1
|
Xue M, March L. Endothelial Protein C Receptor: A Multifunctional Mediator in the Pathophysiology of Rheumatoid Arthritis. Cells 2025; 14:485. [PMID: 40214439 PMCID: PMC11987911 DOI: 10.3390/cells14070485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
The endothelial protein C receptor (EPCR) is gaining recognition for its diverse functions that extend beyond its traditional role in the protein C anticoagulant pathway. This comprehensive review examines how EPCR contributes to the pathophysiology of rheumatoid arthritis (RA), an autoimmune disorder characterized by persistent inflammation and joint destruction. We explore how EPCR influences inflammatory responses and the coagulation cascade, affects endothelial function and vascular integrity, and regulates the characteristics of synovial fibroblasts in the context of RA. Furthermore, the review highlights the mechanisms by which EPCR affects disease progression, its potential use as a biomarker for disease activity, and the therapeutic implications of targeting EPCR in the treatment of RA. By synthesizing current research findings, this review aims to provide a detailed understanding of EPCR's role in RA, offering insights into innovative diagnostic and therapeutic strategies that could improve patient outcomes.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2065, Australia
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2065, Australia;
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2065, Australia;
- Department of Rheumatology, Royal North Shore Hospital, Syndey, NSW 2065, Australia
| |
Collapse
|
2
|
O’Hehir ZD, Lynch T, O’Neill S, March L, Xue M. Endothelial Protein C Receptor and Its Impact on Rheumatic Disease. J Clin Med 2024; 13:2030. [PMID: 38610795 PMCID: PMC11012567 DOI: 10.3390/jcm13072030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Endothelial Protein C Receptor (EPCR) is a key regulator of the activated protein C anti-coagulation pathway due to its role in the binding and activation of this protein. EPCR also binds to other ligands such as Factor VII and X, γδ T-cells, plasmodium falciparum erythrocyte membrane protein 1, and Secretory group V Phospholipases A2, facilitating ligand-specific functions. The functions of EPCR can also be regulated by soluble (s)EPCR that competes for the binding sites of membrane-bound (m)EPCR. sEPCR is created when mEPCR is shed from the cell surface. The propensity of shedding alters depending on the genetic haplotype of the EPCR gene that an individual may possess. EPCR plays an active role in normal homeostasis, anti-coagulation pathways, inflammation, and cell stemness. Due to these properties, EPCR is considered a potential effector/mediator of inflammatory diseases. Rheumatic diseases such as rheumatoid arthritis and systemic lupus erythematosus are autoimmune/inflammatory conditions that are associated with elevated EPCR levels and disease activity, potentially driven by EPCR. This review highlights the functions of EPCR and its contribution to rheumatic diseases.
Collapse
Affiliation(s)
- Zachary Daniel O’Hehir
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney at Royal North Shore Hospital, Sydney, NSW 2065, Australia;
| | - Tom Lynch
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Sean O’Neill
- Department of Rheumatology, Royal North Shore Hospital, Syndey, NSW 2065, Australia;
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
- Department of Rheumatology, Royal North Shore Hospital, Syndey, NSW 2065, Australia;
| | - Meilang Xue
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney at Royal North Shore Hospital, Sydney, NSW 2065, Australia;
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| |
Collapse
|
3
|
