1
|
Ouali R, Bousbata S. Refining the annotation of Rhodnius prolixus aspartic proteases A1 family genes through proteogenomics. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2025; 7:100253. [PMID: 40201543 PMCID: PMC11978366 DOI: 10.1016/j.crpvbd.2025.100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 04/10/2025]
Abstract
Rhodnius prolixus Stål (Hemiptera: Reduviidae: Triatominae) a hematophagous model organism and vector of Chagas disease, relies on a complex repertoire of digestive enzymes to process its blood meals. Among these, aspartic proteases from the A1 peptidase family play a crucial role in nutrient breakdown. This study aims to refine the gene annotation of the A1 peptidase family in this organism through proteogenomics. A comprehensive analysis of aspartic protease gene sequences and protein isoforms, identified by proteomics, revealed discrepancies in existing gene annotations, including the identification of novel open reading frames and the consolidation of previously separated gene sequences. Our efforts led to the correction of seven gene annotations, reducing the total count of A1 peptidase genes from 19 to 15. Notably, 11 of these genes were confirmed at the protein level, while two were supported by transcriptomic data. Furthermore, our findings highlight instances of alternative splicing, as seen in RPRC015076, where proteoforms T1IFK7 and R4G5J6 are expressed through intron retention. This study not only provides a more accurate and comprehensive genomic framework for the A1 peptidase family but also offers new insights into the functional complexity and regulation of digestive enzymes in R. prolixus. These findings pave the way for future studies on insect digestive biology and their potential applications in vector control strategies.
Collapse
Affiliation(s)
- Radouane Ouali
- Laboratory of Vector-Pathogen Biology, Proteomic Platform, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, 6041, Belgium
| | - Sabrina Bousbata
- Laboratory of Vector-Pathogen Biology, Proteomic Platform, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, 6041, Belgium
| |
Collapse
|
2
|
Delamotte P, Montagne J. Dietary Lipids and Their Metabolism in the Midgut. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39565560 DOI: 10.1007/5584_2024_835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Animals use dietary lipids to sustain their growth and survival. Insects can synthesize fatty acids (FAs) and are autotroph for a number of lipids, but auxotroph for specific lipids classes (e.g. sterols, polyunsaturated FAs). Once ingested, lipids are hydrolysed in the intestinal lumen and taken up into intestinal cells within specific regions of the insect digestive tract. These lipids can be either stored in the intestinal cells or exported through the haemolymph circulation to specific organs. In this chapter, we describe the various lipids provided by insect diets, their extracellular hydrolysis in the gut lumen and their intake and metabolic fate in the intestinal cells. This chapter emphasizes the critical role of the digestive tract and its regionalization in processing dietary lipids prior to their transfer to the requiring tissues.
Collapse
Affiliation(s)
- Pierre Delamotte
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Maissner FF, Silva CAO, Farias AB, Costa EP, Nepomuceno-Silva JL, da Silva JR, Mury FB. α-Glucosidase isoform G contributes to heme detoxification in Rhodnius prolixus and its knockdown affects Trypanosoma cruzi metacyclogenesis. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100100. [PMID: 39507746 PMCID: PMC11539128 DOI: 10.1016/j.cris.2024.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024]
Abstract
The triatomine bug Rhodnius prolixus is a hematophagous hemipteran and a primary vector of Trypanosoma cruzi, the causative agent of Chagas' disease (CD), in Central America and Northern South America. Blood-feeding poses significant challenges for hematophagous organisms, particularly due to the release of high doses of pro-oxidant free heme during hemoglobin digestion. In this arthropod, most of the free heme in the gut is aggregated into hemozoin (Hz), an inert and non-oxidative biocrystal. Two major components present in the perimicrovillar membranes (PMM) of triatomine insects have been previously implicated in heme crystallization: lipids and the biochemical marker of the PMM, the enzyme α-glucosidase. In this study, we investigated the role of R. prolixus α-glucosidase isoform G (Rp-αGluG) in heme detoxification and the effects of its knockdown on the insect physiology. The effect of α-glucosidase isoform G (αGluG) knockdown on T. cruzi proliferation and metacyclogenesis was also investigated. Initially, a 3D structure of Rp-αGluG was predicted by comparative modeling and then subjected to molecular docking with the heme molecule, providing in silico support for understanding the process of Hz biocrystallization. Next, adult females of R. prolixus were challenged with RNAi against Rp-αGluG (dsαGluG) to assess physiological and phenotypic changes caused by its knockdown. Our data show that the group challenged with dsαGluG produced less Hz, resulting in more intact hemoglobin available in the digestive tract. These animals also laid fewer eggs, which had a lower hatching rate. In addition, T. cruzi metacyclogenesis was significantly lower in the dsαGluG group. The present work demonstrates the importance of Rp-αGluG in heme detoxification, the digestive and reproductive physiology of R. prolixus, as well as its influence on the life cycle of T. cruzi. Since heme neutralization is a vital process for hematophagous bugs, our study provides useful information for the development of new strategies targeting the Hz formation and potentially affecting the vectorial transmission of Chagas disease.
Collapse
Affiliation(s)
| | | | - André Borges Farias
- Laboratório Integrado de Computação Científica (LICC), CM/UFRJ, Macaé, RJ, Brazil
| | - Evenilton Pessoa Costa
- Laboratório Integrado de Biociências Translacionais (LIBT), NUPEM/UFRJ, Macaé, RJ, Brazil
| | | | - José Roberto da Silva
- Instituto Nacional de Entomologia Molecular (INCT-EM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), NUPEM/UFRJ, Macaé, RJ, Brazil
| | - Flávia Borges Mury
- Laboratório Integrado de Biociências Translacionais (LIBT), NUPEM/UFRJ, Macaé, RJ, Brazil
- Instituto Nacional de Entomologia Molecular (INCT-EM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Silva CAO, Alves SDS, Rodrigues BDC, Fraga Egidio JA, Ribeiro L, Logullo C, Mury FB, Santos DDG, Portal T, Monteiro-de-Barros C, Roberto da Silva J, Nepomuceno-Silva JL, Nunes-da-Fonseca R. The mlpt smORF gene is essential for digestive physiology and molting during nymphal stages in the kissing bug Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 172:104154. [PMID: 38972513 DOI: 10.1016/j.ibmb.2024.104154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Chagas disease affects around 8 million people globally, with Latin America bearing approximately 10,000 deaths each year. Combatting the disease relies heavily on vector control methods, necessitating the identification of new targets. Within insect genomes, genes harboring small open reading frames (smORFs - < 100 amino acids) present numerous potential candidates. In our investigation, we elucidate the pivotal role of the archetypal smORF-containing gene, mille-pattes/polished-rice/tarsalless (mlpt/pri/tal), in the post-embryonic development of the kissing bug Rhodnius prolixus. Injection of double-stranded RNA targeting mlpt (dsmlpt) during nymphal stages yields a spectrum of phenotypes hindering post-embryonic growth. Notably, fourth or fifth stage nymphs subjected to dsmlpt do not undergo molting. These dsmlpt nymphs display heightened mRNA levels of JHAMT-like and EPOX-like, enzymes putatively involved in the juvenile hormone (JH) pathway, alongside increased expression of the transcription factor Kr-h1, indicating changes in the hormonal control. Histological examination reveals structural alterations in the hindgut and external cuticle of dsmlpt nymphs compared to control (dsGFP) counterparts. Furthermore, significant changes in the vector's digestive physiology were observed, with elevated hemozoin and glucose levels in the posterior midgut of dsmlpt nymphs. Importantly, dsmlpt nymphs exhibit impaired metacyclogenesis of Trypanosoma cruzi, the causative agent of Chagas disease, underscoring the crucial role of proper gut organization in parasite differentiation. Thus, our findings constitute the first evidence of a smORF-containing gene's regulatory influence on vector physiology, parasitic cycle, and disease transmission.
Collapse
Affiliation(s)
- Carina Azevedo Oliveira Silva
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil; Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| | - Sandy da Silveira Alves
- Laboratório Integrado de Biociências Translacionais (LIBT), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| | - Bruno da Costa Rodrigues
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| | - Jonatha Anderson Fraga Egidio
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| | - Lupis Ribeiro
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| | - Carlos Logullo
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Brazil
| | - Flavia Borges Mury
- Laboratório Integrado de Biociências Translacionais (LIBT), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Brazil
| | - Daniele das Graças Santos
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| | - Taynan Portal
- Laboratório Integrado de Biociências Translacionais (LIBT), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| | - Cintia Monteiro-de-Barros
- Laboratório Integrado de Biociências Translacionais (LIBT), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| | - José Roberto da Silva
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Brazil
| | - José Luciano Nepomuceno-Silva
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| | - Rodrigo Nunes-da-Fonseca
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Brazil.
| |
Collapse
|
5
|
Pereira SB, de Mattos DP, Gonzalez MS, Mello CB, Azambuja P, de Castro DP, Vieira CS. Immune signaling pathways in Rhodnius prolixus in the context of Trypanosoma rangeli infection: cellular and humoral immune responses and microbiota modulation. Front Physiol 2024; 15:1435447. [PMID: 39210973 PMCID: PMC11357937 DOI: 10.3389/fphys.2024.1435447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Rhodnius prolixus is a hematophagous insect and one of the main vectors for Trypanosoma cruzi and Trypanosoma rangeli parasites in Latin America. Gut microbiota and insect immune responses affect T. cruzi and T. rangeli infection within triatomines. Particularly the Toll and IMD signaling pathways activations and how they orchestrate the antimicrobial peptides (AMPs) expressions in R. prolixus, especially when infected by T. rangeli. Objectives Examine how T. rangeli infection modulates R. prolixus cellular and humoral immunity and its impacts on insect microbiota. Methods R. prolixus was fed on blood containing epimastigotes of T. rangeli, and infection was quantified in insect tissues. The gene expression of dorsal, cactus, relish, PGRP, and AMPs was examined in the midgut, fat body, and salivary glands by quantitative real-time PCR. Microbiota composition was analyzed using RT-q PCR targeting specific bacterial species. Hemocyte numbers and phenoloxidase activity were quantified to assess cellular immune responses. Results T. rangeli infection modulated triatomine immunity in midgut and hemocoel, activating the expression of the NF-kB gene dorsal, associated with the Toll pathway; increasing expression of the gene encoding PGRP receptor, a component involved in the IMD pathway, both in the intestine and fat body; repressing the expression of the relish transcription factor, mainly in salivary glands. Among the R. prolixus AMPs studied, T. rangeli infection repressed all AMP gene expression, other than defensin C which increased mRNA levels. The PO activity was enhanced in the hemolymph of infected insects. T. rangeli infection did not induce hemocyte number alterations compared to control insects. However, an increase in hemocyte microaggregation was detected in infected insects. Discussion R. prolixus recognizes T. rangeli infection and triggers humoral and cellular immune responses involving Toll pathway activation, defensin C synthesis, increased phenoloxidase activity, and enhanced hemocyte aggregation. On the other hand, T. rangeli infection suppressed some IMD pathway components, suggesting that, in R. prolixus, this pathway is involved in defensins A and B gene regulation. Importantly, these immune responses altered the bacterial microbiota composition, potentially favoring T. rangeli establishment in the insect vector.
Collapse
Affiliation(s)
- Suelen Bastos Pereira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, Brazil
| | - Débora Passos de Mattos
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Marcelo Salabert Gonzalez
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Niterói, Brazil
- Universidade Federal Fluminense, Instituto de Biologia, Departamento de Biologia Geral, Laboratório de Biologia de Insetos, Niterói, Brazil
- Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Cicero Brasileiro Mello
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Niterói, Brazil
- Universidade Federal Fluminense, Instituto de Biologia, Departamento de Biologia Geral, Laboratório de Biologia de Insetos, Niterói, Brazil
- Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Patrícia Azambuja
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Niterói, Brazil
- Universidade Federal Fluminense, Instituto de Biologia, Departamento de Biologia Geral, Laboratório de Biologia de Insetos, Niterói, Brazil
- Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Daniele Pereira de Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, Brazil
- Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Cecília Stahl Vieira
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Niterói, Brazil
- Department of Parasitology, Faculty of Science, Charles University, Praha, Czechia
| |
Collapse
|
6
|
Villalobos Sambucaro MJ, Alzugaray ME, Ronderos JR. Mechanisms controlling haemolymph circulation under resting conditions in the Chagas disease vector Rhodnius prolixus. J Exp Biol 2024; 227:jeb247801. [PMID: 38989599 DOI: 10.1242/jeb.247801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Chagas disease vectors can ingest several times their own volume in blood with each meal. This ad libitum feeding causes an intense process of diuresis, inducing the insect to eliminate a large quantity of urine and faeces. To ensure diuresis, the speed of circulation of the haemolymph is increased. The Triatominae circulatory system is quite simple, including the dorsal vessel, which pumps haemolymph in an anterograde direction. The return is caused by peristaltic contractions of the anterior midgut. Triatominae insects can spend several weeks without feeding, meaning that most of the time, the insect is in a resting condition. Although the mechanisms controlling the circulation of the haemolymph during post-prandial diuresis have been largely analysed, the mechanisms controlling it during resting conditions are poorly understood. In this study, we analysed several canonical pathways (i.e. L-type VGCC, GPCR, RyR, IP3R) and a novel system represented by the recently characterized Piezo proteins. Our results show that during the resting condition, haemolymph circulation depends on a cross-talk between myogenic activity, inhibitory and stimulatory cellular messengers, and Piezo proteins. This report also unveils for the first time the existence of a putative Piezo protein in Hemiptera.
