1
|
Nateghi-Rostami M, Lipoldová M, Sohrabi Y. Improving reproducibility and translational potential of mouse models: lessons from studying leishmaniasis. Front Immunol 2025; 16:1559907. [PMID: 40330482 PMCID: PMC12052738 DOI: 10.3389/fimmu.2025.1559907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Leishmaniasis is a complex disease caused by protozoan parasites of the genus Leishmania, which are transmitted by phlebotomine sand flies. The clinical manifestations of leishmaniasis are diverse, ranging from self-healing cutaneous lesions to fatal systemic disease. Mouse models are instrumental in advancing our understanding of the immune system against infections, yet their limitations in translating findings to humans are increasingly highlighted. The success rate of translating data from mice to humans remains low, largely due to the complexity of diseases and the numerous factors that influence the disease outcomes. Therefore, for the effective translation of data from murine models of leishmaniasis, it is essential to align experimental conditions with those relevant to human infection. Factors such as parasite characteristics, vector-derived components, host status, and environmental conditions must be carefully considered and adapted to enhance the translational relevance of mouse data. These parameters are potentially modifiable and should be carefully integrated into the design and interpretation of experimental procedures in Leishmania studies. In the current paper, we review the challenges and perspective of using mouse as a model for leishmaniasis. We have particularly emphasized the non-genetic factors that influence experiments and focused on strategies to improve translational value of studies on leishmaniasis using mouse models.
Collapse
Affiliation(s)
| | - Marie Lipoldová
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Yahya Sohrabi
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Lima I, Fraga D, Berman J. Oleylphosphocholine versus Miltefosine for Canine Leishmaniasis. Am J Trop Med Hyg 2025; 112:753-760. [PMID: 39903935 PMCID: PMC11965757 DOI: 10.4269/ajtmh.24-0622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/08/2024] [Indexed: 02/06/2025] Open
Abstract
Oleylphosphocholine (OlPC) is a miltefosine derivative that is more effective than miltefosine against Leishmania infections in rodent models. Because canines are a natural host for Leishmania, the improved treatment of canine leishmaniasis is essential both for veterinary medicine and as a large animal model for clinical development. Oleylphosphocholine, at a dosage of 4 mg/kg/day for 28 days, was compared with the approved canine regimen of miltefosine at a dosage of 2 mg/kg/day for 28 days in 33 naturally infected Brazilian dogs (17 randomly assigned to receive OlPC versus 16 designated to receive miltefosine). The animals were followed for 5 months posttreatment. The primary endpoint was the clinical score, which was calculated as the sum of scores for each of 23 clinical parameters graded 0 (normal), 1 (somewhat abnormal), or 2 (markedly abnormal) by a blinded observer. A higher clinical score signified more severe disease. The mean (SD) clinical scores for the OlPC versus miltefosine groups are as follows: pretherapy, 10.1 (5.6) versus 7.7 (4.5; P = 0.19); 3 months posttherapy, 4.3 (4.1) versus 9.5 (4.9; P <0.01); 5 months posttherapy, 3.9 (3.8) versus 8.9 (4.7; P <0.01). Scores for lymph nodes, ear crusts, and splenic parasites were statistically lower for the OlPC group versus the miltefosine group, suggesting that both visceral and cutaneous parameters contributed to OlPC's statistically greater efficacy. One OlPC animal, with minimal splenic parasites pretreatment and zero parasites at the end of treatment, died of kidney failure due to immune-complex deposition, which was presumably already present pretreatment. The increase in blood creatinine values observed in OlPC animals warrants further study in future experiments. The superior clinical effect of OlPC in comparison to miltefosine in this canine study primes OlPC for development as an oral treatment for canine and human leishmaniasis.
