1
|
Chen Y, Liu P, Sabo A, Guan D. Human genetic variation determines 24-hour rhythmic gene expression and disease risk. Nat Commun 2025; 16:4270. [PMID: 40341583 PMCID: PMC12062405 DOI: 10.1038/s41467-025-59524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/24/2025] [Indexed: 05/10/2025] Open
Abstract
24-hour biological rhythms are essential to maintain physiological homeostasis. Disruption of these rhythms increases the risks of multiple diseases. Biological rhythms are known to have a genetic basis formed by core clock genes, but how individual genetic variation shapes the oscillating transcriptome and contributes to human chronophysiology and disease risk is largely unknown. Here, we mapped interactions between temporal gene expression and genotype to identify quantitative trait loci (QTLs) contributing to rhythmic gene expression. These newly identified QTLs were termed as rhythmic QTLs (rhyQTLs), which determine previously unappreciated rhythmic genes in human subpopulations with specific genotypes. Functionally, rhyQTLs and their associated rhythmic genes contribute extensively to essential chronophysiological processes, including bile acid and lipid metabolism. The identification of rhyQTLs sheds light on the genetic mechanisms of gene rhythmicity, offers mechanistic insights into variations in human disease risk, and enables precision chronotherapeutic approaches for patients.
Collapse
Affiliation(s)
- Ying Chen
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Panpan Liu
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Aniko Sabo
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Dongyin Guan
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
He LH, Sui XY, Xiao YL, Ji P, Gong Y. Circadian Rhythm Disruption in Triple-Negative Breast Cancer: Molecular Insights and Treatment Strategies. J Pineal Res 2025; 77:e70042. [PMID: 40193174 DOI: 10.1111/jpi.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/26/2025] [Accepted: 03/06/2025] [Indexed: 05/17/2025]
Abstract
Disruption of the circadian clock has been closely linked to the initiation, development, and progression of cancer. This study aims to explore the impact of circadian rhythm disruption (CRD) on triple-negative breast cancer (TNBC). We analyzed bulk and single-cell RNA sequencing data to assess circadian rhythm status in TNBC using multiple bioinformatic tools, alongside metabolomic profiles and tumor microenvironment evaluations to understand the influence of CRD on metabolic reprogramming and immune evasion. The results indicate that TNBC experiences profound CRD. Patients with a higher CRDscore exhibit significantly poorer relapse-free survival compared to those with a lower CRDscore. Cyclic ordering by periodic structure (CYCLOPS) identified significant changes in rhythmic gene expression patterns between TNBC and normal tissues, with TNBC showing a "rush hour" effect, where peak expression times are concentrated within specific time windows. Transcripts with disrupted circadian rhythms in TNBC were found to be involved in key pathways related to cell cycle regulation, metabolism, and immune response. Metabolomic analysis further revealed that TNBCs with high CRDscore are enriched in carbohydrate and amino acid metabolism pathways, notably showing upregulation of tryptophan metabolism. High CRDscore was also linked to an immunosuppressive tumor microenvironment, characterized by reduced immune cell infiltration, exhausted CD8+ T cells, and a diminished response to immune checkpoint blockade therapy. These findings suggest that the disrupted molecular clock in TNBC may activate tryptophan metabolism, thereby promoting immune evasion and potentially reducing the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Li-Hua He
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin-Yi Sui
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Ji
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Gong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Farmakis D, Stravopodis DJ, Prombona A. TH301 Emerges as a Novel Anti-Oncogenic Agent for Human Pancreatic Cancer Cells: The Dispensable Roles of p53, CRY2 and BMAL1 in TH301-Induced CDKN1A/p21 CIP1/WAF1 Upregulation. Int J Mol Sci 2024; 26:178. [PMID: 39796036 PMCID: PMC11720130 DOI: 10.3390/ijms26010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Pancreatic Ductal Adeno-Carcinoma (PDAC) is a highly aggressive cancer, with limited treatment options. Disruption of the circadian clock, which regulates key cellular processes, has been implicated in PDAC initiation and progression. Hence, targeting circadian clock components may offer new therapeutic opportunities for the disease. This study investigates the cytopathic effects of TH301, a novel CRY2 stabilizer, on PDAC cells, aiming to evaluate its potential as a novel therapeutic