Collapse
Affiliation(s)
- María José Villalobos Sambucaro
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
- CONICET, Godoy Cruz 2290, CABA, Argentina
| | - María Eugenia Alzugaray
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
- CONICET, Godoy Cruz 2290, CABA, Argentina
| | - Jorge Rafael Ronderos
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| |
Collapse
|
7
|
Girotti JR, Calderón-Fernández GM. Lipid Metabolism in Insect Vectors of Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38954247 DOI: 10.1007/5584_2024_811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
According to the World Health Organization vector-borne diseases account for more than 17% of all infectious diseases, causing more than 700,000 deaths annually. Vectors are organisms that are able to transmit infectious pathogens between humans, or from animals to humans. Many of these vectors are hematophagous insects, which ingest the pathogen from an infected host during a blood meal, and later transmit it into a new host. Malaria, dengue, African trypanosomiasis, yellow fever, leishmaniasis, Chagas disease, and many others are examples of diseases transmitted by insects.Both the diet and the infection with pathogens trigger changes in many metabolic pathways, including lipid metabolism, compared to other insects. Blood contains mostly proteins and is very poor in lipids and carbohydrates. Thus, hematophagous insects attempt to efficiently digest and absorb diet lipids and also rely on a large de novo lipid biosynthesis based on utilization of proteins and carbohydrates as carbon source. Blood meal triggers essential physiological processes as molting, excretion, and oogenesis; therefore, lipid metabolism and utilization of lipid storage should be finely synchronized and regulated regarding that, in order to provide the necessary energy source for these events. Also, pathogens have evolved mechanisms to hijack essential lipids from the insect host by interfering in the biosynthesis, catabolism, and transport of lipids, which pose challenges to reproduction, survival, fitness, and other insect traits.In this chapter, we have tried to collect and highlight the current knowledge and recent discoveries on the metabolism of lipids in insect vectors of diseases related to the hematophagous diet and pathogen infection.
Collapse
Affiliation(s)
- Juan R Girotti
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Gustavo M Calderón-Fernández
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
8
|
Ouali R, Bousbata S. Unveiling the Peptidase Network Orchestrating Hemoglobin Catabolism in Rhodnius prolixus. Mol Cell Proteomics 2024; 23:100775. [PMID: 38663568 PMCID: PMC11135036 DOI: 10.1016/j.mcpro.2024.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/29/2024] [Accepted: 04/21/2024] [Indexed: 05/23/2024] Open
Abstract
Chagas disease is transmitted to humans by obligatory hematophagous insects of Triatominae subfamily, which feeds on various hosts to acquire their nutritional sustenance derived from blood proteins. Hemoglobin (Hb) digestion is a pivotal metabolic feature of triatomines, representing a key juncture in their competence toward Trypanosoma cruzi; however, it remains poorly understood. To explore the Hb digestion pathway in Rhodnius prolixus, a major Chagas disease vector, we employed an array of approaches for activity profiling of various midgut-associated peptidases using specific substrates and inhibitors. Dissecting the individual contribution of each peptidase family in Hb digestion has unveiled a predominant role played by aspartic proteases and cathepsin B-like peptidases. Determination of peptidase-specific cleavage sites of these key hemoglobinases, in conjunction with mass spectrometry-based identification of in vivo Hb-derived fragments, has revealed the intricate network of peptidases involved in the Hb digestion pathway. This network is initiated by aspartic proteases and subsequently sustained by cysteine proteases belonging to the C1 family. The process is continued simultaneously by amino and carboxypeptidases. The comprehensive profiling of midgut-associated aspartic proteases by quantitative proteomics has enabled the accurate revision of gene annotations within the A1 family of the R. prolixus genome. Significantly, this study also serves to illuminate a potentially important role of the anterior midgut in blood digestion. The expanded repertoire of midgut-associated proteases presented in this study holds promise for the identification of novel targets aimed at controlling the transmission of Chagas disease.
Collapse
Affiliation(s)
- Radouane Ouali
- Laboratory of Vector-Pathogen Biology, Proteomic Platform, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium.
| | - Sabrina Bousbata
- Laboratory of Vector-Pathogen Biology, Proteomic Platform, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium.
| |
Collapse
|
9
|
Schaub GA. Interaction of Trypanosoma cruzi, Triatomines and the Microbiota of the Vectors-A Review. Microorganisms 2024; 12:855. [PMID: 38792688 PMCID: PMC11123833 DOI: 10.3390/microorganisms12050855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
This review summarizes the interactions between Trypanosoma cruzi, the etiologic agent of Chagas disease, its vectors, triatomines, and the diverse intestinal microbiota of triatomines, which includes mutualistic symbionts, and highlights open questions. T. cruzi strains show great biological heterogeneity in their development and their interactions. Triatomines differ from other important vectors of diseases in their ontogeny and the enzymes used to digest blood. Many different bacteria colonize the intestinal tract of triatomines, but only Actinomycetales have been identified as mutualistic symbionts. Effects of the vector on T. cruzi are indicated by differences in the ability of T. cruzi to establish in the triatomines and in colonization peculiarities, i.e., proliferation mainly in the posterior midgut and rectum and preferential transformation into infectious metacyclic trypomastigotes in the rectum. In addition, certain forms of T. cruzi develop after feeding and during starvation of triatomines. Negative effects of T. cruzi on the triatomine vectors appear to be particularly evident when the triatomines are stressed and depend on the T. cruzi strain. Effects on the intestinal immunity of the triatomines are induced by ingested blood-stage trypomastigotes of T. cruzi and affect the populations of many non-symbiotic intestinal bacteria, but not all and not the mutualistic symbionts. After the knockdown of antimicrobial peptides, the number of non-symbiotic bacteria increases and the number of T. cruzi decreases. Presumably, in long-term infections, intestinal immunity is suppressed, which supports the growth of specific bacteria, depending on the strain of T. cruzi. These interactions may provide an approach to disrupt T. cruzi transmission.
Collapse
Affiliation(s)
- Günter A Schaub
- Zoology/Parasitology, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
10
|
Meraj S, Salcedo-Porras N, Lowenberger C, Gries G. Activation of immune pathways in common bed bugs, Cimex lectularius, in response to bacterial immune challenges - a transcriptomics analysis. Front Immunol 2024; 15:1384193. [PMID: 38694504 PMCID: PMC11061471 DOI: 10.3389/fimmu.2024.1384193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
The common bed bug, Cimex lectularius, is an urban pest of global health significance, severely affecting the physical and mental health of humans. In contrast to most other blood-feeding arthropods, bed bugs are not major vectors of pathogens, but the underlying mechanisms for this phenomenon are largely unexplored. Here, we present the first transcriptomics study of bed bugs in response to immune challenges. To study transcriptional variations in bed bugs following ingestion of bacteria, we extracted and processed mRNA from body tissues of adult male bed bugs after ingestion of sterile blood or blood containing the Gram-positive (Gr+) bacterium Bacillus subtilis or the Gram-negative (Gr-) bacterium Escherichia coli. We analyzed mRNA from the bed bugs' midgut (the primary tissue involved in blood ingestion) and from the rest of their bodies (RoB; body minus head and midgut tissues). We show that the midgut exhibits a stronger immune response to ingestion of bacteria than the RoB, as indicated by the expression of genes encoding antimicrobial peptides (AMPs). Both the Toll and Imd signaling pathways, associated with immune responses, were highly activated by the ingestion of bacteria. Bacterial infection in bed bugs further provides evidence for metabolic reconfiguration and resource allocation in the bed bugs' midgut and RoB to promote production of AMPs. Our data suggest that infection with particular pathogens in bed bugs may be associated with altered metabolic pathways within the midgut and RoB that favors immune responses. We further show that multiple established cellular immune responses are preserved and are activated by the presence of specific pathogens. Our study provides a greater understanding of nuances in the immune responses of bed bugs towards pathogens that ultimately might contribute to novel bed bug control tactics.
Collapse
Affiliation(s)
- Sanam Meraj
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | |
Collapse
|
11
|
Lima L, Berni M, Mota J, Bressan D, Julio A, Cavalcante R, Macias V, Li Z, Rasgon JL, Bier E, Araujo H. Gene Editing in the Chagas Disease Vector Rhodnius prolixus by Cas9-Mediated ReMOT Control. CRISPR J 2024; 7:88-99. [PMID: 38564197 DOI: 10.1089/crispr.2023.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Rhodnius prolixus is currently the model vector of choice for studying Chagas disease transmission, a debilitating disease caused by Trypanosoma cruzi parasites. However, transgenesis and gene editing protocols to advance the field are still lacking. Here, we tested protocols for the maternal delivery of CRISPR-Cas9 (clustered regularly spaced palindromic repeats/Cas-9 associated) elements to developing R. prolixus oocytes and strategies for the identification of insertions and deletions (indels) in target loci of resulting gene-edited generation zero (G0) nymphs. We demonstrate successful gene editing of the eye color markers Rp-scarlet and Rp-white, and the cuticle color marker Rp-yellow, with highest effectiveness obtained using Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) with the ovary-targeting BtKV ligand. These results provide proof of concepts for generating somatic mutations in R. prolixus and potentially for generating germ line-edited lines in triatomines, laying the foundation for gene editing protocols that could lead to the development of novel control strategies for vectors of Chagas disease.
Collapse
Affiliation(s)
- Leonardo Lima
- Program in Cell and Developmental Biology, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, Rio de Janeiro, Brazil
| | - Mateus Berni
- Program in Cell and Developmental Biology, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, Rio de Janeiro, Brazil
| | - Jamile Mota
- Program in Cell and Developmental Biology, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, Rio de Janeiro, Brazil
| | - Daniel Bressan
- Program in Cell and Developmental Biology, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, Rio de Janeiro, Brazil
| | - Alison Julio
- Program in Cell and Developmental Biology, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, Rio de Janeiro, Brazil
| | - Robson Cavalcante
- Program in Cell and Developmental Biology, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, Rio de Janeiro, Brazil
| | - Vanessa Macias
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Zhiqian Li
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA
| | - Jason L Rasgon
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ethan Bier
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA
| | - Helena Araujo
- Program in Cell and Developmental Biology, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Da Lage JL, Fontenelle A, Filée J, Merle M, Béranger JM, Almeida CE, Folly Ramos E, Harry M. Evidence that hematophagous triatomine bugs may eat plants in the wild. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104059. [PMID: 38101706 DOI: 10.1016/j.ibmb.2023.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Blood feeding is a secondary adaptation in hematophagous bugs. Many proteins are secreted in the saliva that are devoted to coping with the host's defense and to process the blood meal. Digestive enzymes that are no longer required for a blood meal would be expected to be eventually lost. Yet, in many strictly hematophagous arthropods, α-amylase genes, which encode the enzymes that digest starch from plants, are still present and transcribed, including in the kissing bug Rhodnius prolixus (Hemiptera, Reduviidae) and its related species, which transmit the Chagas disease. We hypothesized that retaining α-amylase could be advantageous if the bugs occasionally consume plant tissues. We first checked that the α-amylase protein of Rhodnius robustus retains normal amylolytic activity. Then we surveyed hundreds of gut DNA extracts from the sylvatic R. robustus to detect traces of plants. We found plant DNA in 8% of the samples, mainly identified as Attalea palm trees, where R. robustus are usually found. We suggest that although of secondary importance in the blood-sucking bugs, α-amylase may be needed during occasional plant feeding and thus has been retained.
Collapse
Affiliation(s)
- Jean-Luc Da Lage
- Université Paris-Saclay, CNRS, IRD, UMR 9191 Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France.
| | - Alice Fontenelle
- Université Paris-Saclay, CNRS, IRD, UMR 9191 Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Jonathan Filée
- Université Paris-Saclay, CNRS, IRD, UMR 9191 Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Marie Merle
- Université Paris-Saclay, CNRS, IRD, UMR 9191 Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Jean-Michel Béranger
- Département Systématique and Evolution, Muséum National d'Histoire Naturelle, Paris, France; IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
| | - Carlos Eduardo Almeida
- Universidade Federal do Rio de Janeiro (UFRJ), Centro de Ciências da Saúde, Instituto de Biologia, Departamento de Zoologia, Rio de Janeiro, Brazil
| | - Elaine Folly Ramos
- Departamento de Engenharia e Meio Ambiente - DEMA, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Myriam Harry
- Université Paris-Saclay, CNRS, IRD, UMR 9191 Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| |
Collapse
|
13
|
Li WZ, Kang WJ, Zhou JJ, Shang SQ, Shi SL. The antennal transcriptome analysis and characterizations of odorant-binding proteins in Megachile saussurei (Hymenoptera, Megachilidae). BMC Genomics 2023; 24:781. [PMID: 38102559 PMCID: PMC10724985 DOI: 10.1186/s12864-023-09871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Odorant-binding proteins (OBPs) are essential in insect's daily behaviors mediated by olfactory perception. Megachile saussurei Radoszkowski (Hymenoptera, Megachilidae) is a principal insect pollinating alfalfa (Medicago sativa) in Northwestern China. The olfactory function have been less conducted, which provides a lot of possibilities for our research. RESULTS Our results showed that 20 OBPs were identified in total. Multiple sequence alignment analysis indicated MsauOBPs were highly conserved with a 6-cysteine motif pattern and all belonged to the classic subfamily, coding 113-196 amino acids and sharing 41.32%-99.12% amino acid identity with known OBPs of other bees. Phylogenetic analysis indicated there were certain homologies existed among MsauOBPs and most sequences were clustered with that of Osmia cornuta (Hymenoptera, Megachilidae). Expression analysis showed the identified OBPs were mostly enriched in antennae instead of other four body parts, especially the MsauOBP2, MsauOBP3, MsauOBP4, MsauOBP8, MsauOBP11 and MsauOBP17, in which the MsauOBP2, MsauOBP4 and MsauOBP8 presented obvious tissue-biased expression pattern. Molecular docking results indicated MsauOBP4 might be the most significant protein in recognizing alfalfa flower volatile 3-Octanone, while MsauOBP13 might be the most crucial protein identifying (Z)-3-hexenyl acetate. It was also found the lysine was a momentous hydrophilic amino acid in docking simulations. CONCLUSION In this study, we identified and analyzed 20 OBPs of M. saussurei. The certain homology existed among these OBPs, while some degree of divergence could also be noticed, indicating the complex functions that different MsauOBPs performed. Besides, the M. saussurei and Osmia cornuta were very likely to share similar physiological functions as most of their OBPs were clustered together. MsauOBP4 might be the key protein in recognizing 3-Octanone, while MsauOBP13 might be the key protein in binding (Z)-3-hexenyl acetate. These two proteins might contribute to the alfalfa-locating during the pollination process. The relevant results may help determine the highly specific and effective attractants for M. saussurei in alfalfa pollination and reveal the molecular mechanism of odor-evoked pollinating behavior between these two species.
