosquitoes that were consistently maintained for 10 generations (24-h mortality of 92-100% and 72-h mortality of 98-100% for selected larvae; and 24-h mortality of 95-100% and 72-h mortality of 98-100% for selected adults). Selection with clothianidin at larval and adult stages showed a wide range of mortality (18-91%) compared to unselected progeny where mortality was approximately 99%. On the contrary, mosquitoes selected with alpha-cypermethrin from the adult selection maintained low mortality (28% at Generation 2 and 23% at Generation 4) against discrimination concentration compared to unselected progeny where average mortality was 51%. The observed resistance in the clothianidin-selected mosquitoes needs further investigation to determine the underlying resistance mechanism against this insecticide class. Additionally, further investigation is recommended to develop molecular markers for observed clothianidin phenotypic resistance.
Collapse
Affiliation(s)
- Salum Azizi
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Njelembo J. Mbewe
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Hosiana Mo
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Felista Edward
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Godwin Sumari
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Silvia Mwacha
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Agness Msapalla
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Benson Mawa
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Franklin Mosha
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
| | - Johnson Matowo
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| |
Collapse
|
14
|
Li W, Yang W, Shi Y, Yang X, Liu S, Liao X, Shi L. Comprehensive analysis of the overexpressed cytochrome P450-based insecticide resistance mechanism in Spodoptera litura. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132605. [PMID: 37748309 DOI: 10.1016/j.jhazmat.2023.132605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Cytochrome P450s play critical roles in the metabolic resistance of insecticides in insects. Previous findings showed that enhanced P450 activity was an important mechanism mediating indoxacarb resistance, and multiple P450 genes were upregulated in indoxacarb resistant strains of Spodoptera litura. However, the functions of these P450 genes in insecticide resistance remain unknown. Here, the P450 inhibitor PBO effectively decreased the resistance of S. litura to indoxacarb. Ten upregulated P450 genes were characterized, all of which were overexpressed in response to indoxacarb induction. Knockdown of nine P450 genes decreased cell viability against indoxacarb, and further silencing of three genes (CYP339A1, CYP340G2, CYP321A19) in larvae enhanced the sensitivity to indoxacarb. Transgenic overexpression of these three genes increased resistance to indoxacarb in Drosophila melanogaster. Moreover, molecular modeling and docking predicted that these three P450 proteins could bind tightly to indoxacarb and N-decarbomethoxylated metabolite (DCJW). Interestingly, these three P450 genes may also mediate cross-resistance to chlorantraniliprole, λ-cyhalothrin and imidacloprid. Additionally, heterologous expression and metabolic assays confirmed that three recombinant P450s could effectively metabolize indoxacarb and DCJW. This study strongly demonstrates that multiple overexpressed mitochondrial and microsomal P450 genes were involved in insecticide resistance in S. litura.
Collapse
Affiliation(s)
- Wenlin Li
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wen Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yao Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiyu Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shuangqing Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiaolan Liao
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| | - Li Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
15
|
Pan D, Xia M, Li C, Liu X, Archdeacon L, O'Reilly AO, Yuan G, Wang J, Dou W. CYP4CL2 Confers Metabolic Resistance to Pyridaben in the Citrus Pest Mite Panonychus citri. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19465-19474. [PMID: 38048568 DOI: 10.1021/acs.jafc.3c06921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The citrus red mite Panonychus citri has developed strong resistance to acaricides. Cytochrome P450 monooxygenases (P450s) can detoxify pesticides and are involved in pesticide resistance in many insects. Here, a pyridaben-resistant P. citri strain showed cross-resistance to cyenopyrafen, bifenazate, fenpyroximate, and tolfenpyrad. Piperonyl butoxide, a P450 inhibitor, significantly increased the toxicity of pyridaben to resistant (Pyr_Rs) and susceptible (Pyr_Control) P. citri strains. P450 activity was significantly higher in Pyr_Rs than in Pyr_Control. Analyses of RNA-Seq data identified a P450 gene (CYP4CL2) that is potentially involved in pyridaben resistance. Consistently, it was up-regulated in two field-derived resistant populations (CQ_WZ and CQ_TN). RNA interference-mediated knockdown of CYP4CL2 significantly decreased the pyridaben resistance in P. citri. Transgenic Drosophila melanogaster expressing CYP4CL2 showed increased pyridaben resistance. Molecular docking analysis showed that pyridaben could bind to several amino acids at substrate recognition sites in CYP4CL2. These findings shed light on P450-mediated pyridaben resistance in pest mites.
Collapse
Affiliation(s)
- Deng Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Menghao Xia
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Chuanzhen Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Xunyan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Lewis Archdeacon
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 5UX, U.K
| | - Andrias O O'Reilly
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 5UX, U.K
| | - Guorui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jinjun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
16
|
Acford-Palmer H, Campos M, Bandibabone J, N'Do S, Bantuzeko C, Zawadi B, Walker T, Phelan JE, Messenger LA, Clark TG, Campino S. Detection of insecticide resistance markers in Anopheles funestus from the Democratic Republic of the Congo using a targeted amplicon sequencing panel. Sci Rep 2023; 13:17363. [PMID: 37833354 PMCID: PMC10575962 DOI: 10.1038/s41598-023-44457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023] Open
Abstract
Vector control strategies have been successful in reducing the number of malaria cases and deaths globally, but the spread of insecticide resistance represents a significant threat to disease control. Insecticide resistance has been reported across Anopheles (An.) vector populations, including species within the An. funestus group. These mosquitoes are responsible for intense malaria transmission across sub-Saharan Africa, including in the Democratic Republic of the Congo (DRC), a country contributing > 12% of global malaria infections and mortality events. To support the continuous efficacy of vector control strategies, it is essential to monitor insecticide resistance using molecular surveillance tools. In this study, we developed an amplicon sequencing ("Amp-seq") approach targeting An. funestus, and using multiplex PCR, dual index barcoding, and next-generation sequencing for high throughput and low-cost applications. Using our Amp-seq approach, we screened 80 An. funestus field isolates from the DRC across a panel of nine genes with mutations linked to insecticide resistance (ace-1, CYP6P4, CYP6P9a, GSTe2, vgsc, and rdl) and mosquito speciation (cox-1, mtND5, and ITS2). Amongst the 18 non-synonymous mutations detected, was N485I, in the ace-1 gene associated with carbamate resistance. Overall, our panel represents an extendable and much-needed method for the molecular surveillance of insecticide resistance in An. funestus populations.
Collapse
Affiliation(s)
- Holly Acford-Palmer
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Monica Campos
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Janvier Bandibabone
- Centre de Recherche en Sciences Naturelles de Lwiro, Sud-Kivu, Democratic Republic of the Congo
| | - Sévérin N'Do
- Médecins Sans Frontières (MSF) OCBA, Barcelona, Spain
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Chimanuka Bantuzeko
- Centre de Recherche en Sciences Naturelles de Lwiro, Sud-Kivu, Democratic Republic of the Congo
- Université Officielle de Bukavu (UOB), Bukavu, Democratic Republic of the Congo
| | - Bertin Zawadi
- Centre de Recherche en Sciences Naturelles de Lwiro, Sud-Kivu, Democratic Republic of the Congo
| | - Thomas Walker
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Jody E Phelan
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Louisa A Messenger
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, Las Vegas, USA
| | - Taane G Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|