1
|
White NJ, Chotivanich K. Artemisinin-resistant malaria. Clin Microbiol Rev 2024; 37:e0010924. [PMID: 39404268 PMCID: PMC11629630 DOI: 10.1128/cmr.00109-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
SUMMARYThe artemisinin antimalarials are the cornerstone of current malaria treatment. The development of artemisinin resistance in Plasmodium falciparum poses a major threat to malaria control and elimination. Recognized first in the Greater Mekong subregion of Southeast Asia nearly 20 years ago, artemisinin resistance has now been documented in Guyana, South America, in Papua New Guinea, and most recently, it has emerged de novo in East Africa (Rwanda, Uganda, South Sudan, Tanzania, Ethiopia, Eritrea, and eastern DRC) where it has now become firmly established. Artemisinin resistance is associated with mutations in the propeller region of the PfKelch gene, which play a causal role, although the parasites' genetic background also makes an important contribution to the phenotype. Clinically, artemisinin resistance manifests as reduced parasiticidal activity and slower parasite clearance and thus an increased risk of treatment failure following artemisinin-based combination therapy (ACT). This results from the loss of artemisinin activity against the younger circulating ring stage parasites. This loss of activity is likely to diminish the life-saving advantage of artesunate in the treatment of severe falciparum malaria. Gametocytocidal and thus transmission blocking activities are also reduced. At current levels of resistance, artemisinin-resistant parasites still remain susceptible at the trophozoite stage of asexual development, and so, artemisinin still contributes to the therapeutic response. As ACTs are the most widely used antimalarial drugs in the world, it is essential from a malaria control perspective that ACT cure rates remain high. Better methods of identifying uncomplicated hyperparasitemia, the main cause of ACT treatment failure, are required so that longer courses of treatment can be given to these high-risk patients. Reducing the use of artemisinin monotherapies will reduce the continued selection pressure which could lead potentially to higher levels of artemisinin resistance. Triple artemisinin combination therapies should be deployed as soon as possible to protect the ACT partner drugs and thereby delay the emergence of higher levels of resistance. As new affordable antimalarial drugs are still several years away, the control of artemisinin resistance must depend on the better use of available tools.
Collapse
Affiliation(s)
- N. J. White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - K. Chotivanich
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Watson OJ, Muchiri S, Ward A, Meier-Sherling C, Asua V, Katairo T, Brewer T, Cuomo-Dannenburg G, Winskill P, Bailey JA, Okell L, Scudu G, Woolsey AM. Risk of selection and timelines for the continued spread of artemisinin and partner drug resistance in Africa. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.28.24312699. [PMID: 39252921 PMCID: PMC11383480 DOI: 10.1101/2024.08.28.24312699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The introduction of artemisinin combination therapies (ACTs) has significantly reduced the burden of Plasmodium falciparum malaria, yet the emergence of artemisinin partial resistance (ART-R) as well as partner drug resistance threatens these gains. Recent confirmations of prevalent de novo ART-R mutations in Africa, in particular in Rwanda, Uganda and Ethiopia, underscore the urgency of addressing this issue in Africa. Our objective is to characterise this evolving resistance landscape in Africa and understand the speed with which ART-R will continue to spread. We produce estimates of both ART-R and partner drug resistance by bringing together WHO, WWARN and MalariaGen Pf7k data on antimalarial resistance in combination with a literature review. We integrate these estimates within a mathematical modelling approach, aincorporating to estimate parameters known to impact the selection of ART-R for each malaria-endemic country and explore scenarios of ART-R spread and establishment. We identify 16 malaria-endemic countries in Africa to prioritise for surveillance and future deployment of alternative antimalarial strategies, based on ART-R reaching greater than 10% prevalence by 2040 under current malaria burden and effective-treatment coverage. If resistance continues to spread at current rates with no change in drug policy, we predict that partner drug resistance will emerge and the mean percentage of treatment failure across Africa will reach 30.74% by 2060 (parameter uncertainty range: 24.98% - 34.54%). This translates to an alarming number of treatment failures, with 52,980,600 absolute cases of treatment failure predicted in 2060 in Africa (parameter uncertainty range: 26,374,200 - 93,672,400) based on current effective treatment coverage. Our results