Collapse
Affiliation(s)
- Wei-Zhen Li
- Key Laboratory of Grassland Ecosystem of Ministry of Education, and Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wen-Juan Kang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, and Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing-Jiang Zhou
- College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Su-Qin Shang
- College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Shang-Li Shi
- Key Laboratory of Grassland Ecosystem of Ministry of Education, and Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
14
|
Ameijeiras P, Capriotti N, Ons S, Oliveira PL, Sterkel M. eIF3 subunit M regulates blood meal digestion in Rhodnius prolixus affecting ecdysis, reproduction, and survival. INSECT SCIENCE 2023; 30:1282-1292. [PMID: 36621956 DOI: 10.1111/1744-7917.13174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In triatomines, blood-feeding triggers many physiological processes including post embryonic development and reproduction. Different feeding habits, such as hematophagy, can shape gene functions to meet the challenges of each type of diet. The gut of blood-sucking insects faces particular challenges after feeding due to the quantity and the quality of the food ingested. A comparison of transcriptomic and proteomic data indicates that post transcriptional regulation of gene expression is crucial in the triatomine gut. It was proposed that eukaryotic translation initiation factor 3 subunit m (eIF3m) and eIF3e define 2 different eIF3 complexes with a distinct affinity for the different mRNAs, thus selecting the set of mRNAs to be translated and constituting a post transcriptional mode of regulation of gene expression. Because the eIF3m is mainly expressed in the gut, we evaluated its relevance in Rhodnius prolixus physiology through RNA interference-mediated gene silencing. The knockdown of eIF3m reduced the digestion rate, affecting the processes triggered by a blood meal. Its silencing inhibited molting and caused premature death in nymphs while impaired ovary development, oviposition and increased resistance to starvation in adult females. The survival of males after feeding (resistance to starvation) was not affected by eIF3m knockdown. The information regarding the eIF3m function in insects is scarce and the phenotypes observed in R. prolixus upon eIF3m silencing are different and more severe than those previously described in Drosophila melanogaster, indicating a pleiotropic role of this gene in triatomines.
Collapse
Affiliation(s)
- Pilar Ameijeiras
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Natalia Capriotti
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Marcos Sterkel
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| |
Collapse
|
15
|
Reynoso-Ducoing OA, González-Rete B, Díaz E, Candelas-Otero FN, López-Aviña JA, Cabrera-Bravo M, Bucio-Torres MI, Torres-Gutiérrez E, Salazar-Schettino PM. Expression of Proteins, Glycoproteins, and Transcripts in the Guts of Fasting, Fed, and Trypanosoma cruzi-Infected Triatomines: A Systematic Review. Pathogens 2023; 12:1124. [PMID: 37764932 PMCID: PMC10534304 DOI: 10.3390/pathogens12091124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Chagas disease is caused by the hemoflagellate protozoan Trypanosoma cruzi. The main transmission mechanism for the parasite in endemic areas is contact with the feces of an infected triatomine bug. Part of the life cycle of T. cruzi occurs in the digestive tract of triatomines, where vector and parasite engage in a close interaction at a proteomic-molecular level. This interaction triggers replication and differentiation processes in the parasite that can affect its infectivity for the vertebrate host. With the aim of compiling and analyzing information from indexed publications on transcripts, proteins, and glycoproteins in the guts of fasting, fed, and T. cruzi-infected triatomines in the period 2000-2022, a systematic review was conducted following the PRISMA guidelines. Fifty-five original research articles retrieved from PubMed and ScienceDirect were selected; forty-four papers reported 1-26,946 transcripts, and twenty-one studies described 1-2603 peptides/proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elia Torres-Gutiérrez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico; (O.A.R.-D.); (B.G.-R.); (E.D.); (F.N.C.-O.); (J.A.L.-A.); (M.C.-B.); (M.I.B.-T.)
| | - Paz María Salazar-Schettino
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico; (O.A.R.-D.); (B.G.-R.); (E.D.); (F.N.C.-O.); (J.A.L.-A.); (M.C.-B.); (M.I.B.-T.)
| |
Collapse
|
16
|
Telleria J, Tibayrenc M, Del Salto Mendoza M, Seveno M, Costales JA. Comparative proteomic analysis of Trypanosoma cruzi TcI lineage epimastigotes unveils metabolic and phenotypic differences between fast- and slow-dividing strains. Exp Parasitol 2023; 252:108576. [PMID: 37429537 DOI: 10.1016/j.exppara.2023.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, is a genetically and phenotypically diverse species, divided into 5 main phylogenetic lineages (TcI to TcVI). TcI is the most widespread lineage in the Americas. Proteomics is a suitable tool to study the global protein expression dynamics in pathogens. Previous proteomic studies have revealed a link between (i) the genetic variability; (ii) the protein expression; and (iii) the biological characteristics of T. cruzi. Here, two-dimensional electrophoresis (2DE) and mass spectrometry were used to characterize the overall protein expression profiles of epimastigotes from four distinct TcI strains displaying different growth kinetics. Ascending hierarchical clustering analysis based on the global 2DE protein expression profiles grouped the strains under study into two clusters that were congruent with their fast or slow growth kinetics. A subset of proteins differentially expressed by the strains in each group were identified by mass spectrometry. Biological differences between the two groups, including use of glucose as an energy source, flagellum length, and metabolic activity, were predicted by proteomic analysis and confirmed by metabolic tests and microscopic measurements performed on the epimastigotes of each strain. Our results show that protein expression profiles are correlated with parasite phenotypes, which may in turn influence the parasite's virulence and transmission capacity.
Collapse
Affiliation(s)
- Jenny Telleria
- Institut de recherche pour le développement, La recherche agronomique pour le développement, 34398, Montpellier, Cedex 05, France
| | - Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique/UM1-UM2, 34394, Montpellier, Cedex 5, France
| | - Michelle Del Salto Mendoza
- Centro de Investigación para la Salud en América Latina, Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Martial Seveno
- BCM, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Jaime A Costales
- Centro de Investigación para la Salud en América Latina, Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.
| |
Collapse
|
17
|
Gama MDVF, Alexandre YDN, Pereira da Silva JM, Castro DP, Genta FA. Digestive α-L-fucosidase activity in Rhodnius prolixus after blood feeding: effect of secretagogue and nutritional stimuli. Front Physiol 2023; 14:1123414. [PMID: 37538373 PMCID: PMC10394381 DOI: 10.3389/fphys.2023.1123414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/21/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction: Rhodnius prolixus (Hemiptera: Reduviidae) is an important vector of Trypanosoma cruzi, the causative agent of Chagas Disease. This insect is a model for the study of insect physiology, especially concerning the digestion of blood. Among the enzymes produced in the midgut of R. prolixus after blood feeding there is a α-L-fucosidase activity. There are very few studies on α-L-fucosidase of insects, and the role of R. prolixus α-L-fucosidase is still not clear. In this work, we tested if the mechanism for production of this enzyme is similar to the observed for proteases, a secretatogue mechanism that respond to the protein contents of the meal. Methods: We tested if specific proteins or sugars elicit this response, which may help to understand the nature of the physiological substrate for this enzyme. Results: In general, our results showed that the Anterior Midgut was the only midgut fraction that responds to the blood meal in terms of α-L-fucosidase production. Besides that, this response was not triggered by midgut distension or by ingestion of the blood cell fraction. Conversely, the enzyme was produced after feeding with the plasma fraction. However, the production of α-L-fucosidase was also triggered by different biochemical stimuli, as protein or fucoidan ingestion. Discussion: This suggested that the production of the enzyme in the anterior midgut was a general physiological response under control of different convergent signals. Besides that, the comparison between different treatments for artificial blood feeding showed that heparinated blood was the choice with minor side effects for the study of the midgut α-L-fucosidase, when compared to defibrinated or citrated blood.
Collapse
Affiliation(s)
| | | | | | - Daniele Pereira Castro
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Fernando Ariel Genta
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Meiser CK, Klenner L, Balczun C, Schaub GA. Bacteriolytic activity in saliva of the hematophagous Triatoma infestans (Reduviidae) and novel characterization and expression site of a third lysozyme. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 113:e22013. [PMID: 36973856 DOI: 10.1002/arch.22013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/19/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Saliva of hematophagous insects contains many different compounds, mainly acting as anticoagulants. Investigating the bacteriolytic compounds of the saliva of the bloodsucking Triatoma infestans photometrically between pH 3 and pH 10 using unfed fifth instars and nymphs up to 15 days after feeding, we found bacteriolytic activity against lyophilized Micrococcus luteus was stronger at pH 4 and pH 6. After feeding, the activity level at pH 4 was unchanged, but at pH 6 more than doubled between 3 and 7 days after feeding. In zymographs of the saliva and after incubation at pH 4, bacteriolytic activity against Micrococcus luteus was present at eight lysis zones between 14.1 and 38.5 kDa, showing the strongest activity at 24.5 kDa. After incubation at pH 6, lysis zones only appeared at 15.3, 17, and 31.4 kDa. Comparing zymographs of the saliva of unfed and fed nymphs, bacteriolytic activity at 17 kDa increased after feeding. In total nine lysis bands appeared, also at >30 kDa, so far unreported in the saliva of triatomines. Reverse transcription polymerase chain reaction using oligonucleotides based on the previously described lysozyme gene of T. infestans, TiLys1, verified expression of genes encoding TiLys1 and TiLys2 in the salivary glands, but also of an undescribed third lysozyme, TiLys3, of which the cloned cDNA shares characteristics with other c-type lysozymes of insects. While TiLys1 was expressed in the tissue of all three salivary glands, transcripts of TiLys2 and of TiLys3 seem to be present only in the gland G1 and G3, respectively.
Collapse
Affiliation(s)
| | - Lars Klenner
- Zoology/Parasitology, Ruhr-Universität Bochum, Bochum, Germany
| | - Carsten Balczun
- Zoology/Parasitology, Ruhr-Universität Bochum, Bochum, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Koblenz, Germany
| | - Günter A Schaub
- Zoology/Parasitology, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
19
|
Almeida-Oliveira F, Santos-Araujo S, Carvalho-Kelly LF, Macedo-Silva A, Meyer-Fernandes JR, Gondim KC, Majerowicz D. ATP synthase affects lipid metabolism in the kissing bug Rhodnius prolixus beyond its role in energy metabolism. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023:103956. [PMID: 37196906 DOI: 10.1016/j.ibmb.2023.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
ATP synthase plays an essential role in mitochondrial metabolism, being responsible for the production of ATP in oxidative phosphorylation. However, recent results have shown that it may also be present in the cell membrane, involved in lipophorin binding to its receptors. Here, we used a functional genetics approach to investigate the roles of ATP synthase in lipid metabolism in the kissing bug Rhodnius prolixus. The genome of R. prolixus encodes five nucleotide-binding domain genes of the ATP synthase alpha and beta family, including the alpha and beta subunits of ATP synthase (RpATPSynA and RpATPSynB), and the catalytic and non-catalytic subunits of the vacuolar ATPase (RpVha68 and RpVha55). These genes were expressed in all analyzed organs, being their expression highest in the ovaries, fat body and flight muscle. Feeding did not regulate the expression of ATP synthases in the posterior midgut or fat body. Furthermore, ATP synthase is present in the fat body's mitochondrial and membrane fractions. RpATPSynB knockdown by RNAi impaired ovarian development and reduced egg-laying by approximately 85%. Furthermore, the lack of RpATPSynB increased the amount of triacylglycerol in the fat body due to increased de novo fatty acid synthesis and reduced transfer of lipids to lipophorin. RpATPSynA knockdown had similar effects, with altered ovarian development, reduced oviposition, and triacylglycerol accumulation in the fat body. However, ATP synthases knockdown had only a slight effect on the amount of ATP in the fat body. These results support the hypothesis that ATP synthase has a direct role in lipid metabolism and lipophorin physiology, which are not directly due to changes in energy metabolism.