Xue M, Lin H, Liang HPH, Bereza-Malcolm L, Lynch T, Sinnathurai P, Weiler H, Jackson C, March L. EPCR deficiency ameliorates inflammatory arthritis in mice by suppressing the activation and migration of T cells and dendritic cells. Rheumatology (Oxford) 2024; 63:571-580. [PMID: 37228024 PMCID: PMC10834933 DOI: 10.1093/rheumatology/kead230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/08/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVES Endothelial protein C receptor (EPCR) is highly expressed in synovial tissues of patients with RA, but the function of this receptor remains unknown in RA. This study investigated the effect of EPCR on the onset and development of inflammatory arthritis and its underlying mechanisms. METHODS CIA was induced in EPCR gene knockout (KO) and matched wild-type (WT) mice. The onset and development of arthritis was monitored clinically and histologically. T cells, dendritic cells (DCs), EPCR and cytokines from EPCR KO and WT mice, RA patients and healthy controls (HCs) were detected by flow cytometry and ELISA. RESULTS EPCR KO mice displayed >40% lower arthritis incidence and 50% less disease severity than WT mice. EPCR KO mice also had significantly fewer Th1/Th17 cells in synovial tissues with more DCs in circulation. Lymph nodes and synovial CD4 T cells from EPCR KO mice expressed fewer chemokine receptors CXCR3, CXCR5 and CCR6 than WT mice. In vitro, EPCR KO spleen cells contained fewer Th1 and more Th2 and Th17 cells than WT and, in concordance, blocking EPCR in WT cells stimulated Th2 and Th17 cells. DCs generated from EPCR KO bone marrow were less mature and produced less MMP-9. Circulating T cells from RA patients expressed higher levels of EPCR than HC cells; blocking EPCR stimulated Th2 and Treg cells in vitro. CONCLUSION Deficiency of EPCR ameliorates arthritis in CIA via inhibition of the activation and migration of pathogenic Th cells and DCs. Targeting EPCR may constitute a novel strategy for future RA treatment.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
- Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Haiyan Lin
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
- Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Hai Po Helena Liang
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Lara Bereza-Malcolm
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
- Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Tom Lynch
- Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Premarani Sinnathurai
- Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Hartmut Weiler
- Versiti Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher Jackson
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Lyn March
- Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|
4
|
Crotty KM, Yeligar SM. Hyaladherins May be Implicated in Alcohol-Induced Susceptibility to Bacterial Pneumonia. Front Immunol 2022; 13:865522. [PMID: 35634317 PMCID: PMC9133445 DOI: 10.3389/fimmu.2022.865522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Although the epidemiology of bacterial pneumonia and excessive alcohol use is well established, the mechanisms by which alcohol induces risk of pneumonia are less clear. Patterns of alcohol misuse, termed alcohol use disorders (AUD), affect about 15 million people in the United States. Compared to otherwise healthy individuals, AUD increase the risk of respiratory infections and acute respiratory distress syndrome (ARDS) by 2-4-fold. Levels and fragmentation of hyaluronic acid (HA), an extracellular glycosaminoglycan of variable molecular weight, are increased in chronic respiratory diseases, including ARDS. HA is largely involved in immune-assisted wound repair and cell migration. Levels of fragmented, low molecular weight HA are increased during inflammation and decrease concomitant with leukocyte levels following injury. In chronic respiratory diseases, levels of fragmented HA and leukocytes remain elevated, inflammation persists, and respiratory infections are not cleared efficiently, suggesting a possible pathological mechanism for prolonged bacterial pneumonia. However, the role of HA in alcohol-induced immune dysfunction is largely unknown. This mini literature review provides insights into understanding the role of HA signaling in host immune defense following excessive alcohol use. Potential therapeutic strategies to mitigate alcohol-induced immune suppression in bacterial pneumonia and HA dysregulation are also discussed.