Collapse
Affiliation(s)
- Isadora Lima
- Fiocruz, Gonçalo Moniz Institute, Salvador, Brazil
| | | | - Jonathan Berman
- AB Foundation for Medical Research, North Bethesda, Maryland
| |
Collapse
|
3
|
Van Bocxlaer K, Dixon J, Platteeuw JJ, Van Den Heuvel D, Mcarthur KN, Harris A, Alavijeh M, Croft SL, Yardley V. Efficacy of oleylphosphocholine in experimental cutaneous leishmaniasis. J Antimicrob Chemother 2023:7179900. [PMID: 37229566 DOI: 10.1093/jac/dkad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVES Cutaneous leishmaniasis (CL) is a neglected tropical disease causing a range of skin lesions for which safe and efficacious drugs are lacking. Oleylphosphocholine (OLPC) is structurally similar to miltefosine and has previously demonstrated potent activity against visceral leishmaniasis. We here present the in vitro and in vivo efficacy of OLPC against CL-causing Leishmania species. METHODS The antileishmanial activities of OLPC were evaluated and compared with miltefosine in vitro against intracellular amastigotes of seven CL-causing species. Following the confirmation of significant in vitro activity, the performance of the maximum tolerated dose of OLPC was evaluated in an experimental murine model of CL followed by a dose-response titration and the efficacy evaluation of four OLPC formulations (two with a fast-release and two with a slow-release profile) using bioluminescent Leishmania major parasites. RESULTS OLPC demonstrated potent in vitro activity of the same order as miltefosine in the intracellular macrophage model against a range of CL-causing species. A dose of 35 mg of OLPC/kg/day administered orally for 10 days was well-tolerated and able to reduce the parasite load in the skin of L. major-infected mice to a similar extent as the positive control paromomycin (50 mg/kg/day, intraperitoneally) in both in vivo studies. Reducing the dose of OLPC resulted in inactivity and modifying the release profile using mesoporous silica nanoparticles led to a decrease in activity when solvent-based loading was used in contrast to extrusion-based loading, which had no impact on its antileishmanial efficacy. CONCLUSIONS Together, these data suggest that OLPC could be a promising alternative to miltefosine treatment for CL. Further investigations exploring experimental models with additional Leishmania species and skin pharmacokinetic and dynamic analyses are required.
Collapse
Affiliation(s)
- Katrien Van Bocxlaer
- Department of Biology, York Biomedical Research Institute, University of York, York, UK
| | - Jodie Dixon
- Department of Biology, York Biomedical Research Institute, University of York, York, UK
| | | | | | | | - Andy Harris
- Pharmidex Pharmaceutical Services Ltd., London, UK
| | - Mo Alavijeh
- Pharmidex Pharmaceutical Services Ltd., London, UK
| | - Simon L Croft
- London School of Hygiene & Tropical Medicine, Faculty of Infectious and Tropical Diseases, London, UK
| | - Vanessa Yardley
- London School of Hygiene & Tropical Medicine, Faculty of Infectious and Tropical Diseases, London, UK
| |
Collapse
|
4
|
Dhal AK, Panda C, Yun SIL, Mahapatra RK. An update on Cryptosporidium biology and therapeutic avenues. J Parasit Dis 2022; 46:923-939. [PMID: 35755159 PMCID: PMC9215156 DOI: 10.1007/s12639-022-01510-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Cryptosporidium species has been identified as an important pediatric diarrheal pathogen in resource-limited countries, particularly in very young children (0–24 months). However, the only available drug (nitazoxanide) has limited efficacy and can only be prescribed in a medical setting to children older than one year. Many drug development projects have started to investigate new therapeutic avenues. Cryptosporidium’s unique biology is challenging for the traditional drug discovery pipeline and requires novel drug screening approaches. Notably, in recent years, new methods of oocyst generation, in vitro processing, and continuous three-dimensional cultivation capacities have been developed. This has enabled more physiologically pertinent research assays for inhibitor discovery. In a short time, many great strides have been made in the development of anti-Cryptosporidium drugs. These are expected to eventually turn into clinical candidates for cryptosporidiosis treatment in the future. This review describes the latest development in Cryptosporidium biology, genomics, transcriptomics of the parasite, assay development, and new drug discovery.