Collapse
Affiliation(s)
| | - Samara Santos-Araujo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | | | - Alessa Macedo-Silva
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Brazil
| | | | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - David Majerowicz
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil; Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
de Almeida E, Dittz U, Pereira J, Walter-Nuno AB, Paiva-Silva GO, Lacerda-Abreu MA, Meyer-Fernandes JR, Ramos I. Functional characterization of maternally accumulated hydrolases in the mature oocytes of the vector Rhodnius prolixus reveals a new protein phosphatase essential for the activation of the yolk mobilization and embryo development. Front Physiol 2023; 14:1142433. [PMID: 36923285 PMCID: PMC10008894 DOI: 10.3389/fphys.2023.1142433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Yolk biogenesis and consumption have been well conserved in oviparous animals throughout evolution. Most egg-laying animals store yolk proteins within the oocytes' yolk granules (Ygs). Following fertilization, the Ygs participate in controlled pathways of yolk breakdown to support the developing embryo's anabolic metabolism. While the unfolding of the yolk degradation program is a crucial process for successful development in many species, the molecular mechanisms responsible for yolk mobilization are still mysterious and have mostly not been explored. Here, we investigate the functional role of the oocyte maternally accumulated mRNAs of a protein phosphatase (PP501) and two aspartic proteases (cathepsin-D 405, CD405 and cathepsin-D 352, CD352) in the yolk degradation and reproduction of the insect vector of Chagas disease Rhodnius prolixus. We found that PP501 and CD352 are highly expressed in the vitellogenic ovary when compared to the other organs of the adult insect. Parental RNAi silencing of PP501 resulted in a drastic reduction in oviposition and increased embryo lethality whereas the silencing of CD352 resulted only in a slight decrease in oviposition and embryo viability. To further investigate the PP501-caused high reproduction impairment, we investigated the Ygs biogenesis during oocyte maturation and the activation of the yolk degradation program at early development. We found that the Ygs biogenesis was deficient during oogenesis, as seen by flow cytometry, and that, although the PP501-silenced unviable eggs were fertilized, the Ygs acidification and acid phosphatase activity were affected, culminating in a full impairment of the yolk proteins degradation at early embryogenesis. Altogether we found that PP501 is required for the oocyte maturation and the activation of the yolk degradation, being, therefore, essential for this vector reproduction.
Collapse
Affiliation(s)
- Elisa de Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Uilla Dittz
- Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jéssica Pereira
- Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana B. Walter-Nuno
- Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela O. Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular—INCT-EM/CNPq, Rio de Janeiro, Brazil
| | - Marco A. Lacerda-Abreu
- Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose R. Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular—INCT-EM/CNPq, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Resisting an invasion: A review of the triatomine vector (Kissing bug) defense strategies against a Trypanosoma sp infection. Acta Trop 2023; 238:106745. [PMID: 36375520 DOI: 10.1016/j.actatropica.2022.106745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Triatomines are an important group of insects in the Americas. They serve as transmission vectors for Trypanosoma cruzi, the etiologic agent responsible for the deadly Chagas disease in humans. The digenetic parasite has a complex life cycle, alternating between mammalian and insect hosts, facing different environments. In the insect vector, the metacyclic trypomastigote (non-replicative) and epimastigote (replicative) stages face a set of insect-mediated environmental changes, such as intestinal pH, body temperature, nutrient availability, and vector immune response. These insects have the ability to differentiate between self and non-self-particles using their innate immune system. This immune system comprises physical barriers, cellular responses (phagocytosis, nodules and encapsulation), humoral factors, including effector mechanisms (antimicrobial peptides and prophenoloxidase cascade) and the intestinal microbiota. Here, we consolidate and synthesize the available literature to describe the defense mechanisms deployed by the triatomine vector against the parasite, as documented in recent years, the possible mechanisms developed by the parasite to protect against the insect's specific microenvironment and innate immune responses, and future perspectives on the Triatomine-Trypanosome interaction.
Collapse
|
22
|
Poudyal NR, Paul KS. Fatty acid uptake in Trypanosoma brucei: Host resources and possible mechanisms. Front Cell Infect Microbiol 2022; 12:949409. [PMID: 36478671 PMCID: PMC9719944 DOI: 10.3389/fcimb.2022.949409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei spp. causes African Sleeping Sickness in humans and nagana, a wasting disease, in cattle. As T. brucei goes through its life cycle in its mammalian and insect vector hosts, it is exposed to distinct environments that differ in their nutrient resources. One such nutrient resource is fatty acids, which T. brucei uses to build complex lipids or as a potential carbon source for oxidative metabolism. Of note, fatty acids are the membrane anchoring moiety of the glycosylphosphatidylinositol (GPI)-anchors of the major surface proteins, Variant Surface Glycoprotein (VSG) and the Procyclins, which are implicated in parasite survival in the host. While T. brucei can synthesize fatty acids de novo, it also readily acquires fatty acids from its surroundings. The relative contribution of parasite-derived vs. host-derived fatty acids to T. brucei growth and survival is not known, nor have the molecular mechanisms of fatty acid uptake been defined. To facilitate experimental inquiry into these important aspects of T. brucei biology, we addressed two questions in this review: (1) What is known about the availability of fatty acids in different host tissues where T. brucei can live? (2) What is known about the molecular mechanisms mediating fatty acid uptake in T. brucei? Finally, based on existing biochemical and genomic data, we suggest a model for T. brucei fatty acid uptake that proposes two major routes of fatty acid uptake: diffusion across membranes followed by intracellular trapping, and endocytosis of host lipoproteins.
Collapse
Affiliation(s)
- Nava Raj Poudyal
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| | - Kimberly S. Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| |
Collapse
|
23
|
Gama MDVF, Moraes CS, Gomes B, Diaz-Albiter HM, Mesquita RD, Seabra-Junior E, Azambuja P, Garcia EDS, Genta FA. Structure and expression of Rhodnius prolixus GH18 chitinases and chitinase-like proteins: Characterization of the physiological role of RpCht7, a gene from subgroup VIII, in vector fitness and reproduction. Front Physiol 2022; 13:861620. [PMID: 36262251 PMCID: PMC9574080 DOI: 10.3389/fphys.2022.861620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Chitinases are enzymes responsible for the hydrolysis of glycosidic linkages within chitin chains. In insects, chitinases are typically members of the multigenic glycoside hydrolase family 18 (GH18). They participate in the relocation of chitin during development and molt, and in digestion in detritivores and predatory insects, and they control the peritrophic membrane thickness. Chitin metabolism is a promising target for developing vector control strategies, and knowledge of the roles of chitinases may reveal new targets and illuminate unique aspects of their physiology and interaction with microorganisms. Rhodnius prolixus is an important vector of Chagas disease, which is caused by the parasite Trypanosoma cruzi. In this study, we performed annotation and structural characterization of nine chitinase and chitinase-like protein genes in the R. prolixus genome. The roles of their corresponding transcripts were studied in more depth; their physiological roles were studied through RNAi silencing. Phylogenetic analysis of coding sequences showed that these genes belong to different subfamilies of GH18 chitinases already described in other insects. The expression patterns of these genes in different tissues and developmental stages were initially characterized using RT-PCR. RNAi screening showed silencing of the gene family members with very different efficiencies. Based on the knockdown results and the general lack of information about subgroup VIII of GH18, the RpCht7 gene was chosen for phenotype analysis. RpCht7 knockdown doubled the mortality in starving fifth-instar nymphs compared to dsGFP-injected controls. However, it did not alter blood intake, diuresis, digestion, molting rate, molting defects, sexual ratio, percentage of hatching, or average hatching time. Nevertheless, female oviposition was reduced by 53% in RpCht7-silenced insects, and differences in oviposition occurred within 14–20 days after a saturating blood meal. These results suggest that RpCht7 may be involved in the reproductive physiology and vector fitness of R. prolixus.
Collapse
Affiliation(s)
| | | | - Bruno Gomes
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Hector Manuel Diaz-Albiter
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- El Colegio de la Frontera Sur, ECOSUR, Campeche, Mexico
| | - Rafael Dias Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eloy Seabra-Junior
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Azambuja
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Universidade Federal Fluminense, UFF, Rio de Janeiro, Brazil
| | - Eloi de Souza Garcia
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Fernando Ariel Genta
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- *Correspondence: Fernando Ariel Genta, ,
| |
Collapse
|
24
|
Qin S, Zhu B, Huang X, Hull JJ, Chen L, Luo J. Functional Role of AsAP in the Reproduction of Adelphocoris suturalis (Hemiptera: Miridae). INSECTS 2022; 13:755. [PMID: 36005380 PMCID: PMC9409435 DOI: 10.3390/insects13080755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Adelphocoris suturalis Jakovlev (Hemiptera: Miridae) is an omnivorous agricultural pest that has severe economic impacts on a diverse range of agricultural crops. Although the targeted disruption of reproductive development among insects has been proposed as a novel control strategy for pest species, the current understanding of the physiology and molecular mechanisms of A. suturalis reproduction is very limited. In this study, we isolated a putative A. suturalisaspartic protease (AsAP) gene that is highly expressed in the fat body and ovaries of sexually mature females. The double-stranded RNA (dsRNA)-mediated knockdown of AsAP suppressed ovarian development and negatively impacted female fertility, which suggested that it plays an essential role in A. suturalis reproduction. The results of this study could help to expand our understanding of A. suturalis reproductive development and have the potential to facilitate the development of effective strategies for the better control of this pest species.
Collapse
Affiliation(s)
- Shidong Qin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bangqin Zhu
- Guiyang Center for Disease Control and Prevention, Guiyang 550003, China
| | - Xingxing Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - J. Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
25
|
Sterkel M, Volonté M, Albornoz MG, Wulff JP, Del Huerto Sánchez M, Terán PM, Ajmat MT, Ons S. The role of neuropeptides in regulating ecdysis and reproduction in the hemimetabolous insect Rhodnius prolixus. J Exp Biol 2022; 225:276563. [PMID: 35929492 DOI: 10.1242/jeb.244696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
In ecdysozoan animals, moulting entails the production of a new exoskeleton and shedding the old one during ecdysis. It is induced by a pulse of ecdysone that regulates the expression of different hormonal receptors and activates a peptide-mediated signalling cascade. In Holometabola, the peptidergic cascade regulating ecdysis has been well described. However, very little functional information regarding the neuroendocrine regulation of ecdysis is available for Hemimetabola, which displays an incomplete metamorphosis. We use Rhodnius prolixus as a convenient experimental model to test two hypotheses: (a) the role of neuropeptides that regulate ecdysis in Holometabola is conserved in hemimetabolous insects; (b) the neuropeptides regulating ecdysis play a role in the regulation of female reproduction during the adult stage. The RNA interference-mediated reduction of ETH expression in fourth-instar nymphs resulted in lethality at the expected time of ecdysis. Unlike in holometabolous insects, the knockdown of ETH and OKA did not affect oviposition in adult females, pointing to a different endocrine regulation of ovary maturation. However, ETH knockdown prevented egg hatching. The blockage of egg hatching appears to be a consequence of embryonic ecdysis failure. Most of the first-instar nymphs hatched from the eggs laid by females injected with dsEH, dsCCAP and dsOKA died at the expected time of ecdysis, indicating the crucial involvement of these genes in post-embryonic development. No phenotypes were observed upon CZ knockdown in nymphs or adult females. The results are relevant for evolutionary entomology and could reveal targets for neuropeptide-based pest control tools.
Collapse
Affiliation(s)
- Marcos Sterkel
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Mariano Volonté
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Maximiliano G Albornoz
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Juan Pedro Wulff
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Mariana Del Huerto Sánchez
- Instituto Superior de Investigaciones Biológicas (INSIBIO). Universidad Nacional de Tucumán. Chacabuco 461, T4000, S. M. de Tucumán, Tucumán
| | - Paula María Terán
- Instituto Superior de Investigaciones Biológicas (INSIBIO). Universidad Nacional de Tucumán. Chacabuco 461, T4000, S. M. de Tucumán, Tucumán
| | - María Teresa Ajmat
- Instituto Superior de Investigaciones Biológicas (INSIBIO). Universidad Nacional de Tucumán. Chacabuco 461, T4000, S. M. de Tucumán, Tucumán
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| |
Collapse
|
26
|
Hao E, Li Y, Guo B, Yang X, Lu P, Qiao H. Key Residues Affecting Binding Affinity of Sirex noctilio Fabricius Odorant-Binding Protein (SnocOBP9) to Aggregation Pheromone. Int J Mol Sci 2022; 23:ijms23158456. [PMID: 35955589 PMCID: PMC9369295 DOI: 10.3390/ijms23158456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Sirex noctilio Fabricius (Hymenoptera Siricidae) is a major quarantine pest responsible for substantial economic losses in the pine industry. To achieve better pest control, (Z)-3-decen-ol was identified as the male pheromone and used as a field chemical trapping agent. However, the interactions between odorant-binding proteins (OBPs) and pheromones are poorly described. In this study, SnocOBP9 had a higher binding affinity with Z3D (Ki = 1.53 ± 0.09 μM) than other chemical ligands. Molecular dynamics simulation and binding mode analysis revealed that several nonpolar residues were the main drivers for hydrophobic interactions between SnocOBP9 and Z3D. Additionally, computational alanine scanning results indicated that five amino acids (MET54, PHE57, PHE71, PHE74, LEU116) in SnocOBP9 could potentially alter the binding affinity to Z3D. Finally, we used single-site-directed mutagenesis to substitute these five residues with alanine. These results imply that the five residues play crucial roles in the SnocOBP9-Z3D complex. Our research confirmed the function of SnocOBP9, uncovered the key residues involved in SnocOBP9-Z3D interactions, and provides an inspiration to improve the effects of pheromone agent traps.