Collapse
Affiliation(s)
- Kathryn M Crotty
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Samantha M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| |
Collapse
|
5
|
Bayrakci N, Ozkan G, Mutlu LC, Erdem L, Yildirim I, Gulen D, Celikkol A. Relationship between serum soluble endothelial protein C receptor level and COVID-19 findings. Blood Coagul Fibrinolysis 2021; 32:550-555. [PMID: 34321403 PMCID: PMC8630928 DOI: 10.1097/mbc.0000000000001070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 11/27/2022]
Abstract
Coronavirus-related disease-2019 (COVID-19)-associated coagulopathy presents predominantly with thrombosis and leads to complications in close association with inflammatory process. Soluble endothelial protein C receptor (sEPCR), which is the soluble form of EPCR, reduces the anticoagulant and anti-inflammatory activity of activated protein C. The purpose of this study is to investigate the relationship between sEPCR and the laboratory parameters and thorax computed tomography (CT) findings in the course of COVID-19. Twenty-five laboratory-confirmed [reverse transcription-quantitative polimerase chain reaction (RT-qPCR) positive] and 24 clinically diagnosed (RT-qPCR negative) COVID-19 patients were enrolled in the study. Blood specimens were collected for sEPCR and haematological and biochemical parameter measurement. Thorax CT was performed to detect COVID-19 findings. These parameters from RT-qPCR positive and negative patients were then compared. Although there was no difference between the groups in terms of symptoms, the time between the onset of symptoms and the admission time was shorter in RT-qPCR positive group (P = 0.000). sEPCR levels were significantly higher in the RT-qPCR positive group (P = 0.011). Patients with ground-glass opacity and bilateral involvement on thorax CT have higher serum sEPCR levels (P = 0.012 and 0.043, respectively). This study has shown for the first time that serum sEPCR levels, which is a member of coagulation cascade and has also been reported to be associated with inflammation, is higher in patients with positive RT-qPCR test and patients with GGO or bilateral involvement on thorax CT regardless of the PCR result.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aliye Celikkol
- Department of Clinical Biochemistry, Tekirdag Namik Kemal University, School of Medicine, Tekirdag, Turkey
| |
Collapse
|
6
|
Keshava S, Magisetty J, Tucker TA, Kujur W, Mulik S, Esmon CT, Idell S, Rao LVM, Pendurthi UR. Endothelial Cell Protein C Receptor Deficiency Attenuates Streptococcus pneumoniae-induced Pleural Fibrosis. Am J Respir Cell Mol Biol 2021; 64:477-491. [PMID: 33600743 PMCID: PMC8008801 DOI: 10.1165/rcmb.2020-0328oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pneumoniae is the leading cause of hospital community-acquired pneumonia. Patients with pneumococcal pneumonia may develop complicated parapneumonic effusions or empyema that can lead to pleural organization and subsequent fibrosis. The pathogenesis of pleural organization and scarification involves complex interactions between the components of the immune system, coagulation, and fibrinolysis. EPCR (endothelial protein C receptor) is a critical component of the protein C anticoagulant pathway. The present study was performed to evaluate the role of EPCR in the pathogenesis of S. pneumoniae infection-induced pleural thickening and fibrosis. Our studies show that the pleural mesothelium expresses EPCR. Intrapleural instillation of S. pneumoniae impairs lung compliance and lung volume in wild-type and EPCR-overexpressing mice but not in EPCR-deficient mice. Intrapleural S. pneumoniae infection induces pleural thickening in wild-type mice. Pleural thickening is more pronounced in EPCR-overexpressing mice, whereas it is reduced in EPCR-deficient mice. Markers of mesomesenchymal transition are increased in the visceral pleura of S. pneumoniae-infected wild-type and EPCR-overexpressing mice but not in EPCR-deficient mice. The lungs of wild-type and EPCR-overexpressing mice administered intrapleural S. pneumoniae showed increased infiltration of macrophages and neutrophils, which was significantly reduced in EPCR-deficient mice. An analysis of bacterial burden in the pleural lavage, the lungs, and blood revealed a significantly lower bacterial burden in EPCR-deficient mice compared with wild-type and EPCR-overexpressing mice. Overall, our data provide strong evidence that EPCR deficiency protects against S. pneumoniae infection-induced impairment of lung function and pleural remodeling.
Collapse
Affiliation(s)
| | | | | | - Weshely Kujur
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Sachin Mulik
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Charles T. Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | | | | | | |
Collapse
|
7
|
Evans CE, Zhao YY. Impact of thrombosis on pulmonary endothelial injury and repair following sepsis. Am J Physiol Lung Cell Mol Physiol 2017; 312:L441-L451. [PMID: 28130261 PMCID: PMC5407094 DOI: 10.1152/ajplung.00441.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/20/2016] [Accepted: 01/19/2017] [Indexed: 12/19/2022] Open
Abstract
The prevailing morbidity and mortality in sepsis are largely due to multiple organ dysfunction (MOD), most commonly lung injury, as well as renal and cardiac dysfunction. Despite recent advances in defining many aspects of the pathogenesis of sepsis-related MOD, including acute respiratory distress syndrome (ARDS), there are currently no effective pharmacological or cell-based treatments for the disease. Human and animal studies have shown that pulmonary thrombosis is common in sepsis-induced ARDS, and preclinical studies have shown that anticoagulation may improve outcome following sepsis challenge. The potential beneficial effect of anticoagulation on outcome is unconvincing in clinical studies, however, and these discrepancies may arise from the multiple and sometimes opposing actions of thrombosis on the pulmonary endothelium following sepsis. It has been suggested, for example, that mild pulmonary thrombosis prevents escape of bacterial infection into the circulation, while severe thrombosis causes hypoxia and results in pulmonary endothelial damage. Evidence from both human and animal studies has demonstrated the key role of microvascular leakage in determining the outcome of sepsis. In this review, we describe thrombosis-dependent mechanisms that regulate pulmonary endothelial injury and repair following sepsis, including activation of the coagulation cascade by tissue factor and stimulation of vascular repair by hypoxia-inducible factors. Targeting such mechanisms through anticoagulant, anti-inflammatory, and reparative methods may represent a novel approach for the treatment of septic patients.