agent. Methods: PDAC cell lines (AsPC-1, BxPC-3 and PANC-1) were treated with TH301, and cell viability, cell cycle progression, apoptosis, autophagy, circadian gene, and protein expression profiles were analyzed, using MTT assay, flow cytometry, Western blotting, and RT-qPCR technologies. Results: TH301 proved to significantly decrease cell viability and to induce cell cycle arrest at the G1-phase across all PDAC cell lines herein examined, especially the AsPC-1 and BxPC-3 ones. It caused dose-dependent apoptosis and autophagy, and it synergized with Chloroquine and Oxaliplatin to enhance anti-oncogenicity. The remarkable induction of p21 by TH301 was shown to follow clock- and p53-independent patterns, thereby indicating the critical engagement of alternative mechanisms. Conclusions: TH301 demonstrates significant anti-cancer activities in PDAC cells, thus serving as a promising new therapeutic agent, which can also synergize with approved treatment schemes by targeting pathways beyond circadian clock regulation. Altogether, TH301 likely opens new therapeutic windows for the successful management of pancreatic cancer in clinical practice.
Collapse
Affiliation(s)
- Danae Farmakis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis, Zografou, 157 01 Athens, Greece;
- Laboratory of Chronobiology, Institute of Biosciences and Applications (IBA), National Centre for Scientific Research (NCSR) “Demokritos”, 153 41 Aghia Paraskevi, Greece;
| | - Dimitrios J. Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis, Zografou, 157 01 Athens, Greece;
| | - Anastasia Prombona
- Laboratory of Chronobiology, Institute of Biosciences and Applications (IBA), National Centre for Scientific Research (NCSR) “Demokritos”, 153 41 Aghia Paraskevi, Greece;
| |
Collapse
|
4
|
Yang Y, Yu M, Lu Y, Gao C, Sun R, Zhang W, Nie Y, Bian X, Liu Z, Sun Q. Characterizing the rhythmic oscillations of gut bacterial and fungal communities and their rhythmic interactions in male cynomolgus monkeys. Microbiol Spectr 2024; 12:e0072224. [PMID: 39320117 PMCID: PMC11537094 DOI: 10.1128/spectrum.00722-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
The circadian oscillation of gut microbiota plays vital roles in the normal physiology and health of the host. Although the diurnal oscillation of intestinal bacteria has been extensively studied, little relevant work has been done on intestinal fungi. Besides, the rhythmic correlations between bacterial and fungal microbes are also scarcely reported. Here, we investigated the diurnal oscillations of bacterial and fungal communities in male cynomolgus monkeys by performing 16S rRNA and ITS amplicon sequencing. As for bacterial genera, we found that the relative abundance of Prevotella, norank_f_Eubacterium_coprostanoligenes_group, and Peptococcus underwent significant changes at ZT12 (19:00) and exhibited obvious rhythmic oscillations. Consequently, most of the bacterial functions varied at ZT12 and were positively correlated with the bacterial genera norank_f_Eubacterium_coprostanoligenes_group and Prevotella. Among the fungal genera, the relative abundance of Aspergillus and Talaromyces decreased at ZT18 (1:00) and showed slight rhythmic oscillations. As for the fungal function, the undefined saprotroph showed slight rhythmic oscillation and was positively correlated with the fungal genus Aspergillus. Notably, we characterized the correlations between intestinal bacteria and fungi every 6 h over the course of a day and found that the bacterial and fungal microbes interacted closely, with the most bacteria-fungi interactions occurring at ZT12. Our study contributed to a more comprehensive understanding of the diurnal oscillation patterns of bacterial and fungal microbes in male cynomolgus monkeys and uncovered their correlations during a diurnal cycle. IMPORTANCE The rhythmic oscillation of gut microbiota can impact the physiology activity and disease susceptibility of the host. Until now, most of the studies are focused on bacterial microbes, ignoring other components of gut microbes, such as fungal microbes (mycobiota). Besides, only few studies have addressed the rhythmic correlations between gut bacteria and fungi. Here, we analyzed the rhythmic oscillations of bacterial and fungal communities in male cynomolgus monkeys by performing 16S rRNA and ITS amplicon sequencing. Apart from identifying the rhythmically oscillated bacterial and fungal microbes, we conducted the correlation analysis between these two microbial communities and found that the intestinal bacteria and fungi exhibited close interactions rhythmically, with the most interactions occurring at ZT12. Thus, our study not only investigated the rhythmic oscillations of gut bacterial and fungal communities in male cynomolgus monkeys but also uncovered their rhythmic interactions.