provide a refined and updated prediction model for the emergence of ART-R to help guide antimalarial policy and prioritise future surveillance efforts and innovation in Africa. These results put into stark context the speed with which antimalarial resistance may spread in Africa if left unchecked, confirming the need for swift and decisive action in formulating antimalarial treatment policies focused on furthering malaria control and containing antimalarial resistance in Africa. The rise of artemisinin partial resistance (ART-R) and increasing partner drug tolerance by Plasmodium falciparum malaria in Africa threatens to undo malaria control efforts. Recent confirmations of de novo ART-R markers in Rwanda, Uganda, and Ethiopia highlight the urgent need to address this threat in Africa, where the vast majority of cases and deaths occur. This study characterises the resistance landscape and predicts the spread of antimalarial resistance across Africa. We estimate and map the current levels of resistance markers related to artemisinin and its partner drugs using WHO, WWARN, and MalariaGen Pf7k data. We combine these estimates with current malaria transmission and treatment data and use an established individual-based model of malaria resistance to simulate future resistance spread. We identify 16 African countries at highest risk of ART-R for prioritisation of enhanced surveillance and alternative antimalarial strategies. We project that, without policy changes, ART-R will exceed 10% in these regions by 2040. By 2060, if resistance spreads unchecked, we predict mean treatment failure rates will reach 30.74% (parameter uncertainty range: 24.98% - 34.54%) across Africa. This alarming spread of resistance is predicted to cause 52.98 million treatment failures (uncertainty range: 26.37 million - 93.67 million) in 2060. The impact of antimalarial resistance in Africa, if left unchecked, would hugely damage efforts to reduce malaria burden. Our results underscore the critical need for swift policy action to contain resistance and guide future surveillance and intervention efforts.
Collapse
Affiliation(s)
- Oliver J Watson
- MRC Centre for Global Infectious Disease Analysis, Faculty of Medicine, Imperial College London, London, UK
| | - Salome Muchiri
- Clinton Health Access Initiative, Boston, MA, 21127, USA
| | - Abby Ward
- Clinton Health Access Initiative, Boston, MA, 21127, USA
| | | | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Thomas Katairo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Tom Brewer
- MRC Centre for Global Infectious Disease Analysis, Faculty of Medicine, Imperial College London, London, UK
| | - Gina Cuomo-Dannenburg
- MRC Centre for Global Infectious Disease Analysis, Faculty of Medicine, Imperial College London, London, UK
| | - Peter Winskill
- MRC Centre for Global Infectious Disease Analysis, Faculty of Medicine, Imperial College London, London, UK
| | - Jeffrey A Bailey
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Lucy Okell
- MRC Centre for Global Infectious Disease Analysis, Faculty of Medicine, Imperial College London, London, UK
| | | | | |
Collapse
|
3
|
Zupko RJ, Servadio JL, Nguyen TD, Tran TNA, Tran KT, Somé AF, Boni MF. Role of seasonal importation and genetic drift on selection for drug-resistant genotypes of Plasmodium falciparum in high-transmission settings. J R Soc Interface 2024; 21:20230619. [PMID: 38442861 PMCID: PMC10914515 DOI: 10.1098/rsif.2023.0619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Historically Plasmodium falciparum has followed a pattern of drug resistance first appearing in low-transmission settings before spreading to high-transmission settings. Several features of low-transmission regions are hypothesized as explanations: higher chance of symptoms and treatment seeking, better treatment access, less within-host competition among clones and lower rates of recombination. Here, we test whether importation of drug-resistant parasites is more likely to lead to successful emergence and establishment in low-transmission or high-transmission periods of the same epidemiological setting, using a spatial, individual-based stochastic model of malaria and drug-resistance evolution calibrated for Burkina Faso. Upon controlling for the timing of importation of drug-resistant genotypes and examination of key model variables, we found that drug-resistant genotypes imported during the low-transmission season were (i) more susceptible to stochastic extinction due to the action of genetic drift, and (ii) more likely to lead to establishment of drug resistance when parasites are able to survive early stochastic loss due to drift. This implies that rare importation events are more likely to lead to establishment if they occur during a high-transmission season, but that constant importation (e.g. neighbouring countries with high levels of resistance) may produce a greater risk during low-transmission periods.