Collapse
Affiliation(s)
- Colin E Evans
- Department of Pharmacology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois; and
- Center for Lung and Vascular Biology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois
| | - You-Yang Zhao
- Department of Pharmacology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois; and
- Center for Lung and Vascular Biology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois
| |
Collapse
|
8
|
Birnie E, Koh GCKW, Löwenberg EC, Meijers JCM, Maude RR, Day NPJ, Peacock SJ, van der Poll T, Wiersinga WJ. Increased Von Willebrand factor, decreased ADAMTS13 and thrombocytopenia in melioidosis. PLoS Negl Trop Dis 2017; 11:e0005468. [PMID: 28296884 PMCID: PMC5376340 DOI: 10.1371/journal.pntd.0005468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/31/2017] [Accepted: 03/08/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Melioidosis, caused by bioterror treat agent Burkholderia pseudomallei, is an important cause of community-acquired Gram-negative sepsis in Southeast Asia and Northern Australia. New insights into the pathogenesis of melioidosis may help improve treatment and decrease mortality rates from this dreadful disease. We hypothesized that changes in Von Willebrand factor (VWF) function should occur in melioidosis, based on the presence of endothelial stimulation by endotoxin, pro-inflammatory cytokines and thrombin in melioidosis, and investigated whether this impacted on outcome. METHODS/PRINCIPAL FINDINGS We recruited 52 controls and 34 culture-confirmed melioidosis patients at Sappasithiprasong Hospital in Ubon Ratchathani, Thailand. All subjects were diabetic. Platelet counts in melioidosis patients were lower compared to controls (p = 0.0001) and correlated with mortality (p = 0.02). VWF antigen levels were higher in patients (geometric mean, 478 U/dl) compared to controls (166 U/dL, p<0.0001). The high levels of VWF in melioidosis appeared to be due to increased endothelial stimulation (VWF propeptide levels were elevated, p<0.0001) and reduced clearance (ADAMTS13 reduction, p<0.0001). However, VWF antigen levels did not correlate with platelet counts implying that thrombocytopenia in acute melioidosis has an alternative cause. CONCLUSIONS/SIGNIFICANCE Thrombocytopenia is a key feature of melioidosis and is correlated with mortality. Additionally, excess VWF and ADAMTS13 deficiency are features of acute melioidosis, but are not the primary drivers of thrombocytopenia in melioidosis. Further studies on the role of thrombocytopenia in B. pseudomallei infection are needed.