Collapse
Affiliation(s)
- Yunpeng Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Meiling Yu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yong Lu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Changshan Gao
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ruxue Sun
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Wanying Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yanhong Nie
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Xinyan Bian
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zongping Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Qiang Sun
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| |
Collapse
|
5
|
Sun Q, Zheng S, Tang W, Wang X, Wang Q, Zhang R, Zhang N, Ping W. Prediction of lung adenocarcinoma prognosis and diagnosis with a novel model anchored in circadian clock-related genes. Sci Rep 2024; 14:18202. [PMID: 39107445 PMCID: PMC11303802 DOI: 10.1038/s41598-024-68256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Lung adenocarcinoma is the most common primary lung cancer seen in the world, and identifying genetic markers is essential for predicting the prognosis of lung adenocarcinoma and improving treatment outcomes. It is well known that alterations in circadian rhythms are associated with a higher risk of cancer. Moreover, circadian rhythms play a regulatory role in the human body. Therefore, studying the changes in circadian rhythms in cancer patients is crucial for optimizing treatment. The gene expression data and clinical data were sourced from TCGA database, and we identified the circadian clock-related genes. We used the obtained TCGA-LUAD data set to build the model, and the other 647 lung adenocarcinoma patients' data were collected from two GEO data sets for external verification. A risk score model for circadian clock-related genes was constructed, based on the identification of 8 genetically significant genes. Based on ROC analyses, the risk model demonstrated a high level of accuracy in predicting the overall survival times of lung adenocarcinoma patients in training folds, as well as external data sets. This study has successfully constructed a risk model for lung adenocarcinoma prognosis, utilizing circadian rhythm as its foundation. This model demonstrates a dependable capacity to forecast the outcome of the disease, which can further guide the relevant mechanism of lung adenocarcinoma and combine behavioral therapy with treatment to optimize treatment decision-making.
Collapse
Affiliation(s)
- Qihang Sun
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shubin Zheng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Tang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruijie Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
García-Montero C, Fraile-Martinez O, Cobo-Prieto D, De Leon-Oliva D, Boaru DL, De Castro-Martinez P, Pekarek L, Gragera R, Hernández-Fernández M, Guijarro LG, Toledo-Lobo MDV, López-González L, Díaz-Pedrero R, Monserrat J, Álvarez-Mon M, Saez MA, Ortega MA. Abnormal Histopathological Expression of Klotho, Ferroptosis, and Circadian Clock Regulators in Pancreatic Ductal Adenocarcinoma: Prognostic Implications and Correlation Analyses. Biomolecules 2024; 14:947. [PMID: 39199335 PMCID: PMC11353028 DOI: 10.3390/biom14080947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely lethal tumor with increasing incidence, presenting numerous clinical challenges. The histopathological examination of novel, unexplored biomarkers offers a promising avenue for research, with significant translational potential for improving patient outcomes. In this study, we evaluated the prognostic significance of ferroptosis markers (TFRC, ALOX-5, ACSL-4, and GPX-4), circadian clock regulators (CLOCK, BMAL1, PER1, PER2), and KLOTHO in a retrospective cohort of 41 patients deceased by PDAC. Immunohistochemical techniques (IHC) and multiple statistical analyses (Kaplan-Meier curves, correlograms, and multinomial linear regression models) were performed. Our findings reveal that ferroptosis markers are directly associated with PDAC mortality, while circadian regulators and KLOTHO are inversely associated. Notably, TFRC emerged as the strongest risk marker associated with mortality (HR = 35.905), whereas CLOCK was identified as the most significant protective marker (HR = 0.01832). Correlation analyses indicate that ferroptosis markers are positively correlated with each other, as are circadian regulators, which also positively correlate with KLOTHO expression. In contrast, KLOTHO and circadian regulators exhibit inverse correlations with ferroptosis markers. Among the clinical variables examined, only the presence of chronic pathologies showed an association with the expression patterns of several proteins studied. These findings underscore the complexity of PDAC pathogenesis and highlight the need for further research into the specific molecular mechanisms driving disease progression.