Collapse
Affiliation(s)
- Enhua Hao
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing 100083, China; (E.H.); (Y.L.); (B.G.); (X.Y.)
| | - Yini Li
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing 100083, China; (E.H.); (Y.L.); (B.G.); (X.Y.)
| | - Bing Guo
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing 100083, China; (E.H.); (Y.L.); (B.G.); (X.Y.)
| | - Xi Yang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing 100083, China; (E.H.); (Y.L.); (B.G.); (X.Y.)
| | - Pengfei Lu
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing 100083, China; (E.H.); (Y.L.); (B.G.); (X.Y.)
- Correspondence: (P.L.); (H.Q.); Tel.: +86-10-6233-6755 (P.L.); +86-10-5783-3180 (H.Q.)
| | - Haili Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Correspondence: (P.L.); (H.Q.); Tel.: +86-10-6233-6755 (P.L.); +86-10-5783-3180 (H.Q.)
| |
Collapse
|
27
|
Salcedo-Porras N, Oliveira PL, Guarneri AA, Lowenberger C. A fat body transcriptome analysis of the immune responses of Rhodnius prolixus to artificial infections with bacteria. Parasit Vectors 2022; 15:269. [PMID: 35906633 PMCID: PMC9335980 DOI: 10.1186/s13071-022-05358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rhodnius prolixus is an important vector of Trypanosoma cruzi, the causal agent of Chagas disease in humans. Despite the medical importance of this and other triatomine vectors, the study of their immune responses has been limited to a few molecular pathways and processes. Insect immunity studies were first described for holometabolous insects such as Drosophila melanogaster, and it was assumed that their immune responses were conserved in all insects. However, study of the immune responses of triatomines and other hemimetabolous insects has revealed discrepancies between these and the Drosophila model. METHODS To expand our understanding of innate immune responses of triatomines to pathogens, we injected fifth instar nymphs of R. prolixus with the Gram-negative (Gr-) bacterium Enterobacter cloacae, the Gram-positive (Gr+) bacterium Staphylococcus aureus, or phosphate-buffered saline (PBS), and evaluated transcript expression in the fat body 8 and 24 h post-injection (hpi). We analyzed the differential expression of transcripts at each time point, and across time, for each treatment. RESULTS At 8 hpi, the Gr- bacteria-injected group had a large number of differentially expressed (DE) transcripts, and most of the changes in transcript expression were maintained at 24 hpi. In the Gr+ bacteria treatment, few DE transcripts were detected at 8 hpi, but a large number of transcripts were DE at 24 hpi. Unexpectedly, the PBS control also had a large number of DE transcripts at 24 hpi. Very few DE transcripts were common to the different treatments and time points, indicating a high specificity of the immune responses of R. prolixus to different pathogens. Antimicrobial peptides known to be induced by the immune deficiency pathway were induced upon Gr- bacterial infection. Many transcripts of genes from the Toll pathway that are thought to participate in responses to Gr+ bacteria and fungi were induced by both bacteria and PBS treatment. Pathogen recognition receptors and serine protease cascade transcripts were also overexpressed after Gr- bacteria and PBS injections. Gr- injection also upregulated transcripts involved in the metabolism of tyrosine, a major substrate involved in the melanotic encapsulation response to pathogens. CONCLUSIONS These results reveal time-dependent pathogen-specific regulation of immune responses in triatomines, and hint at strong interactions between the immune deficiency and Toll pathways.
Collapse
Affiliation(s)
- Nicolas Salcedo-Porras
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Pedro Lagerblad Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco D. Prédio do CCS, Ilha do Fundão, Rio de Janeiro, 21941-902 Brazil
| | - Alessandra Aparecida Guarneri
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fiocruz, Avenida Augusto de Lima, 1715, Belo Horizonte, MG CEP 30190-009 Brazil
| | - Carl Lowenberger
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| |
Collapse
|
28
|
Santos DV, Gontijo NF, Pessoa GCD, Sant'Anna MRV, Araujo RN, Pereira MH, Koerich LB. An updated catalog of lipocalins of the chagas disease vector Rhodnius prolixus (Hemiptera, Reduviidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 146:103797. [PMID: 35640811 DOI: 10.1016/j.ibmb.2022.103797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The haematophagy process by arthropods has been one of the main targets of studies in the parasite-host interaction, and the kissing-bug Rhodnius prolixus, vector of the protozoan Trypanosoma cruzi, has been one of the main models for such studies. Still in the 1980s, it was identified that among the salivary proteins for disrupting vertebrate host homeostasis, lipocalins were among the most relevant proteins for this process. Since then, 30 lipocalins have been identified in the salivary glands of R. prolixus, that promotes vasodilatation, prevents inflammation, act as anticoagulants and inhibits platelet aggregation. The present work aims to identify new lipocalins from R. prolixus, combining transcriptome and genome data. Identified new genes were mapped and had their structure annotated. To infer an evolutionary relationship between lipocalins, and to support the predicted functions for each lipocalin, all amino acid sequences were used to construct phylogenetic trees. We identified a total of 29 new lipocalins, 3 new bioaminogenic-biding proteins (which act to inhibit platelet aggregation and vasodilation), 9 new inhibitors of platelet aggregation, 7 new apolipoproteins and 10 lipocalins with no putative function. In addition, we observed that several of the lipocalins are also expressed in different R. prolxius tissues, including gut, central nervous system, antennae, and reproductive organs. In addition to newly identified lipocalins and a mapping the new and old lipocalins in the genome of R. prolixus, our study also carried out a review on functional status and nomenclature of some of the already identified lipocalins. Our study reinforces that we are far from understanding the role of lipocalins in the physiology of R. prolixus, and that studies of this family are still of great relevance.
Collapse
Affiliation(s)
- Daniela V Santos
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Nelder F Gontijo
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Garsielle C D Pessoa
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Mauricio R V Sant'Anna
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Ricardo N Araujo
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Marcos H Pereira
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Leonardo B Koerich
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
29
|
Waldman J, Xavier MA, Vieira LR, Logullo R, Braz GRC, Tirloni L, Ribeiro JMC, Veenstra JA, Silva Vaz ID. Neuropeptides in Rhipicephalus microplus and other hard ticks. Ticks Tick Borne Dis 2022; 13:101910. [PMID: 35121230 PMCID: PMC9477089 DOI: 10.1016/j.ttbdis.2022.101910] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/15/2022]
Abstract
The synganglion is the central nervous system of ticks and, as such, controls tick physiology. It does so through the production and release of signaling molecules, many of which are neuropeptides. These peptides can function as neurotransmitters, neuromodulators and/or neurohormones, although in most cases their functions remain to be established. We identified and performed in silico characterization of neuropeptides present in different life stages and organs of Rhipicephalus microplus, generating transcriptomes from ovary, salivary glands, fat body, midgut and embryo. Annotation of synganglion transcripts led to the identification of 32 functional categories of proteins, of which the most abundant were: secreted, energetic metabolism and oxidant metabolism/detoxification. Neuropeptide precursors are among the sequences over-represented in R. microplus synganglion, with at least 5-fold higher transcription compared with other stages/organs. A total of 52 neuropeptide precursors were identified: ACP, achatin, allatostatins A, CC and CCC, allatotropin, bursicon A/B, calcitonin A and B, CCAP, CCHamide, CCRFamide, CCH/ITP, corazonin, DH31, DH44, eclosion hormone, EFLamide, EFLGGPamide, elevenin, ETH, FMRFamide myosuppressin-like, glycoprotein A2/B5, gonadulin, IGF, inotocin, insulin-like peptides, iPTH, leucokinin, myoinhibitory peptide, NPF 1 and 2, orcokinin, proctolin, pyrokinin/periviscerokinin, relaxin, RYamide, SIFamide, sNPF, sulfakinin, tachykinin and trissin. Several of these neuropeptides have not been previously reported in ticks, as the presence of ETH that was first clearly identified in Parasitiformes, which include ticks and mites. Prediction of the mature neuropeptides from precursor sequences was performed using available information about these peptides from other species, conserved domains and motifs. Almost all neuropeptides identified are also present in other tick species. Characterizing the role of neuropeptides and their respective receptors in tick physiology can aid the evaluation of their potential as drug targets.
Collapse
Affiliation(s)
- Jéssica Waldman
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marina Amaral Xavier
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Rezende Vieira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raquel Logullo
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gloria Regina Cardoso Braz
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - José Marcos C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Jan A Veenstra
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287 CNRS, Université de Bordeaux, Bordeaux, France
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Moure UAE, Tan T, Sha L, Lu X, Shao Z, Yang G, Wang Y, Cui H. Advances in the Immune Regulatory Role of Non-Coding RNAs (miRNAs and lncRNAs) in Insect-Pathogen Interactions. Front Immunol 2022; 13:856457. [PMID: 35464405 PMCID: PMC9020863 DOI: 10.3389/fimmu.2022.856457] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
Insects are by far the most abundant and diverse living organisms on earth and are frequently prone to microbial attacks. In other to counteract and overcome microbial invasions, insects have in an evolutionary way conserved and developed immune defense mechanisms such as Toll, immune deficiency (Imd), and JAK/STAT signaling pathways leading to the expression of antimicrobial peptides. These pathways have accessory immune effector mechanisms, such as phagocytosis, encapsulation, melanization, nodulation, RNA interference (RNAi), lysis, autophagy, and apoptosis. However, pathogens evolved strategies that circumvent host immune response following infections, which may have helped insects further sophisticate their immune response mechanisms. The involvement of ncRNAs in insect immunity is undeniable, and several excellent studies or reviews have investigated and described their roles in various insects. However, the functional analyses of ncRNAs in insects upon pathogen attacks are not exhaustive as novel ncRNAs are being increasingly discovered in those organisms. This article gives an overview of the main insect signaling pathways and effector mechanisms activated by pathogen invaders and summarizes the latest findings of the immune modulation role of both insect- and pathogen-encoded ncRNAs, especially miRNAs and lncRNAs during insect–pathogen crosstalk.
Collapse
Affiliation(s)
- Ulrich Aymard Ekomi Moure
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China.,Medical Research Institute, Southwest University, Chongqing, China
| | - Tingshan Tan
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Lin Sha
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Xiaoqin Lu
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Zhi Shao
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Guang Yang
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Yi Wang
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China.,Department of Gastrointestinal Surgery, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
31
|
Berni M, Lima L, Bressan D, Julio A, Bonfim L, Simão Y, Pane A, Ramos I, Oliveira PL, Araujo H. Atypical strategies for cuticle pigmentation in the blood-feeding hemipteran Rhodnius prolixus. Genetics 2022; 221:6571811. [PMID: 35445704 PMCID: PMC9157140 DOI: 10.1093/genetics/iyac064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/11/2022] [Indexed: 11/14/2022] Open
Abstract
Pigmentation in insects has been linked to mate selection and predator evasion, thus representing an important aspect for natural selection. Insect body color is classically associated to the activity of tyrosine pathway enzymes, and eye color to pigment synthesis through the tryptophan and guanine pathways, and their transport by ABC proteins. Among the hemiptera, the genetic basis for pigmentation in kissing bugs such as Rhodnius prolixus, that transmit Chagas disease to humans, has not been addressed. Here we report the functional analysis of R. prolixus eye and cuticle pigmentation genes. Consistent with data for most insect clades, we show that knockdown for yellow results in a yellow cuticle, while scarlet and cinnabar knockdowns display red eyes as well as cuticle phenotypes. In addition, tyrosine pathway aaNATpreto knockdown resulted in a striking dark cuticle that displays no color pattern or UV reflectance. In contrast, knockdown of ebony and tan, that encode NBAD branch tyrosine pathway enzymes, did not generate the expected dark and light brown phenotypes, respectively, as reported for other insects. We hypothesize that R. prolixus, which requires tyrosine pathway enzymes for detoxification from the blood diet, evolved an unusual strategy for cuticle pigmentation based on the preferential use of a color erasing function of the aaNATpreto tyrosine pathway branch. We also show that genes classically involved in the generation and transport of eye pigments regulate red body color in R. prolixus. This is the first systematic approach to identify the genes responsible for the generation of color in a blood-feeding hemiptera, providing potential visible markers for future transgenesis.