Collapse
Affiliation(s)
- Ajit Kumar Dhal
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Chinmaya Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Soon-IL Yun
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | | |
Collapse
|
5
|
Chazapi E, Magoulas GE, Prousis KC, Calogeropoulou T. Phospholipid Analogues as Chemotherapeutic Agents Against Trypanosomatids. Curr Pharm Des 2021; 27:1790-1806. [PMID: 33302850 DOI: 10.2174/1381612826666201210115340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neglected tropical diseases (NTDs) represent a serious problem in a number of countries around the world and especially in Africa and South America, affecting mostly the poor population which has limited access to the healthcare system. The drugs currently used for the treatment of NTDs are dated many decades ago and consequently, present in some cases very low efficacy, high toxicity and development of drug resistance. In the search for more efficient chemotherapeutic agents for NTDs, a large number of different compound classes have been synthesized and tested. Among them, ether phospholipids, with their prominent member miltefosine, are considered one of the most promising. OBJECTIVE This review summarizes the literature concerning the development of antiparasitic phospholipid derivatives, describing the efforts towards more efficient and less toxic analogues while providing an overview of the mechanism of action of this compound class against trypanosomatids. CONCLUSION Phospholipid analogues are already known for their antiprotozoal activity. Several studies have been conducted in order to synthesize novel derivatives with the aim to improve current treatments such as miltefosine, with promising results. Photolabeling and fluorescent alkyl phospholipid analogues have contributed to the clarification of the mode of action of this drug family.
Collapse
Affiliation(s)
- Evanthia Chazapi
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas, Constantinou Av., 11635, Athens, Greece
| | - George E Magoulas
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas, Constantinou Av., 11635, Athens, Greece
| | - Kyriakos C Prousis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas, Constantinou Av., 11635, Athens, Greece
| | - Theodora Calogeropoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas, Constantinou Av., 11635, Athens, Greece
| |
Collapse
|
6
|
Voak AA, Harris A, Coteron-Lopez JM, Angulo-Barturen I, Ferrer-Bazaga S, Croft SL, Seifert K. Pharmacokinetic / pharmacodynamic relationships of liposomal amphotericin B and miltefosine in experimental visceral leishmaniasis. PLoS Negl Trop Dis 2021; 15:e0009013. [PMID: 33651812 PMCID: PMC7924795 DOI: 10.1371/journal.pntd.0009013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND There is a continued need to develop effective and safe treatments for visceral leishmaniasis (VL). Preclinical studies on pharmacokinetics and pharmacodynamics of anti-infective agents, such as anti-bacterials and anti-fungals, have provided valuable information in the development and dosing of these agents. The aim of this study was to characterise the pharmacokinetic and pharmacodynamic properties of the anti-leishmanial drugs AmBisome and miltefosine in a preclinical disease model of VL. METHODOLOGY / PRINCIPAL FINDINGS BALB/c mice were infected with L. donovani (MHOM/ET/67/HU3) amastigotes. Groups of mice were treated with miltefosine (orally, multi-dose regimen) or AmBisome (intravenously, single dose regimen) or left untreated as control groups. At set time points groups of mice were killed and plasma, livers and spleens harvested. For pharmacodynamics the hepatic parasite burden was determined microscopically from tissue impression smears. For pharmacokinetics drug concentrations were measured in plasma and whole tissue homogenates by LC-MS. Unbound drug concentrations were determined by rapid equilibrium dialysis. Doses exerting maximum anti-leishmanial effects were 40 mg/kg for AmBisome and 150 mg/kg (cumulatively) for miltefosine. AmBisome displayed a wider therapeutic range than miltefosine. Dose fractionation at a total dose of 2.5 mg/kg pointed towards concentration-dependent anti-leishmanial activity of AmBisome, favouring the administration of large doses infrequently. Protein binding was >99% for miltefosine and amphotericin B in plasma and tissue homogenates. CONCLUSION / SIGNIFICANCE Using a PK/PD approach we propose optimal dosing strategies for AmBisome. Additionally, we describe pharmacokinetic and pharmacodynamic properties of miltefosine and compare our findings in a preclinical disease model to available knowledge from studies in humans. This approach also presents a strategy for improved use of animal models in the drug development process for VL.