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - David Cobo-Prieto
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Immune System Diseases-Rheumatology Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - Raquel Gragera
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
| | - Mauricio Hernández-Fernández
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - María Del Val Toledo-Lobo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Raul Díaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcala de Henares, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcala de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| |
Collapse
|
7
|
Tavsanli N, Erözden AA, Çalışkan M. Evaluation of small-molecule modulators of the circadian clock: promising therapeutic approach to cancer. Mol Biol Rep 2024; 51:848. [PMID: 39046562 DOI: 10.1007/s11033-024-09813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/06/2024] [Indexed: 07/25/2024]
Abstract
The circadian clock is an important regulator of human homeostasis. Circadian rhythms are closely related to cell fate because they are necessary for regulating the cell cycle, cellular proliferation, and apoptosis. Clock dysfunction can result in the development of diseases such as cancer. Although certain tumors have been shown to have a malfunctioning clock, which may affect prognosis or treatment, this has been postulated but not proven in many types of cancer. Recently, important information has emerged about the basic characteristics that underpin the overt circadian rhythm and its influence on physiological outputs. This information implies that the circadian rhythm may be managed by using particular small molecules. Small-molecule clock modulators target clock components or different physiological pathways that influence the clock. Identifying new small-molecule modulators will improve our understanding of critical regulatory nodes in the circadian network and cancer. Pharmacological manipulation of the clock may be valuable for treating cancer. The discoveries of small-molecule clock modulators and their possible application in cancer treatment are examined in this review.
Collapse
Affiliation(s)
- Nalan Tavsanli
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
- Program of Biotechnology, Biology Department, Institute of Graduate Studies in Sciences, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
| | - Ahmet Arıhan Erözden
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
- Program of Biotechnology, Biology Department, Institute of Graduate Studies in Sciences, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
| | - Mahmut Çalışkan
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey.
| |
Collapse
|
8
|
Grabe S, Ananthasubramaniam B, Herzel H. Quantification of circadian rhythms in mammalian lung tissue snapshot data. Sci Rep 2024; 14:16238. [PMID: 39004631 PMCID: PMC11247089 DOI: 10.1038/s41598-024-66694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Healthy mammalian cells have a circadian clock, a gene regulatory network that allows them to schedule their physiological processes to optimal times of the day. When healthy cells turn into cancer cells, the circadian clock often becomes cancer specifically disturbed, so there is an interest in the extraction of circadian features from gene expression data of cancer. This is challenging, as clinical gene expression samples of cancer are snapshot-like and the circadian clock is best examined using gene expression time series. In this study, we obtained lists of intersecting circadian genes in public gene expression time series data of lung tissue of mouse and baboon. We base our circadian gene lists on correlations of gene expression levels of circadian genes, which are closely associated to the phase differences between them. Combining circadian gene expression patterns of diurnal and nocturnal species of different ages provides circadian genes that are also important in healthy and cancerous human lung tissue. We tested the quality of the representation of the circadian clock in our gene lists by PCA-based reconstructions of the circadian times of the mouse and baboon samples. Then we assigned potential circadian times to the human lung tissue samples and find an intact circadian clock in the healthy human lung tissue, but an altered, weak clock in the adjacent cancerous lung tissue.