Collapse
Affiliation(s)
- Robert J. Zupko
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph L. Servadio
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Thu Nguyen-Anh Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Kien Trung Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Anyirékun Fabrice Somé
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, Bobo Dioulasso, Burkina Faso
| | - Maciej F. Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Li EZ, Nguyen TD, Tran TNA, Zupko RJ, Boni MF. Assessing emergence risk of double-resistant and triple-resistant genotypes of Plasmodium falciparum. Nat Commun 2024; 15:1390. [PMID: 38360803 PMCID: PMC10869733 DOI: 10.1038/s41467-024-45547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
Delaying and slowing antimalarial drug resistance evolution is a priority for malaria-endemic countries. Until novel therapies become available, the mainstay of antimalarial treatment will continue to be artemisinin-based combination therapy (ACT). Deployment of different ACTs can be optimized to minimize evolutionary pressure for drug resistance by deploying them as a set of co-equal multiple first-line therapies (MFT) rather than rotating therapies in and out of use. Here, we consider one potential detriment of MFT policies, namely, that the simultaneous deployment of multiple ACTs could drive the evolution of different resistance alleles concurrently and that these resistance alleles could then be brought together by recombination into double-resistant or triple-resistant parasites. Using an individual-based model, we compare MFT and cycling policies in malaria transmission settings ranging from 0.1% to 50% prevalence. We define a total risk measure for multi-drug resistance (MDR) by summing the area under the genotype-frequency curves (AUC) of double- and triple-resistant genotypes. When prevalence ≥ 1%, total MDR risk ranges from statistically similar to 80% lower under MFT policies than under cycling policies, irrespective of whether resistance is imported or emerges de novo. At 0.1% prevalence, there is little statistical difference in MDR risk between MFT and cycling.
Collapse
Affiliation(s)
- Eric Zhewen Li
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Thu Nguyen-Anh Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Robert J Zupko
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Zupko RJ, Nguyen TD, Ngabonziza JCS, Kabera M, Li H, Tran TNA, Tran KT, Uwimana A, Boni MF. Modeling policy interventions for slowing the spread of artemisinin-resistant pfkelch R561H mutations in Rwanda. Nat Med 2023; 29:2775-2784. [PMID: 37735560 PMCID: PMC10667088 DOI: 10.1038/s41591-023-02551-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/18/2023] [Indexed: 09/23/2023]
Abstract
Artemisinin combination therapies (ACTs) are highly effective at treating uncomplicated Plasmodium falciparum malaria, but the emergence of the new pfkelch13 R561H mutation in Rwanda, associated with delayed parasite clearance, suggests that interventions are needed to slow its spread. Using a Rwanda-specific spatial calibration of an individual-based malaria model, we evaluate 26 strategies aimed at minimizing treatment failures and delaying the spread of R561H after 3, 5 and 10 years. Lengthening ACT courses and deploying multiple first-line therapies (MFTs) reduced treatment failures after 5 years when compared to the current approach of a 3-d course of artemether-lumefantrine. The best among these options (an MFT policy) resulted in median treatment failure counts that were 49% lower and a median R561H allele frequency that was 0.15 lower than under baseline. New approaches to resistance management, such as triple ACTs or sequential courses of two different ACTs, were projected to have a larger impact than longer ACT courses or MFT; these were associated with median treatment failure counts in 5 years that were 81-92% lower than the current approach. A policy response to currently circulating artemisinin-resistant genotypes in Africa is urgently needed to prevent a population-wide rise in treatment failures.
Collapse
Affiliation(s)
- Robert J Zupko
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA.
| | - Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - J Claude S Ngabonziza
- Research, Innovation and Data Science Division, Rwanda Biomedical Center (RBC), Kigali, Rwanda
- Department of Clinical Biology, University of Rwanda, Kigali, Rwanda
| | - Michee Kabera
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre (RBC), Kigali, Rwanda
| | - Haojun Li
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
- Department of Computer Science, Columbia University, New York City, NY, USA
| | - Thu Nguyen-Anh Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Kien Trung Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Aline Uwimana
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre (RBC), Kigali, Rwanda
- Louvain Drug Research Institute, Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|