Collapse
Affiliation(s)
- Emma Birnie
- Center for Experimental and Molecular Medicine, Division of Infectious Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Gavin C. K. W. Koh
- Center for Experimental and Molecular Medicine, Division of Infectious Diseases, Academic Medical Center, Amsterdam, The Netherlands
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kindom
- Department of Infection and Tropical Medicine, Heartlands Hospital, Birmingham, United Kindom
| | - Ester C. Löwenberg
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Joost C. M. Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
- Department of Plasma Proteins, Sanquin Research, Amsterdam, The Netherlands
| | | | - Nicholas P. J. Day
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- The Centre for Clinical Vaccinology and Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kindom
| | - Sharon J. Peacock
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kindom
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Division of Infectious Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - W. Joost Wiersinga
- Center for Experimental and Molecular Medicine, Division of Infectious Diseases, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
9
|
Liang Y, Huang X, Jiang Y, Qin Y, Peng D, Huang Y, Li J, Sooranna SR, Pinhu L. Endothelial protein C receptor polymorphisms and risk of sepsis in a Chinese population. J Int Med Res 2017; 45:504-513. [PMID: 28415941 PMCID: PMC5536666 DOI: 10.1177/0300060516686496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Objective To examine the potential relationship of EPCR polymorphisms and the risk of sepsis in a Chinese population. Methods Snapshot SNP genotyping assays and DNA sequencing methods were used to detect polymorphisms of the EPCR gene, rs2069948C/T (2532C/T) and rs867186A/G (6936A/G), in 64 patients with sepsis and in 113 controls. Soluble EPCR (sEPCR) was measured by ELISA. Results There were significant differences in the allele and genotype frequencies of EPCR gene rs2069948C/T and allele frequencies of rs867186A/G between male and female patients and controls. Females carrying rs2069948 C/T genotype or T allele and males carrying rs867186 A allele were associated with a significantly increased risk of sepsis. Plasma sEPCR levels of sepsis patients were higher than controls and showed no correlation with EPCR gene polymorphisms. Conclusions EPCR polymorphisms may be associated with increased risk of sepsis, but this has no effect on the release of sEPCR in patients with sepsis.
Collapse
Affiliation(s)
- Yanbing Liang
- 1 Affiliated Hospital of Youjiang Medical University, Baise, Guangxi, PR China
| | - Xia Huang
- 1 Affiliated Hospital of Youjiang Medical University, Baise, Guangxi, PR China
| | - Yujie Jiang
- 1 Affiliated Hospital of Youjiang Medical University, Baise, Guangxi, PR China
| | - Yueqiu Qin
- 1 Affiliated Hospital of Youjiang Medical University, Baise, Guangxi, PR China
| | - Dingwei Peng
- 1 Affiliated Hospital of Youjiang Medical University, Baise, Guangxi, PR China
| | - Yuqing Huang
- 1 Affiliated Hospital of Youjiang Medical University, Baise, Guangxi, PR China
| | - Jin Li
- 1 Affiliated Hospital of Youjiang Medical University, Baise, Guangxi, PR China
| | - Suren R Sooranna
- 2 Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Liao Pinhu
- 1 Affiliated Hospital of Youjiang Medical University, Baise, Guangxi, PR China
| |
Collapse
|
10
|
The endothelial protein C receptor rs867186-GG genotype is associated with increased soluble EPCR and could mediate protection against severe malaria. Sci Rep 2016; 6:27084. [PMID: 27255786 PMCID: PMC4891778 DOI: 10.1038/srep27084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/29/2016] [Indexed: 11/23/2022] Open
Abstract
The endothelial protein C receptor (EPCR) appears to play an important role in Plasmodium falciparum endothelial cell binding in severe malaria (SM). Despite consistent findings of elevated soluble EPCR (sEPCR) in other infectious diseases, field studies to date have provided conflicting data about the role of EPCR in SM. To better define this role, we performed genotyping for the rs867186-G variant, associated with increased sEPCR levels, and measured sEPCR levels in two prospective studies of Ugandan children designed to understand immunologic and genetic factors associated with neurocognitive deficits in SM including 551 SM children, 71 uncomplicated malaria (UM) and 172 healthy community children (CC). The rs867186-GG genotype was more frequent in CC (4.1%) than SM (0.6%, P = 0.002). The rs867186-G variant was associated with increased sEPCR levels and sEPCR was lower in children with SM than CC (P < 0.001). Among SM children, those who had a second SM episode showed a trend toward lower plasma sEPCR both at initial admission and at 6-month follow-up compared to those without repeated SM (P = 0.06 for both). The study findings support a role for sEPCR in severe malaria pathogenesis and emphasize a distinct role of sEPCR in malaria as compared to other infectious diseases.