Collapse
Affiliation(s)
- Andrew A. Voak
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | | | | | - Simon L. Croft
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Karin Seifert
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Caridha D, Sciotti RJ, Sousa J, Vesely B, Teshome T, Bonkoungou G, Vuong C, Leed S, Khraiwesh M, Penn E, Kreishman-Deitrick M, Lee P, Pybus B, Lazo JS, Sharlow ER. Combination of Subtherapeutic Doses of Tretazicar and Liposomal Amphotericin B Suppresses and Cures Leishmania major-Induced Cutaneous Lesions in Murine Models. ACS Infect Dis 2021; 7:506-517. [PMID: 33529014 DOI: 10.1021/acsinfecdis.0c00886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis affecting human populations, yet CL remains largely ignored in drug discovery programs. CL causes disfiguring skin lesions and often relapses after "clinical cure" using existing therapeutics. To expand the pool of anti-CL lead candidates, we implemented an integrated screening platform comprising three progressive Leishmania parasite life cycle forms. We identified tretazicar (CB1954, 5-(aziridin-1-yl)-2,4-dinitrobenzamide) as a potent inhibitor of Leishmania parasite viability across multiple Leishmania species, which translated into complete and prolonged in vivo suppression of CL lesion formation in BALB/c mice when used as a monotherapy and which was superior to liposomal amphotericin B. In addition, oral twice a day administration of tretazicar healed the majority of existing Leishmania major (L. major) cutaneous lesions. In drug combination studies, there was a strong potentiation when subtherapeutic doses of liposomal amphotericin B and tretazicar were simultaneously administered. This drug combination decreased L. major lesion size in mice earlier than individual monotherapy drug treatments and maintained all animals lesion free for up to 64 days after treatment cessation. In contrast, administration of subtherapeutic doses of tretazicar or amphotericin B as monotherapies resulted in no or partial lesion cures, respectively. We propose that tretazicar should be explored as a component of a systemic CL combination therapy and potentially for other diseases where amphotericin B is a first line therapy.
Collapse
Affiliation(s)
- Diana Caridha
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Richard J. Sciotti
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Jason Sousa
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Brian Vesely
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Tesfaye Teshome
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Gustave Bonkoungou
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Chau Vuong
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Susan Leed
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Mozna Khraiwesh
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Erica Penn
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Mara Kreishman-Deitrick
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Patricia Lee
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Brandon Pybus
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - John S. Lazo
- University of Virginia, Department of Pharmacology, 409 Lane Road, MR4, Charlottesville, Virginia 22908, United States
| | - Elizabeth R. Sharlow
- University of Virginia, Department of Pharmacology, 409 Lane Road, MR4, Charlottesville, Virginia 22908, United States
| |
Collapse
|
8
|
Wang B, Castellanos-Gonzalez A, White AC. Novel drug targets for treatment of cryptosporidiosis. Expert Opin Ther Targets 2020; 24:915-922. [PMID: 32552166 DOI: 10.1080/14728222.2020.1785432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction Cryptosporidium species are protozoan parasites that are important causes of diarrheal disease including waterborne outbreaks, childhood diarrhea in resource-poor countries, and diarrhea in compromised hosts worldwide. Recent studies highlight the importance of cryptosporidiosis in childhood diarrhea, malnutrition, and death in resource-poor countries. Despite this, only a single drug, nitazoxanide, has demonstrated efficacy in human cryptosporidiosis and its efficacy is limited in malnourished children and patients with HIV. Areas covered In this review, we highlight work on potential targets for chemotherapy and review progress on drug development. A number of new targets have been identified for chemotherapy and progress has been made at developing drugs for these targets. Targets include parasite kinases, nucleic acid synthesis and processing, proteases, and lipid metabolism. Other groups have performed high-throughput screening to identify potential drugs. Several compounds have advanced to large animal studies. Expert opinion Development of drugs for cryptosporidiosis has been plagued by a lack of success. Barriers have included poor correlations between in vitro activity and clinical success as well as frequent unanticipated adverse effects. Without a clear pathway forward, it is wise to maintain a diverse development pipeline. Drug developers should also realize that success will likely require a sustained, methodical effort.