Collapse
Affiliation(s)
- Marcus Berni
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil (INCT-EM), Rio de Janeiro 21941-902, Brazil.,Post-graduate Program in Morphological Sciences (PCM), Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Leonardo Lima
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Post-graduate Program in Morphological Sciences (PCM), Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Daniel Bressan
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Post-graduate Program in Morphological Sciences (PCM), Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Alison Julio
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Post-graduate Program in Morphological Sciences (PCM), Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Larissa Bonfim
- Institute for Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Yasmin Simão
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Attilio Pane
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Isabela Ramos
- Institute for Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Pedro L Oliveira
- Institute for Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Helena Araujo
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil (INCT-EM), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
32
|
Eberhard FE, Klimpel S, Guarneri AA, Tobias NJ. Exposure to Trypanosoma parasites induces changes in the microbiome of the Chagas disease vector Rhodnius prolixus. MICROBIOME 2022; 10:45. [PMID: 35272716 PMCID: PMC8908696 DOI: 10.1186/s40168-022-01240-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/31/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND The causative agent of Chagas disease, Trypanosoma cruzi, and its nonpathogenic relative, Trypanosoma rangeli, are transmitted by haematophagous triatomines and undergo a crucial ontogenetic phase in the insect's intestine. In the process, the parasites interfere with the host immune system as well as the microbiome present in the digestive tract potentially establishing an environment advantageous for development. However, the coherent interactions between host, pathogen and microbiota have not yet been elucidated in detail. We applied a metagenome shotgun sequencing approach to study the alterations in the microbiota of Rhodnius prolixus, a major vector of Chagas disease, after exposure to T. cruzi and T. rangeli focusing also on the functional capacities present in the intestinal microbiome of the insect. RESULTS The intestinal microbiota of R. prolixus was dominated by the bacterial orders Enterobacterales, Corynebacteriales, Lactobacillales, Clostridiales and Chlamydiales, whereas the latter conceivably originated from the blood used for pathogen exposure. The anterior and posterior midgut samples of the exposed insects showed a reduced overall number of organisms compared to the control group. However, we also found enriched bacterial groups after exposure to T. cruzi as well as T rangeli. While the relative abundance of Enterobacterales and Corynebacteriales decreased considerably, the Lactobacillales, mainly composed of the genus Enterococcus, developed as the most abundant taxonomic group. This applies in particular to vectors challenged with T. rangeli and at early timepoints after exposure to vectors challenged with T. cruzi. Furthermore, we were able to reconstruct four metagenome-assembled genomes from the intestinal samples and elucidate their unique metabolic functionalities within the triatomine microbiome, including the genome of a recently described insect symbiont, Candidatus Symbiopectobacterium, and the secondary metabolites producing bacteria Kocuria spp. CONCLUSIONS Our results facilitate a deeper understanding of the processes that take place in the intestinal tract of triatomine vectors during colonisation by trypanosomal parasites and highlight the influential aspects of pathogen-microbiota interactions. In particular, the mostly unexplored metabolic capacities of the insect vector's microbiome are clearer, underlining its role in the transmission of Chagas disease. Video Abstract.
Collapse
Affiliation(s)
- Fanny E. Eberhard
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Biologicum Campus Riedberg, Max-von-Laue-Str. 13, 60439 Frankfurt/Main, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Biologicum Campus Riedberg, Max-von-Laue-Str. 13, 60439 Frankfurt/Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt/Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt/Main, Germany
| | - Alessandra A. Guarneri
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou, Avenida Augusto de Lima,1715, Belo Horizonte, MG CEP 30190-009 Brazil
| | - Nicholas J. Tobias
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt/Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt/Main, Germany
| |
Collapse
|
33
|
Vergaray Ramirez MA, Sterkel M, Martins AJ, Bp Lima J, L Oliveira P. On the use of inhibitors of 4-hydroxyphenylpyruvate dioxygenase as a vector-selective insecticide in the control of mosquitoes. PEST MANAGEMENT SCIENCE 2022; 78:692-702. [PMID: 34647418 DOI: 10.1002/ps.6679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Blood-sucking insects incorporate many times their body weight of blood in a single meal. Because proteins are the major component of vertebrate blood, its digestion in the gut generates extremely high concentrations of free amino acids. Previous reports showed that the tyrosine degradation pathway plays an essential role in adapting these animals to blood feeding. Inhibition of 4-hydroxyphenylpyruvate dioxygenase (HPPD), the rate-limiting step of tyrosine degradation, results in the death of insects after a blood meal. Therefore, it has been suggested that compounds that block the catabolism of tyrosine could act selectively on blood-feeding insects. Here, we evaluated the toxicity against mosquitoes of three HPPD inhibitors currently used as herbicides and in human health. RESULTS Of the compounds tested, nitisinone (NTBC) proved to be more potent than mesotrione (MES) and isoxaflutole (IFT) in Aedes aegypti. NTBC was lethal to Ae. aegypti in artificial feeding assays [median lethal dose (LD50 ): 4.53 μm] and in topical application (LD50 : 0.012 nmol/mosquito). NTBC was also lethal to Ae. aegypti populations that were resistant to neurotoxic insecticides, and to other mosquito species (Anopheles and Culex). CONCLUSION HPPD inhibitors, particularly NTBC, represent promising new drugs for mosquito control. Because they affect only blood-feeding organisms, they represent a safer and more environmentally friendly alternative to conventional neurotoxic insecticides. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marlon A Vergaray Ramirez
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Sterkel
- Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata (CREG-UNLP), Buenos Aires, Argentina
| | - Ademir J Martins
- Laboratorio de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, Brazil
- Instituto Nacional de Ciencia e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - José Bp Lima
- Laboratorio de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciencia e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Carvalho-Costa TM, Tiveron RDR, Mendes MT, Barbosa CG, Nevoa JC, Roza GA, Silva MV, Figueiredo HCP, Rodrigues V, Soares SDC, Oliveira CJF. Salivary and Intestinal Transcriptomes Reveal Differential Gene Expression in Starving, Fed and Trypanosoma cruzi-Infected Rhodnius neglectus. Front Cell Infect Microbiol 2022; 11:773357. [PMID: 34988032 PMCID: PMC8722679 DOI: 10.3389/fcimb.2021.773357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/04/2021] [Indexed: 11/28/2022] Open
Abstract
Rhodnius neglectus is a potential vector of Trypanosoma cruzi (Tc), the causative agent of Chagas disease. The salivary glands (SGs) and intestine (INT) are actively required during blood feeding. The saliva from SGs is injected into the vertebrate host, modulating immune responses and favoring feeding for INT digestion. Tc infection significantly alters the physiology of these tissues; however, studies that assess this are still scarce. This study aimed to gain a better understanding of the global transcriptional expression of genes in SGs and INT during fasting (FA), fed (FE), and fed in the presence of Tc (FE + Tc) conditions. In FA, the expression of transcripts related to homeostasis maintenance proteins during periods of stress was predominant. Therefore, the transcript levels of Tret1-like and Hsp70Ba proteins were increased. Blood appeared to be responsible for alterations found in the FE group, as most of the expressed transcripts, such as proteases and cathepsin D, were related to digestion. In FE + Tc group, there was a decreased expression of blood processing genes for insect metabolism (e.g., Antigen-5 precursor, Pr13a, and Obp), detoxification (Sult1) in INT and acid phosphatases in SG. We also found decreased transcriptional expression of lipocalins and nitrophorins in SG and two new proteins, pacifastin and diptericin, in INT. Several transcripts of unknown proteins with investigative potential were found in both tissues. Our results also show that the presence of Tc can change the expression in both tissues for a long or short period of time. While SG homeostasis seems to be re-established on day 9, changes in INT are still evident. The findings of this study may be used for future research on parasite-vector interactions and contribute to the understanding of food physiology and post-meal/infection in triatomines.
Collapse
Affiliation(s)
- Tamires Marielem Carvalho-Costa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Rafael Destro Rosa Tiveron
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Maria Tays Mendes
- Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
| | - Cecília Gomes Barbosa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Jessica Coraiola Nevoa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Guilherme Augusto Roza
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Marcos Vinícius Silva
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | | | - Virmondes Rodrigues
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Siomar de Castro Soares
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Carlo José Freire Oliveira
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| |
Collapse
|
35
|
Kaczmarek A, Boguś M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021; 9:e12563. [PMID: 35036124 PMCID: PMC8710053 DOI: 10.7717/peerj.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Insects are the most widespread group of organisms and more than one million species have been described. These animals have significant ecological functions, for example they are pollinators of many types of plants. However, they also have direct influence on human life in different manners. They have high medical and veterinary significance, stemming from their role as vectors of disease and infection of wounds and necrotic tissue; they are also plant pests, parasitoids and predators whose activities can influence agriculture. In addition, their use in medical treatments, such as maggot therapy of gangrene and wounds, has grown considerably. They also have many uses in forensic science to determine the minimum post-mortem interval and provide valuable information about the movement of the body, cause of the death, drug use, or poisoning. It has also been proposed that they may be used as model organisms to replace mammal systems in research. The present review describes the role of free fatty acids (FFAs) in key physiological processes in insects. By focusing on insects of medical, veterinary significance, we have limited our description of the physiological processes to those most important from the point of view of insect control; the study examines their effects on insect reproduction and resistance to the adverse effects of abiotic (low temperature) and biotic (pathogens) factors.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|
36
|
Carmona-Peña S, Contreras-Garduño J, Castro D, Manjarrez J, Vázquez-Chagoyán J. The innate immune response of triatomines against Trypanosoma cruzi and Trypanosoma rangeli with an unresolved question: Do triatomines have immune memory? Acta Trop 2021; 224:106108. [PMID: 34450058 DOI: 10.1016/j.actatropica.2021.106108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022]
Abstract
The present work aimed to review the immune response from different triatomines against Trypanosoma cruzi and Trypanosoma rangeli and propose the study of immune memory in such insects. Trypanosoma use triatomines as vectors to reach and infect mammals. A key question to be answered about vector-parasite interaction is why the immune defense and resistance of the insect against the parasites vary. Up to date data shows that the defense of triatomines against parasites includes cellular (phagocytosis, nodulation and encapsulation) and humoral (antimicrobial peptides, phenoloxidase and reactive oxygen and nitrogen species) responses. The immune response varies depending on the triatomine species, the trypanosome strain and species, and the insect intestinal microbiota. Despite significant advances to understand parasite-insect interaction, it is still unknown if triatomines have immune memory against parasites and if this memory may derive from tolerance to parasites attack. Therefore, a closer study of such interaction could contribute and establish new proposals to control the parasite at the vector level to reduce parasite transmission to mammals, including men. For instance, if immune memory exists in the triatomines, it would be interesting to induce weak infections in insects to find out if subsequent infections are less intense and if the insects succeed in eliminating the parasites.
Collapse
|
37
|
Chen NW, Gao JL, Li HL, Xu H, Wu LF, Meng FG, Chen W, Cao YF, Xie WH, Zhang XQ, Liu SH, Jin J, He Y, Lv JW. The protective effect of manganese superoxide dismutase from thermophilic bacterium HB27 on hydrochloric acid-induced chemical cystitis in rats. Int Urol Nephrol 2021; 54:1681-1691. [PMID: 34783980 PMCID: PMC9184365 DOI: 10.1007/s11255-021-03054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/06/2021] [Indexed: 11/26/2022]
Abstract
Purpose To evaluate the effects of manganese superoxide dismutase (Mn-SOD) from thermophilic bacterium HB27 (name as Tt-SOD) on chemical cystitis. Methods Control and experimental rats were infused by intravesical saline or hydrochloric acid (HCl) on the first day of the experiments. Saline, sodium hyaluronate (SH) or Tt-SOD were infused intravesically once a day for three consequent days. On the fifth day, the rats were weighted and sacrificed following a pain threshold test. The bladder was harvested for histological and biochemical analyses. Results Tt-SOD could reduce the bladder index, infiltration of inflammatory cells in tissues, serum inflammatory factors and SOD levels, mRNA expression of inflammatory factors in tissues, and increase perineal mechanical pain threshold and serum MDA and ROS levels in HCl-induced chemical cystitis. Furthermore, Tt-SOD alleviated inflammation and oxidative stress by the negative regulation of the NF-κB p65 and p38 MAPK signaling pathway. Conclusions Intravesical instillation of Tt-SOD provides protective effects against HCl-induced cystitis.
Collapse
Affiliation(s)
- Nai-Wen Chen
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Jin-Lai Gao
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, Zhejiang, 314001, People's Republic of China
| | - Hai-Long Li
- Redox Medical Center for Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hong Xu
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Ling-Feng Wu
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Fan-Guo Meng
- Redox Medical Center for Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Wei Chen
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Yi-Fang Cao
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Wen-Hua Xie
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Xiao-Qin Zhang
- Department of Pharmacy, College of Medical, Jiaxing University, Jiaxing, Zhejiang, 314001, People's Republic of China
| | - Shi-Hui Liu
- Department of Pharmacy, College of Medical, Jiaxing University, Jiaxing, Zhejiang, 314001, People's Republic of China
| | - Jing Jin
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China.
| | - Yi He
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China.
| | - Jian-Wei Lv
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
38
|
Guo X, Xuan N, Liu G, Xie H, Lou Q, Arnaud P, Offmann B, Picimbon JF. An Expanded Survey of the Moth PBP/GOBP Clade in Bombyx mori: New Insight into Expression and Functional Roles. Front Physiol 2021; 12:712593. [PMID: 34776998 PMCID: PMC8582636 DOI: 10.3389/fphys.2021.712593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/13/2021] [Indexed: 02/01/2023] Open
Abstract
We studied the expression profile and ontogeny (from the egg stage through the larval stages and pupal stages, to the elderly adult age) of four OBPs from the silkworm moth Bombyx mori. We first showed that male responsiveness to female sex pheromone in the silkworm moth B. mori does not depend on age variation; whereas the expression of BmorPBP1, BmorPBP2, BmorGOBP1, and BmorGOBP2 varies with age. The expression profile analysis revealed that the studied OBPs are expressed in non-olfactory tissues at different developmental stages. In addition, we tested the effect of insecticide exposure on the expression of the four OBPs studied. Exposure to a toxic macrolide insecticide endectocide molecule (abamectin) led to the modulated expression of all four genes in different tissues. The higher expression of OBPs was detected in metabolic tissues, such as the thorax, gut, and fat body. All these data strongly suggest some alternative functions for these proteins other than olfaction. Finally, we carried out ligand docking studies and reported that PBP1 and GOBP2 have the capacity of binding vitamin K1 and multiple different vitamins.