Collapse
Affiliation(s)
- Saskia Grabe
- Charité Center for Basic Sciences, Institute for Theoretical Biology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Bharath Ananthasubramaniam
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hanspeter Herzel
- Charité Center for Basic Sciences, Institute for Theoretical Biology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
9
|
Ki MR, Youn S, Kim DH, Pack SP. Natural Compounds for Preventing Age-Related Diseases and Cancers. Int J Mol Sci 2024; 25:7530. [PMID: 39062777 PMCID: PMC11276798 DOI: 10.3390/ijms25147530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is a multifaceted process influenced by hereditary factors, lifestyle, and environmental elements. As time progresses, the human body experiences degenerative changes in major functions. The external and internal signs of aging manifest in various ways, including skin dryness, wrinkles, musculoskeletal disorders, cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. Additionally, cancer, like aging, is a complex disease that arises from the accumulation of various genetic and epigenetic alterations. Circadian clock dysregulation has recently been identified as an important risk factor for aging and cancer development. Natural compounds and herbal medicines have gained significant attention for their potential in preventing age-related diseases and inhibiting cancer progression. These compounds demonstrate antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic effects as well as circadian clock regulation. This review explores age-related diseases, cancers, and the potential of specific natural compounds in targeting the key features of these conditions.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| |
Collapse
|
10
|
Khezri MR, Hsueh H, Mohammadipanah S, Khalili Fard J, Ghasemnejad‐Berenji M. The interplay between the PI3K/AKT pathway and circadian clock in physiologic and cancer-related pathologic conditions. Cell Prolif 2024; 57:e13608. [PMID: 38336976 PMCID: PMC11216939 DOI: 10.1111/cpr.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/15/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The circadian clock is responsible for the regulation of different cellular processes, and its disturbance has been linked to the development of different diseases, such as cancer. The main molecular mechanism for this issue has been linked to the crosstalk between core clock regulators and intracellular pathways responsible for cell survival. The PI3K/AKT signalling pathway is one of the most known intracellular pathways in the case of cancer initiation and progression. This pathway regulates different aspects of cell survival including proliferation, apoptosis, metabolism, and response to environmental stimuli. Accumulating evidence indicates that there is a link between the PI3K/AKT pathway activity and circadian rhythm in physiologic and cancer-related pathogenesis. Different classes of PI3Ks and AKT isoforms are involved in regulating circadian clock components in a transcriptional and functional manner. Reversely, core clock components induce a rhythmic fashion in PI3K and AKT activity in physiologic and pathogenic conditions. The aim of this review is to re-examine the interplay between this pathway and circadian clock components in normal condition and cancer pathogenesis, which provides a better understanding of how circadian rhythms may be involved in cancer progression.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Reproductive Health Research Center, Clinical Research InstituteUrmia University of Medical SciencesUrmiaIran
| | - Hsiang‐Yin Hsueh
- The Ohio State University Graduate Program in Molecular, Cellular and Developmental BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Somayeh Mohammadipanah
- Reproductive Health Research Center, Clinical Research InstituteUrmia University of Medical SciencesUrmiaIran
| | - Javad Khalili Fard
- Department of Pharmacology and Toxicology, Faculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Morteza Ghasemnejad‐Berenji
- Department of Pharmacology and Toxicology, Faculty of PharmacyUrmia University of Medical SciencesUrmiaIran
- Research Center for Experimental and Applied Pharmaceutical SciencesUrmia University of Medical SciencesUrmiaIran
| |
Collapse
|
11
|