Collapse
Affiliation(s)
- Beilin Wang
- Infectious Disease Division, Department of Internal Medicine, University of Texas Medical Branch , Galveston, TX, USA
| | | | - A Clinton White
- Infectious Disease Division, Department of Internal Medicine, University of Texas Medical Branch , Galveston, TX, USA
| |
Collapse
|
9
|
In Vitro and In Vivo Characterization of Potent Antileishmanial Methionine Aminopeptidase 1 Inhibitors. Antimicrob Agents Chemother 2020; 64:AAC.01422-19. [PMID: 32179532 DOI: 10.1128/aac.01422-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/08/2020] [Indexed: 11/20/2022] Open
Abstract
Leishmania major is the causative agent of cutaneous leishmaniasis (CL). No human vaccine is available for CL, and current drug regimens present several drawbacks, such as emerging resistance, severe toxicity, medium effectiveness, and/or high cost. Thus, the need for better treatment options against CL is a priority. In the present study, we validate the enzyme methionine aminopeptidase 1 of L. major (MetAP1Lm), a metalloprotease that catalyzes the removal of N-terminal methionine from peptides and proteins, as a chemotherapeutic target against CL infection. The in vitro antileishmanial activities of eight novel MetAP1 inhibitors (OJT001 to OJT008) were investigated. Three compounds, OJT006, OJT007, and OJT008, demonstrated potent antiproliferative effects in macrophages infected with L. major amastigotes and promastigotes at submicromolar concentrations, with no cytotoxicity against host cells. Importantly, the leishmanicidal effect in transgenic L. major promastigotes overexpressing MetAP1Lm was diminished by almost 10-fold in comparison to the effect in wild-type promastigotes. Furthermore, the in vivo activities of OJT006, OJT007, and OJT008 were investigated in L. major-infected BALB/c mice. In comparison to the footpad parasite load in the control group, OJT008 decreased the footpad parasite load significantly, by 86%, and exhibited no toxicity in treated mice. We propose MetAP1 inhibitor OJT008 as a potential chemotherapeutic candidate against CL infection caused by L. major infection.
Collapse
|
10
|
Nguyen AK, Yang KH, Bryant K, Li J, Joice AC, Werbovetz KA, Narayan RJ. Microneedle-Based Delivery of Amphotericin B for Treatment of Cutaneous Leishmaniasis. Biomed Microdevices 2019; 21:8. [PMID: 30617619 PMCID: PMC10357955 DOI: 10.1007/s10544-018-0355-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Current therapeutic options against cutaneous leishmaniasis are plagued by several weaknesses. The effective topical delivery of an antileishmanial drug would be useful in treating some forms of cutaneous leishmaniasis. Toward this end, a microneedle based delivery approach for the antileishmanial drug amphotericin B was investigated in murine models of both New World (Leishmania mexicana) and Old World (Leishmania major) infection. In the L. mexicana model, ten days of treatment began on day 35 post infection, when the area of nodules averaged 9-15 mm2. By the end of the experiment, a significant difference in nodule area was observed for all groups receiving topical amphotericin B at 25 mg/kg/day after application of microneedle arrays of 500, 750, and 1000 μM in nominal length compared to the group that received this dose of topical amphotericin B alone. In the L. major model, ten days of treatment began on day 21 post infection when nodule area averaged 51-65 mm2 in the groups. By the end of the experiment, there was no difference in nodule area between the group receiving 25 mg/kg of topical amphotericin B after microneedle application and any of the non-AmBisome groups. These results show the promise of topical delivery of amphotericin B via microneedles in treating relatively small nodules caused by L. mexicana. These data also show the limitations of the approach against a disseminated L. major infection. Further optimization of microneedle delivery is needed to fully exploit this strategy for cutaneous leishmaniasis treatment.
Collapse
Affiliation(s)
- Alexander K Nguyen
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC, 27695-7115, USA
| | - Kai-Hung Yang
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC, 27695-7115, USA
| | - Kelsey Bryant
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Junan Li
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - April C Joice
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Karl A Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC, 27695-7115, USA.