Collapse
Affiliation(s)
- Xia Guo
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ning Xuan
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Guoxia Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongyan Xie
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qinian Lou
- Shandong Silkworm Institute, Shandong Academy of Agricultural Sciences, Yantai, China
| | - Philippe Arnaud
- Protein Engineering and Functionality Unit, UMR CNRS 6286, University of Nantes, Nantes, France
| | - Bernard Offmann
- Protein Engineering and Functionality Unit, UMR CNRS 6286, University of Nantes, Nantes, France
| | - Jean-François Picimbon
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Bioengineering, QILU University of Technology, Jinan, China
| |
Collapse
|
39
|
Sousa G, de Carvalho SS, Atella GC. Trypanosoma cruzi Affects Rhodnius prolixus Lipid Metabolism During Acute Infection. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.737909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The interaction between Rhodnius prolixus and Trypanosoma cruzi has huge medical importance because it responds to the transmission of Chagas disease, a neglected tropical disease that affects about eight million people worldwide. It is known that trypanosomatid pathogens depend on active lipid endocytosis from the insect host to meet growth and differentiation requirements. However, until now, knowledge on how the parasite affects the lipid physiology of individual insect organs was largely unknown. Herein, the biochemical and molecular dynamics of the triatomine R. prolixus lipid metabolism in response to T. cruzi acute infection were investigated. A qRT-PCR approach was used to determine the expression profile of 12 protein-coding genes involved in R. prolixus lipid physiology. In addition, microscopic and biochemical assays revealed the lipid droplet profile and the levels of the different identified lipid classes. Finally, spectrometry analyses were used to determine fatty acid and sterol composition and their modulation towards the infection. T. cruzi infection downregulated the transcript levels of protein-coding genes for lipid biosynthetic and degrading pathways in individual triatomine organs. On the other hand, upregulation of lipid receptor transcripts indicates an attempt to capture more lipids from hemolymphatic lipoproteins. Consequently, several lipid classes (such as monoacylglycerol, diacylglycerol, triacylglycerol, cholesteryl ester, phosphatidylcholine, and phosphatidylethanolamine) were involved in the response to the parasite challenge, although modulating only the insect fat body. T. cruzi never leaves the insect gut and yet it modulates non-infected tissues, suggesting that the association between the parasite and the vector organs is reached by cell signaling molecules. This hypothesis raises several intriguing issues to inspire future studies in the parasite-vector interaction field.
Collapse
|
40
|
Gao S, Lu R, Zhang Y, Sun H, Li S, Zhang K, Li R. Odorant binding protein C12 is involved in the defense against eugenol in Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104968. [PMID: 34802518 DOI: 10.1016/j.pestbp.2021.104968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Tribolium castaneum (T. castaneum) is a worldwide pest of stored grain that mainly harms flour, and not only causes serious loss of flour quality but also leads to deterioration of flour quality. Chemical detection plays a key role in insect behavior, and the role of odorant-binding proteins (OBPs) in insect chemical detection has been widely studied. However, the mechanism of OBPs in insect defense against exogenous toxic substances is still unclear. In this study, biochemical analysis showed that eugenol, the active component of A. vulgaris essential oil, significantly induced the expression of the OBP gene OBPC12 from T. castaneum (TcOBPC12). The mortality of late larvae treated with eugenol was higher than that of the control group after RNA interference (RNAi) against TcOBPC12, which indicates that the OBP gene is involved in the eugenol defense mechanism and leads to a decrease in sensitivity to eugenol. Tissue expression profiling showed that the expression of TcOBPC12 in the epidermis, hemolymph, and intestine was higher than in other larval tissues, and TcOBPC12 was expressed mainly in the epidermis, head, and fat body of adults. The developmental expression profile showed that the expression of TcOBPC12 in late eggs, early and late larval stages, and late adult stages was higher than in other developmental stages. These data suggest that TcOBPC12 may be involved in the absorption of exogenous toxic substances by the larvae from T. castaneum. Our results provide a theoretical basis for the metabolism and degradation mechanism of exogenous toxic substances and help explore more potential target genes of insect pests.
Collapse
Affiliation(s)
- Shanshan Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Ruixue Lu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Yonglei Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Haidi Sun
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Siying Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Kunpeng Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Ruimin Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China.
| |
Collapse
|
41
|
Meraj S, Mohr E, Ketabchi N, Bogdanovic A, Lowenberger C, Gries G. Time- and tissue-specific antimicrobial activity of the common bed bug in response to blood feeding and immune activation by bacterial injection. JOURNAL OF INSECT PHYSIOLOGY 2021; 135:104322. [PMID: 34644597 DOI: 10.1016/j.jinsphys.2021.104322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/16/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Unlike almost all hematophagous insects, common bed bugs, Cimex lectularius, are not known to transmit pathogens to humans. To help unravel the reasons for their lack of vector competence, we studied the time- and tissue-dependent expression of innate immune factors after blood feeding or immune activation through the intrathoracic injection of bacteria. We used minimum inhibitory concentration (MIC1) bioassays and the Kirby-Bauer protocol to evaluate antimicrobial peptide (AMP2) activity in tissue extracts from the midguts or 'rest of body' (RoB3) tissues (containing hemolymph and fat body AMPs) against Gram-positive and Gram-negative bacteria. We compared AMP activity between blood-fed female bed bugs and yellow fever mosquitoes, Aedes aegypti and determined how female and male bed bugs respond to immune challenges, and how long AMP gene expression remains elevated in bed bugs following a blood meal. Blood meal-induced AMP activity is 4-fold stronger in female bed bugs than in female mosquitoes. Male bed bugs have elevated AMP activity within 8 h of a blood meal or an intrathoracic injection with bacteria, with the strongest activity expressed in RoB tissue 24 h after the immune challenge. Female bed bugs have a stronger immune response than males within 24 h of a blood meal. The effects of blood meal-induced elevated AMP activity lasts longer against the Gram-positive bacterium, Bacillus subtilis, than against the Gram-negative bacterium Escherichia coli. Unravelling the specific immune pathways that are activated in the bed bugs' immune responses and identifying the bed bug-unique AMPs might help determine why these insects are not vectors of human parasites.
Collapse
Affiliation(s)
- Sanam Meraj
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada.
| | - Emerson Mohr
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Negin Ketabchi
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Anastasia Bogdanovic
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| |
Collapse
|
42
|
Vieira PH, Benjamim CF, Atella G, Ramos I. VPS38/UVRAG and ATG14, the variant regulatory subunits of the ATG6/Beclin1-PI3K complexes, are crucial for the biogenesis of the yolk organelles and are transcriptionally regulated in the oocytes of the vector Rhodnius prolixus. PLoS Negl Trop Dis 2021; 15:e0009760. [PMID: 34492013 PMCID: PMC8448300 DOI: 10.1371/journal.pntd.0009760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/17/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
In insects the reserve proteins are stored in the oocytes into endocytic-originated vesicles named yolk organelles. VPS38/UVRAG and ATG14 are the variant regulatory subunits of two class-III ATG6/Beclin1 PI3K complexes that regulate the recruitment of the endocytic (complex II) and autophagic (complex I) machineries. In a previous work from our group, we found that the silencing of ATG6/Beclin1 resulted in the formation of yolk-deficient oocytes due to defects in the endocytosis of the yolk proteins. Because ATG6/Beclin1 is present in the two above-described PI3K complexes, we could not identify the contributions of each complex to the yolk defective phenotypes. To address this, here we investigated the role of the variant subunits VPS38/UVRAG (complex II, endocytosis) and ATG14 (complex I, autophagy) in the biogenesis of the yolk organelles in the insect vector of Chagas Disease Rhodnius prolixus. Interestingly, the silencing of both genes phenocopied the silencing of ATG6/Beclin1, generating 1) accumulation of yolk proteins in the hemolymph; 2) white, smaller, and yolk-deficient oocytes; 3) abnormal yolk organelles in the oocyte cortex; and 4) unviable F1 embryos. However, we found that the similar phenotypes were the result of a specific cross-silencing effect among the PI3K subunits where the silencing of VPS38/UVRAG and ATG6/Beclin1 resulted in the specific silencing of each other, whereas the silencing of ATG14 triggered the silencing of all three PI3K components. Because the silencing of VPS38/UVRAG and ATG6/Beclin1 reproduced the yolk-deficiency phenotypes without the cross silencing of ATG14, we concluded that the VPS38/UVRAG PI3K complex II was the major contributor to the previously observed phenotypes in silenced insects. Altogether, we found that class-III ATG6/Beclin1 PI3K complex II (VPS38/UVRAG) is essential for the yolk endocytosis and that the subunits of both complexes are under an unknown transcriptional regulatory system.
Collapse
Affiliation(s)
- Priscila H Vieira
- Laboratório de Bioquímica de Insetos, Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro, Brazil
| | - Claudia F Benjamim
- Laboratório de Imunologia Molecular e Celular, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Brazil
| | - Georgia Atella
- Laboratório de de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM/CNPq. Rio de Janeiro, Brazil
| | - Isabela Ramos
- Laboratório de Bioquímica de Insetos, Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM/CNPq. Rio de Janeiro, Brazil
| |
Collapse
|
43
|
de Brito TF, Coelho VL, Cardoso MA, Brito IADA, Berni MA, Zenk FL, Iovino N, Pane A. Transovarial transmission of a core virome in the Chagas disease vector Rhodnius prolixus. PLoS Pathog 2021; 17:e1009780. [PMID: 34407148 PMCID: PMC8372912 DOI: 10.1371/journal.ppat.1009780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 07/02/2021] [Indexed: 01/09/2023] Open
Abstract
Triatomine assassin bugs comprise hematophagous insect vectors of Trypanosoma cruzi, the causative agent of Chagas disease. Although the microbiome of these species has been investigated to some extent, only one virus infecting Triatoma infestans has been identified to date. Here, we describe for the first time seven (+) single-strand RNA viruses (RpV1-7) infecting Rhodnius prolixus, a primary vector of Chagas disease in Central and South America. We show that the RpVs belong to the Iflaviridae, Permutotetraviridae and Solemoviridae and are vertically transmitted from the mothers to the progeny via transovarial transmission. Consistent with this, all the RpVs, except RpV2 that is related to the entomopathogenic Slow bee paralysis virus, established persistent infections in our R. prolixus colony. Furthermore, we show that R. prolixus ovaries express 22-nucleotide viral siRNAs (vsiRNAs), but not viral piRNAs, that originate from the processing of dsRNA intermediates during viral replication of the RpVs. Interestingly, the permutotetraviruses and sobemoviruses display shared pools of vsiRNAs that might provide the basis for a cross-immunity system. The vsiRNAs are maternally deposited in the eggs, where they likely contribute to reduce the viral load and protect the developing embryos. Our results unveil for the first time a complex core virome in R. prolixus and begin to shed light on the RNAi-based antiviral defenses in triatomines.
Collapse
Affiliation(s)
| | - Vitor Lima Coelho
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maira Arruda Cardoso
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mateus Antonio Berni
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fides Lea Zenk
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Nicola Iovino
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Attilio Pane
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Rügen N, Jenkins TP, Wielsch N, Vogel H, Hempel BF, Süssmuth RD, Ainsworth S, Cabezas-Cruz A, Vilcinskas A, Tonk M. Hexapod Assassins' Potion: Venom Composition and Bioactivity from the Eurasian Assassin Bug Rhynocoris iracundus. Biomedicines 2021; 9:biomedicines9070819. [PMID: 34356883 PMCID: PMC8301361 DOI: 10.3390/biomedicines9070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Assassin bug venoms are potent and exert diverse biological functions, making them potential biomedical goldmines. Besides feeding functions on arthropods, assassin bugs also use their venom for defense purposes causing localized and systemic reactions in vertebrates. However, assassin bug venoms remain poorly characterized. We collected the venom from the assassin bug Rhynocoris iracundus and investigated its composition and bioactivity in vitro and in vivo. It caused lysis of murine neuroblastoma, hepatoma cells, and healthy murine myoblasts. We demonstrated, for the first time, that assassin bug venom induces neurolysis and suggest that it counteracts paralysis locally via the destruction of neural networks, contributing to tissue digestion. Furthermore, the venom caused paralysis and melanization of Galleria mellonella larvae and pupae, whilst also possessing specific antibacterial activity against Escherichia coli, but not Listeria grayi and Pseudomonas aeruginosa. A combinatorial proteo-transcriptomic approach was performed to identify potential toxins responsible for the observed effects. We identified neurotoxic Ptu1, an inhibitory cystin knot (ICK) toxin homologous to ω-conotoxins from cone snails, cytolytic redulysins homologous to trialysins from hematophagous kissing bugs, and pore-forming hemolysins. Additionally, chitinases and kininogens were found and may be responsible for insecticidal and cytolytic activities. We demonstrate the multifunctionality and complexity of assassin bug venom, which renders its molecular components interesting for potential biomedical applications.