Collapse
|
11
|
Fiusa MML, Carvalho-Filho MA, Annichino-Bizzacchi JM, De Paula EV. Causes and consequences of coagulation activation in sepsis: an evolutionary medicine perspective. BMC Med 2015; 13:105. [PMID: 25943883 PMCID: PMC4422540 DOI: 10.1186/s12916-015-0327-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/16/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Coagulation and innate immunity have been linked together for at least 450 million years of evolution. Sepsis, one of the world's leading causes of death, is probably the condition in which this evolutionary link is more evident. However, the biological and the clinical relevance of this association have only recently gained the attention of the scientific community. DISCUSSION During sepsis, the host response to a pathogen is invariably associated with coagulation activation. For several years, coagulation activation has been solely regarded as a mechanism of tissue damage, a concept that led to several clinical trials of anticoagulant agents for sepsis. More recently, this paradigm has been challenged by the failure of these clinical trials, and by a growing bulk of evidence supporting the concept that coagulation activation is beneficial for pathogen clearance. In this article we discuss recent basic and clinical data that point to a more balanced view of the detrimental and beneficial consequences of coagulation activation in sepsis. Reappraisal of the association between coagulation and immune activation from an evolutionary medicine perspective offers a unique opportunity to gain new insights about the pathogenesis of sepsis, paving the way to more successful approaches in both basic and clinical research in this field.
Collapse
Affiliation(s)
- Maiara Marx Luz Fiusa
- Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo 126, Cidade Universitária Zeferino Vaz, 13083-878, Campinas, SP, Brazil.
| | - Marco Antonio Carvalho-Filho
- Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo 126, Cidade Universitária Zeferino Vaz, 13083-878, Campinas, SP, Brazil.
| | - Joyce M Annichino-Bizzacchi
- Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo 126, Cidade Universitária Zeferino Vaz, 13083-878, Campinas, SP, Brazil. .,Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil.
| | - Erich V De Paula
- Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo 126, Cidade Universitária Zeferino Vaz, 13083-878, Campinas, SP, Brazil. .,Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
12
|
Iba T, Nagakari K. The effect of plasma-derived activated protein C on leukocyte cell-death and vascular endothelial damage. Thromb Res 2015; 135:963-9. [PMID: 25813362 DOI: 10.1016/j.thromres.2015.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/05/2015] [Accepted: 03/03/2015] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The role of leukocyte and its death in the progression in inflammation attracts attention nowadays. The purpose of this study is to examine the effects of activated protein C (APC) on leucocyte cell death and vascular endothelial damage in sepsis. METHODS Wistar rats were infused with lipopolysaccharide (8.0mg/kg) concomitantly with either a low dose (0.5mg/kg), a high dose (5.0mg/kg) of plasma-derived APC or albumin. One and 3hours after the injections, the mesenteric microcirculation was observed by intravital microscopy. The serum levels of nucleosome and High Mobility Group Box 1 (HMGB1) were measured in each group. In another series, cultured leukocyte cell-death in the medium supplemented with serum obtained from each group was examined in vitro. RESULTS Microcirculatory disturbance was significantly suppressed in both the high-dose and low-dose groups compared to the control group (P<0.01, 0.05, respectively). The bleeding area was significantly increased in the control and high-dose groups (P<0.05, 0.01, respectively). Serum levels of cell death markers such as nucleosome and HMGB1 were significantly decreased in the treatment groups (P<0.01), and the protective effect was more pronounced in high-dose group. Cell death suppression was most prominent in high-dose group and the formation of neutrophil extracellular traps (NETs) was significantly suppressed in the treatment groups. CONCLUSION Low-dose plasma-derived APC exerted protective effects on the microcirculation without increasing the risk of bleeding. The protective effect against leukocyte cell death and the suppressive effect on NETs formation of APC might be related to its beneficial effects.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of MedicineJapan.
| | - Kunihiko Nagakari
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of MedicineJapan.
| |
Collapse
|
13
|
Kager LM, van der Poll T, Wiersinga WJ. The coagulation system in melioidosis: from pathogenesis to new treatment strategies. Expert Rev Anti Infect Ther 2014; 12:993-1002. [PMID: 24962103 DOI: 10.1586/14787210.2014.928198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a dreadful disease common in South-East Asia and Northern Australia and is characterized by chronic suppurative lesions and pneumonia. Melioidosis may evolve into severe sepsis with multi-organ failure with high mortalities, despite proper antibiotic therapy. Besides activation of a strong pro-inflammatory host response, the coagulation system plays an important role during melioidosis, which is thought to be host-protective. In particular, a procoagulant state together with downregulation of anticoagulant pathways and activation of fibrinolysis are present, all closely interrelated with parameters of inflammation. This review presents an overview of recent studies in which the role of coagulation, anti-coagulation and fibrinolysis during melioidosis was investigated both in patients and in experimental settings.