| |
Collapse
|
11
|
Chavez MA, White AC. Novel treatment strategies and drugs in development for cryptosporidiosis. Expert Rev Anti Infect Ther 2018; 16:655-661. [PMID: 30003818 DOI: 10.1080/14787210.2018.1500457] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Cryptosporidium is a protozoan pathogen that can cause diarrheal disease in healthy and immunosuppressed individuals, worldwide. Recent studies have highlighted the impact of cryptosporidiosis on children in resource-limited countries. Nitazoxanide is the only Food and Drug Administration approved treatment, but it is not consistently effective therapy for cryptosporidiosis in the most vulnerable populations. Areas covered: This review focused on recent published studies evaluating novel drugs and new compounds for the treatment of cryptosporidiosis. Expert commentary: Combinations of approved drugs have demonstrated some activity. Broad screens have demonstrated activity against Cryptosporidium for a number of available drugs, including statins and clofazimine, and the latter has advanced into clinical trials. Cryptosporidium calcium-dependent protein kinase 1 (CDPK1) has been identified as an attractive target for treatment, and bumped kinase inhibitors have been developed which inhibit CDPK1 and are active against Cryptosporidium growth both in vitro and in vivo. Inhibition of Plasmodium lipid kinase PI(4)K8 of Cryptosporidium by KDU731 greatly reduced oocyst shedding and improved diarrhea in calves with limited effects on the human PI(4)K. Another novel potent inhibitor MMV665917 was efficacious in mouse models with cidal activity against Cryptosporidium. Additional compounds have proved active in vitro. So far, only clofazimine has entered human trials.
Collapse
Affiliation(s)
- Miguel A Chavez
- a Department of Internal Medicine , University of Texas Medical Branch , Galveston , Texas , USA
| | - A Clinton White
- b Infectious Diseases Division, Department of Internal Medicine , University of Texas Medical Branch , Galveston , Texas , USA
| |
Collapse
|
12
|
Antifungal Activity of Oleylphosphocholine on In Vitro and In Vivo Candida albicans Biofilms. Antimicrob Agents Chemother 2017; 62:AAC.01767-17. [PMID: 29061737 DOI: 10.1128/aac.01767-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022] Open
Abstract
In this study, we investigated the potential antifungal activity of the alkylphospholipid oleylphosphocholine (OlPC), a structural analogue of miltefosine, on in vitro and in vivoCandida albicans biofilm formation. The effect of OlPC on in vitro and in vivoC. albicans biofilms inside triple-lumen polyurethane catheters was studied. In vivo biofilms were developed subcutaneously after catheter implantation on the lower back of Sprague-Dawley rats. Animals were treated orally with OlPC (20 mg/kg of body weight/day) for 7 days. The effect of OlPC on biofilms that developed on the mucosal surface was studied in an ex vivo model of oral candidiasis. The role of OlPC in C. albicans morphogenesis was investigated by using hypha-inducing media, namely, Lee, Spider, and RPMI 1640 media. OlPC displayed activity against both planktonic cells and in vitroC. albicans biofilms. To completely abolish preformed, 24-h-old biofilms, higher concentrations (8, 10, and 13 mg/liter) were needed. Moreover, OlPC was able to reduce C. albicans biofilms formed by caspofungin-resistant clinical isolates and acted synergistically when combined with caspofungin. The daily oral administration of OlPC significantly reduced in vivoC. albicans biofilms that developed subcutaneously. In addition, OlPC decreased biofilm formation on mucosal surfaces. Interestingly, the application of subinhibitory concentrations of OlPC already inhibited the yeast-to-hypha transition, a crucial virulence factor of C. albicans We document, for the first time, the effects of OlPC on C. albicans cells and suggest the potential use of OlPC for the treatment of C. albicans biofilm-associated infections.