Collapse
Affiliation(s)
- Nicolai Rügen
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; (N.R.); (A.V.)
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Natalie Wielsch
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany;
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany;
| | - Benjamin-Florian Hempel
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany; (B.-F.H.); (R.D.S.)
- BIH Center for Regenerative Therapies BCRT, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Roderich D. Süssmuth
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany; (B.-F.H.); (R.D.S.)
| | - Stuart Ainsworth
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, F-94700 Maisons-Alfort, France;
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; (N.R.); (A.V.)
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Miray Tonk
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
45
|
Nascimento PVP, Almeida-Oliveira F, Macedo-Silva A, Ausina P, Motinha C, Sola-Penna M, Majerowicz D. Gene annotation of nuclear receptor superfamily genes in the kissing bug Rhodnius prolixus and the effects of 20-hydroxyecdysone on lipid metabolism. INSECT MOLECULAR BIOLOGY 2021; 30:297-314. [PMID: 33455040 DOI: 10.1111/imb.12696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/29/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The hormone 20-hydroxyecdysone is fundamental for regulating moulting and metamorphosis in immature insects, and it plays a role in physiological regulation in adult insects. This hormone acts by binding and activating a receptor, the ecdysone receptor, which is part of the nuclear receptor gene superfamily. Here, we analyse the genome of the kissing bug Rhodnius prolixus to annotate the nuclear receptor superfamily genes. The R. prolixus genome displays a possible duplication of the HNF4 gene. All the analysed insect organs express most nuclear receptor genes as shown by RT-PCR. The quantitative PCR analysis showed that the RpEcR and RpUSP genes are highly expressed in the testis, while the RpHNF4-1 and RpHNF4-2 genes are more active in the fat body and ovaries and in the anterior midgut, respectively. Feeding does not induce detectable changes in the expression of these genes in the fat body. However, the expression of the RpHNF4-2 gene is always higher than that of RpHNF4-1. Treating adult females with 20-hydroxyecdysone increased the amount of triacylglycerol stored in the fat bodies by increasing their lipogenic capacity. These results indicate that 20-hydroxyecdysone acts on the lipid metabolism of adult insects, although the underlying mechanism is not clear.
Collapse
Affiliation(s)
- P V P Nascimento
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - F Almeida-Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A Macedo-Silva
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - P Ausina
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - C Motinha
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Sola-Penna
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - D Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
46
|
Schaub GA. An Update on the Knowledge of Parasite-Vector Interactions of Chagas Disease. Res Rep Trop Med 2021; 12:63-76. [PMID: 34093053 PMCID: PMC8169816 DOI: 10.2147/rrtm.s274681] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/15/2021] [Indexed: 11/23/2022] Open
Abstract
This review focusses on the interactions between the etiologic agent of Chagas disease, Trypanosoma cruzi, and its triatomine vector. The flagellate mainly colonizes the intestinal tract of the insect. The effect of triatomines on trypanosomes is indicated by susceptibility and refractoriness phenomena that vary according to the combination of the strains. Other effects are apparent in the different regions of the gut. In the stomach, the majority of ingested blood trypomastigotes are killed while the remaining transform to round stages. In the small intestine, these develop into epimastigotes, the main replicative stage. In the rectum, the population density is the highest and is where the infectious stage develops, the metacyclic trypomastigote. In all regions of the gut, starvation and feeding of the triatomine affect T. cruzi. In the small intestine and rectum, starvation reduces the population density and more spheromastigotes develop. In the rectum, feeding after short-term starvation induces metacyclogenesis and after long-term starvation the development of specific cells, containing several nuclei, kinetoplasts and flagella. When considering the effects of T. cruzi on triatomines, the flagellate seems to be of low pathogenicity. However, during stressful periods, which are normal in natural populations, effects occur often on the behaviour, eg, in readiness to approach the host, the period of time before defecation, dispersal and aggregation. In nymphs, the duration of the different instars and the mortality rates increase, but this seems to be induced by repeated infections or blood quality by the feeding on infected hosts. Starvation resistance is often reduced by infection. Longevity and reproduction of adults is reduced, but only after infection with some strains of T. cruzi. Only components of the surface coat of blood trypomastigotes induce an immune reaction. However, this seems to act against gut bacteria and favours the development of T. cruzi.
Collapse
Affiliation(s)
- Günter A Schaub
- Zoology/Parasitology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
47
|
Identification of Novel Toxin Genes from the Stinging Nettle Caterpillar Parasa lepida (Cramer, 1799): Insights into the Evolution of Lepidoptera Toxins. INSECTS 2021; 12:insects12050396. [PMID: 33946702 PMCID: PMC8145965 DOI: 10.3390/insects12050396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Many caterpillar species can produce toxins that cause harmful reactions to humans, varying from mild irritation to death. Currently, there is very limited knowledge about caterpillar toxin diversity, because only a few species have been investigated. We used the transcriptome technique to identify candidate toxin genes from the nettle caterpillar Parasa lepida (Cramer, 1799). It is a common pest of oil palm, coconut, and mango in South and South-East Asia, which can cause severe pain and allergic responses to those in contact with them. We reported 168 candidate toxin genes. Most of them are members of the toxin genes families commonly recruited in animal venoms such as serine protease and serine protease inhibitors. However, we identified 21 novel genes encoding knottin-like peptides expressed at a high level in the transcriptome. Their predicted 3D structures are similar to neurotoxins in scorpion and tarantula. Our study suggests that P. lepida venom contains diverse toxin proteins that potentially cause allergic reactions and pain. This study sheds light on the hidden diversity of toxin proteins in caterpillar lineage, which could be future fruitful new drug sources. Abstract Many animal species can produce venom for defense, predation, and competition. The venom usually contains diverse peptide and protein toxins, including neurotoxins, proteolytic enzymes, protease inhibitors, and allergens. Some drugs for cancer, neurological disorders, and analgesics were developed based on animal toxin structures and functions. Several caterpillar species possess venoms that cause varying effects on humans both locally and systemically. However, toxins from only a few species have been investigated, limiting the full understanding of the Lepidoptera toxin diversity and evolution. We used the RNA-seq technique to identify toxin genes from the stinging nettle caterpillar, Parasa lepida (Cramer, 1799). We constructed a transcriptome from caterpillar urticating hairs and reported 34,968 unique transcripts. Using our toxin gene annotation pipeline, we identified 168 candidate toxin genes, including protease inhibitors, proteolytic enzymes, and allergens. The 21 P. lepida novel Knottin-like peptides, which do not show sequence similarity to any known peptide, have predicted 3D structures similar to tarantula, scorpion, and cone snail neurotoxins. We highlighted the importance of convergent evolution in the Lepidoptera toxin evolution and the possible mechanisms. This study opens a new path to understanding the hidden diversity of Lepidoptera toxins, which could be a fruitful source for developing new drugs.
Collapse
|
48
|
Ouali R, Vieira LR, Salmon D, Bousbata S. Early Post-Prandial Regulation of Protein Expression in the Midgut of Chagas Disease Vector Rhodnius prolixus Highlights New Potential Targets for Vector Control Strategy. Microorganisms 2021; 9:microorganisms9040804. [PMID: 33920371 PMCID: PMC8069306 DOI: 10.3390/microorganisms9040804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022] Open
Abstract
Chagas disease is a vector-borne parasitic disease caused by the flagellated protozoan Trypanosoma cruzi and transmitted to humans by a large group of bloodsucking triatomine bugs. Triatomine insects, such as Rhodnius prolixus, ingest a huge amount of blood in a single meal. Their midgut represents an important interface for triatomine–trypanosome interactions. Furthermore, the development of parasites and their vectorial transmission are closely linked to the blood feeding and digestion; thus, an understanding of their physiology is essential for the development of new strategies to control triatomines. In this study, we used label-free quantitative proteomics to identify and analyze the early effect of blood feeding on protein expression in the midgut of Rhodnius prolixus. We both identified and quantified 124 proteins in the anterior midgut (AM) and 40 in the posterior midgut (PM), which vary significantly 6 h after feeding. The detailed analysis of these proteins revealed their predominant involvement in the primary function of hematophagy, including proteases, proteases inhibitors, amino acids metabolism, primary metabolites processing, and protein folding. Interestingly, our proteomics data show a potential role of the AM in protein digestion. Moreover, proteins related to detoxification processes and innate immunity, which are largely accepted to be triggered by blood ingestion, were mildly modulated. Surprisingly, one third of blood-regulated proteins in the AM have unknown function. This work contributes to the improvement of knowledge on the digestive physiology of triatomines in the early hours post-feeding. It provides key information for selecting new putative targets for the development of triatomine control tools and their potential role in the vector competence, which could be applied to other vector species.
Collapse
Affiliation(s)
- Radouane Ouali
- Proteomic Plateform, Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
- Correspondence: (R.O.); (S.B.)
| | - Larissa Rezende Vieira
- Laboratory of Molecular Biology of Trypanosomatids, Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil; (L.R.V.); (D.S.)
| | - Didier Salmon
- Laboratory of Molecular Biology of Trypanosomatids, Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil; (L.R.V.); (D.S.)
| | - Sabrina Bousbata
- Proteomic Plateform, Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
- Correspondence: (R.O.); (S.B.)
| |
Collapse
|
49
|
Souza ROO, Damasceno FS, Marsiccobetre S, Biran M, Murata G, Curi R, Bringaud F, Silber AM. Fatty acid oxidation participates in resistance to nutrient-depleted environments in the insect stages of Trypanosoma cruzi. PLoS Pathog 2021; 17:e1009495. [PMID: 33819309 PMCID: PMC8049481 DOI: 10.1371/journal.ppat.1009495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/15/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi, the parasite causing Chagas disease, is a digenetic flagellated protist that infects mammals (including humans) and reduviid insect vectors. Therefore, T. cruzi must colonize different niches in order to complete its life cycle in both hosts. This fact determines the need of adaptations to face challenging environmental cues. The primary environmental challenge, particularly in the insect stages, is poor nutrient availability. In this regard, it is well known that T. cruzi has a flexible metabolism able to rapidly switch from carbohydrates (mainly glucose) to amino acids (mostly proline) consumption. Also established has been the capability of T. cruzi to use glucose and amino acids to support the differentiation process occurring in the insect, from replicative non-infective epimastigotes to non-replicative infective metacyclic trypomastigotes. However, little is known about the possibilities of using externally available and internally stored fatty acids as resources to survive in nutrient-poor environments, and to sustain metacyclogenesis. In this study, we revisit the metabolic fate of fatty acid breakdown in T. cruzi. Herein, we show that during parasite proliferation, the glucose concentration in the medium can regulate the fatty acid metabolism. At the stationary phase, the parasites fully oxidize fatty acids. [U-14C]-palmitate can be taken up from the medium, leading to CO2 production. Additionally, we show that electrons are fed directly to oxidative phosphorylation, and acetyl-CoA is supplied to the tricarboxylic acid (TCA) cycle, which can be used to feed anabolic pathways such as the de novo biosynthesis of fatty acids. Finally, we show as well that the inhibition of fatty acids mobilization into the mitochondrion diminishes the survival to severe starvation, and impairs metacyclogenesis.
Collapse
Affiliation(s)
- Rodolpho Ornitz Oliveira Souza
- University of São Paulo, Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences–São Paulo, São Paulo, Brazil
| | - Flávia Silva Damasceno
- University of São Paulo, Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences–São Paulo, São Paulo, Brazil
| | - Sabrina Marsiccobetre
- University of São Paulo, Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences–São Paulo, São Paulo, Brazil
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, Bordeaux, France
| | - Gilson Murata
- University of São Paulo, Department of Physiology, Institute of Biomedical Sciences–São Paulo, São Paulo, Brazil
| | - Rui Curi
- University of São Paulo, Department of Physiology, Institute of Biomedical Sciences–São Paulo, São Paulo, Brazil
- Cruzeiro do Sul University, Interdisciplinary Post-Graduate Program in Health Sciences—São Paulo, São Paulo, Brazil
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, Bordeaux, France
| | - Ariel Mariano Silber
- University of São Paulo, Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences–São Paulo, São Paulo, Brazil
| |
Collapse
|
50
|
The 40-Year Mystery of Insect Odorant-Binding Proteins. Biomolecules 2021; 11:biom11040509. [PMID: 33808208 PMCID: PMC8067015 DOI: 10.3390/biom11040509] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022] Open
Abstract
The survival of insects depends on their ability to detect molecules present in their environment. Odorant-binding proteins (OBPs) form a family of proteins involved in chemoreception. While OBPs were initially found in olfactory appendages, recently these proteins were discovered in other chemosensory and non-chemosensory organs. OBPs can bind, solubilize and transport hydrophobic stimuli to chemoreceptors across the aqueous sensilla lymph. In addition to this broadly accepted "transporter role", OBPs can also buffer sudden changes in odorant levels and are involved in hygro-reception. The physiological roles of OBPs expressed in other body tissues, such as mouthparts, pheromone glands, reproductive organs, digestive tract and venom glands, remain to be investigated. This review provides an updated panorama on the varied structural aspects, binding properties, tissue expression and functional roles of insect OBPs.
Collapse
|