Sharma D, Adnan D, Abdel-Reheem MK, Anafi RC, Leary DD, Bishehsari F. Circadian transcriptome of pancreatic adenocarcinoma unravels chronotherapeutic targets. JCI Insight 2024; 9:e177697. [PMID: 38716727 PMCID: PMC11141942 DOI: 10.1172/jci.insight.177697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/03/2024] [Indexed: 06/02/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer characterized by a poor outcome and an increasing incidence. A significant majority (>80%) of newly diagnosed cases are deemed unresectable, leaving chemotherapy as the sole viable option, though with only moderate success. This necessitates the identification of improved therapeutic options for PDA. We hypothesized that there are temporal variations in cancer-relevant processes within PDA tumors, offering insights into the optimal timing of drug administration - a concept termed chronotherapy. In this study, we explored the presence of the circadian transcriptome in PDA using patient-derived organoids and validated these findings by comparing PDA data from The Cancer Genome Atlas with noncancerous healthy pancreas data from GTEx. Several PDA-associated pathways (cell cycle, stress response, Rho GTPase signaling) and cancer driver hub genes (EGFR and JUN) exhibited a cancer-specific rhythmic pattern intricately linked to the circadian clock. Through the integration of multiple functional measurements for rhythmic cancer driver genes, we identified top chronotherapy targets and validated key findings in molecularly divergent pancreatic cancer cell lines. Testing the chemotherapeutic efficacy of clinically relevant drugs further revealed temporal variations that correlated with drug-target cycling. Collectively, our study unravels the PDA circadian transcriptome and highlights a potential approach for optimizing chrono-chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Deepak Sharma
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, Illinois, USA
| | - Darbaz Adnan
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, Illinois, USA
| | - Mostafa K. Abdel-Reheem
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, Illinois, USA
| | - Ron C. Anafi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel D. Leary
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, Illinois, USA
| | - Faraz Bishehsari
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, Illinois, USA
- Department of Internal Medicine, Division of Gastroenterology and
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
12
|
Yang Y, Wu G, Sancar A, Hogenesch JB. Mutations of the circadian clock genes Cry, Per, or Bmal1 have different effects on the transcribed and nontranscribed strands of cycling genes. Proc Natl Acad Sci U S A 2024; 121:e2316731121. [PMID: 38359290 PMCID: PMC10895256 DOI: 10.1073/pnas.2316731121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
One important goal of circadian medicine is to apply time-of-day dosing to improve the efficacy of chemotherapy. However, limited knowledge of how the circadian clock regulates DNA repair presents a challenge to mechanism-based clinical application. We studied time-series genome-wide nucleotide excision repair in liver and kidney of wild type and three different clock mutant genotypes (Cry1-/-Cry2-/-, Per1-/-Per2-/-, and Bmal1-/-). Rhythmic repair on the nontranscribed strand was lost in all three clock mutants. Conversely, rhythmic repair of hundreds of genes on the transcribed strand (TSs) persisted in the livers of Cry1-/-Cry2-/- and Per1-/-Per2-/- mice. We identified a tissue-specific, promoter element-driven repair mode on TSs of collagen and angiogenesis genes in the absence of clock activators or repressors. Furthermore, repair on TSs of thousands of genes was altered when the circadian clock is disrupted. These data contribute to a better understanding of the regulatory role of the circadian clock on nucleotide excision repair in mammals and may be invaluable toward the design of time-aware platinum-based interventions in cancer.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Gang Wu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - John B Hogenesch
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Divisions of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| |
Collapse
|
13
|
Vlachou D, Veretennikova M, Usselmann L, Vasilyev V, Ott S, Bjarnason GA, Dallmann R, Levi F, Rand DA. TimeTeller: A tool to probe the circadian clock as a multigene dynamical system. PLoS Comput Biol 2024; 20:e1011779. [PMID: 38422117 DOI: 10.1371/journal.pcbi.1011779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/12/2024] [Accepted: 12/21/2023] [Indexed: 03/02/2024] Open
Abstract
Recent studies have established that the circadian clock influences onset, progression and therapeutic outcomes in a number of diseases including cancer and heart diseases. Therefore, there is a need for tools to measure the functional state of the molecular circadian clock and its downstream targets in patients. Moreover, the clock is a multi-dimensional stochastic oscillator and there are few tools for analysing it as a noisy multigene dynamical system. In this paper we consider the methodology behind TimeTeller, a machine learning tool that analyses the clock as a noisy multigene dynamical system and aims to estimate circadian clock function from a single transcriptome by modelling the multi-dimensional state of the clock. We demonstrate its potential for clock systems assessment by applying it to mouse, baboon and human microarray and RNA-seq data and show how to visualise and quantify the global structure of the clock, quantitatively stratify individual transcriptomic samples by clock dysfunction and globally compare clocks across individuals, conditions and tissues thus highlighting its potential relevance for advancing circadian medicine.