Collapse
Affiliation(s)
- Liesbeth Martine Kager
- Academic Medical Center, Center for Experimental and Molecular Medicine (CEMM), University of Amsterdam, Meibergdreef 9, Room G2-130,1105 AZ, Amsterdam, The Netherlands
| | | | | |
Collapse
|
14
|
van der Poll T, Herwald H. The coagulation system and its function in early immune defense. Thromb Haemost 2014; 112:640-8. [PMID: 24696161 DOI: 10.1160/th14-01-0053] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 02/18/2014] [Indexed: 02/06/2023]
Abstract
Blood coagulation has a Janus-faced role in infectious diseases. When systemically activated, it can cause serious complications associated with high morbidity and mortality. However, coagulation is also part of the innate immune system and its local activation has been found to play an important role in the early host response to infection. Though the latter aspect has been less investigated, phylogenetic studies have shown that many factors involved in coagulation have ancestral origins which are often combined with anti-microbial features. This review gives a general overview about the most recent advances in this area of research also referred to as immunothrombosis.
Collapse
Affiliation(s)
| | - Heiko Herwald
- Heiko Herwald, Department of Clinical Sciences, Lund, Division of Infection Medicine, BMC B14, Lund University, Tornavägen 10, SE-221 84 Lund, Sweden, Tel.: +46 46 2224182, Fax: +46 46 157756, E-mail
| |
Collapse
|
15
|
Schouten M, de Boer JD, Kager LM, Roelofs JJTH, Meijers JCM, Esmon CT, Levi M, van 't Veer C, van der Poll T. The endothelial protein C receptor impairs the antibacterial response in murine pneumococcal pneumonia and sepsis. Thromb Haemost 2014; 111:970-80. [PMID: 24401906 DOI: 10.1160/th13-10-0859] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/10/2013] [Indexed: 11/05/2022]
Abstract
Pneumococcal pneumonia is a frequent cause of gram-positive sepsis and has a high mortality. The endothelial protein C receptor (EPCR) has been implicated in both the activation of protein C (PC) and the anti-inflammatory actions of activated (A)PC. The aim of this study was to determine the role of the EPCR in murine pneumococcal pneumonia and sepsis. Wild-type (WT), EPCR knockout (KO) and Tie2-EPCR mice, which overexpress EPCR on the endothelium, were infected intranasally (pneumonia) or intravenously (sepsis) with viable Streptococcus pneumoniae and euthanised at 24 or 48 hours after initiation of the infection for analyses. Pneumonia did not alter constitutive EPCR expression on pulmonary endothelium but was associated with an influx of EPCR positive neutrophils into lung tissue. In pneumococcal pneumonia EPCR KO mice demonstrated diminished bacterial growth in the lungs and dissemination to spleen and liver, reduced neutrophil recruitment to the lungs and a mitigated inflammatory response. Moreover, EPCR KO mice displayed enhanced activation of coagulation in the early phase of disease. Correspondingly, in pneumococcal sepsis EPCR KO mice showed reduced bacterial growth in lung and liver and attenuated cytokine release. Conversely, EPCR-overexpressing mice displayed higher bacterial outgrowth in lung, blood, spleen and liver in pneumococcal sepsis. In conclusion, EPCR impairs antibacterial defense in both pneumococcal pneumonia and sepsis, which is associated with an enhanced pro-inflammatory response.
Collapse
Affiliation(s)
- Marcel Schouten
- Marcel Schouten, MD, Center for Experimental and Molecular Medicine (CEMM), Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105 AZ Amsterdam, The Netherlands, Tel.: +31 20 566 5910, Fax: +31 20 697 7192, E-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|