Collapse
Affiliation(s)
- Denise Vlachou
- Mathematics Institute & Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| | - Maria Veretennikova
- Mathematics Institute & Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| | - Laura Usselmann
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Vadim Vasilyev
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Sascha Ott
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Georg A Bjarnason
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Francis Levi
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Department of Statistics, University of Warwick, Coventry, United Kingdom
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, Medical Oncology Department, Paul Brousse Hospital, Villejuif, France
| | - David A Rand
- Mathematics Institute & Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
14
|
Cazarin J, DeRollo RE, Shahidan SNABA, Burchett JB, Mwangi D, Krishnaiah S, Hsieh AL, Walton ZE, Brooks R, Mello SS, Weljie AM, Dang CV, Altman BJ. MYC disrupts transcriptional and metabolic circadian oscillations in cancer and promotes enhanced biosynthesis. PLoS Genet 2023; 19:e1010904. [PMID: 37639465 PMCID: PMC10491404 DOI: 10.1371/journal.pgen.1010904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/08/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
The molecular circadian clock, which controls rhythmic 24-hour oscillation of genes, proteins, and metabolites in healthy tissues, is disrupted across many human cancers. Deregulated expression of the MYC oncoprotein has been shown to alter expression of molecular clock genes, leading to a disruption of molecular clock oscillation across cancer types. It remains unclear what benefit cancer cells gain from suppressing clock oscillation, and how this loss of molecular clock oscillation impacts global gene expression and metabolism in cancer. We hypothesized that MYC or its paralog N-MYC (collectively termed MYC herein) suppress oscillation of gene expression and metabolism to upregulate pathways involved in biosynthesis in a static, non-oscillatory fashion. To test this, cells from distinct cancer types with inducible MYC were examined, using time-series RNA-sequencing and metabolomics, to determine the extent to which MYC activation disrupts global oscillation of genes, gene expression pathways, and metabolites. We focused our analyses on genes, pathways, and metabolites that changed in common across multiple cancer cell line models. We report here that MYC disrupted over 85% of oscillating genes, while instead promoting enhanced ribosomal and mitochondrial biogenesis and suppressed cell attachment pathways. Notably, when MYC is activated, biosynthetic programs that were formerly circadian flipped to being upregulated in an oscillation-free manner. Further, activation of MYC ablates the oscillation of nutrient transporter proteins while greatly upregulating transporter expression, cell surface localization, and intracellular amino acid pools. Finally, we report that MYC disrupts metabolite oscillations and the temporal segregation of amino acid metabolism from nucleotide metabolism. Our results demonstrate that MYC disruption of the molecular circadian clock releases metabolic and biosynthetic processes from circadian control, which may provide a distinct advantage to cancer cells.
Collapse
Affiliation(s)
- Juliana Cazarin
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Rachel E. DeRollo
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Siti Noor Ain Binti Ahmad Shahidan
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Jamison B. Burchett
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Daniel Mwangi
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Saikumari Krishnaiah
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Annie L. Hsieh
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Zandra E. Walton
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Rebekah Brooks
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Stephano S. Mello
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Aalim M. Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Chi V. Dang
- Ludwig Institute for Cancer Research, New York, New York, United States of America
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Maryland, United States of America
| | - Brian J. Altman
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|