Collapse
|
13
|
Iniguez E, Schocker NS, Subramaniam K, Portillo S, Montoya AL, Al-Salem WS, Torres CL, Rodriguez F, Moreira OC, Acosta-Serrano A, Michael K, Almeida IC, Maldonado RA. An α-Gal-containing neoglycoprotein-based vaccine partially protects against murine cutaneous leishmaniasis caused by Leishmania major. PLoS Negl Trop Dis 2017; 11:e0006039. [PMID: 29069089 PMCID: PMC5673233 DOI: 10.1371/journal.pntd.0006039] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/06/2017] [Accepted: 10/15/2017] [Indexed: 11/22/2022] Open
Abstract
Background Protozoan parasites from the genus Leishmania cause broad clinical manifestations known as leishmaniases, which affect millions of people worldwide. Cutaneous leishmaniasis (CL), caused by L. major, is one the most common forms of the disease in the Old World. There is no preventive or therapeutic human vaccine available for L. major CL, and existing drug treatments are expensive, have toxic side effects, and resistant parasite strains have been reported. Hence, further therapeutic interventions against the disease are necessary. Terminal, non-reducing, and linear α-galactopyranosyl (α-Gal) epitopes are abundantly found on the plasma membrane glycolipids of L. major known as glycoinositolphospholipids. The absence of these α-Gal epitopes in human cells makes these glycans highly immunogenic and thus potential targets for vaccine development against CL. Methodology/Principal findings Here, we evaluated three neoglycoproteins (NGPs), containing synthetic α-Gal epitopes covalently attached to bovine serum albumin (BSA), as vaccine candidates against L. major, using α1,3-galactosyltransferase-knockout (α1,3GalT-KO) mice. These transgenic mice, similarly to humans, do not express nonreducing, linear α-Gal epitopes in their cells and are, therefore, capable of producing high levels of anti-α-Gal antibodies. We observed that Galα(1,6)Galβ-BSA (NGP5B), but not Galα(1,4)Galβ-BSA (NGP12B) or Galα(1,3)Galα-BSA (NGP17B), was able to significantly reduce the size of footpad lesions by 96% in comparison to control groups. Furthermore, we observed a robust humoral and cellular immune response with production of high levels of protective lytic anti-α-Gal antibodies and induction of Th1 cytokines. Conclusions/Significance We propose that NGP5B is an attractive candidate for the study of potential synthetic α-Gal-neoglycoprotein-based vaccines against L. major infection. Despite a worldwide prevalence, cutaneous leishmaniasis (CL) remains largely neglected, with no prophylactic or therapeutic vaccine available. In the Old World, CL is mainly caused by either Leishmania major or L. tropica parasites, which produce localized cutaneous ulcers, often leading to scarring and social stigma. Currently, the disease has reached hyperendemicity levels in the Middle East due to conflict and human displacement. Furthermore, the first choice of treatment in that region continues to be pentavalent antimonials, which are costly and highly toxic, and current vector control measures alone are not sufficient to stop disease transmission. Hence, a vaccine against CL would be very beneficial. Previous studies have demonstrated that sugars are promising vaccine candidates against leishmaniasis, since most parasite species have a cell surface coat composed of immunogenic sugars, including linear α-galactopyranosyl (α-Gal) epitopes, which are absent in humans. Here, we have developed an α-Gal-based vaccine candidate, named NGP5B. When tested in transgenic mice which like humans lack α-Gal epitopes in their cells, NGP5B was able to induce a significant partial protection against L. major infection, by significantly reducing mouse footpad lesions and parasite burden. Altogether, we propose NGP5B as a promising preventive vaccine for CL caused by L. major.
Collapse
Affiliation(s)
- Eva Iniguez
- Department of Biological Sciences, Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, United States of America
| | - Nathaniel S. Schocker
- Department of Chemistry, Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, United States of America
| | - Krishanthi Subramaniam
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Susana Portillo
- Department of Biological Sciences, Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, United States of America
| | - Alba L. Montoya
- Department of Chemistry, Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, United States of America
| | - Waleed S. Al-Salem
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Caresse L. Torres
- Department of Biological Sciences, Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, United States of America
| | - Felipe Rodriguez
- Department of Biological Sciences, Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, United States of America
| | - Otacilio C. Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alvaro Acosta-Serrano
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Katja Michael
- Department of Chemistry, Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, United States of America
| | - Igor C. Almeida
- Department of Biological Sciences, Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, United States of America
- * E-mail: (ICA); (RAM)
| | - Rosa A. Maldonado
- Department of Biological Sciences, Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, United States of America
- * E-mail: (ICA); (RAM)
| |
Collapse
|
14
|
Iniguez E, Varela-Ramirez A, Martínez A, Torres CL, Sánchez-Delgado RA, Maldonado RA. Ruthenium-Clotrimazole complex has significant efficacy in the murine model of cutaneous leishmaniasis. Acta Trop 2016; 164:402-410. [PMID: 27693373 DOI: 10.1016/j.actatropica.2016.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 09/08/2016] [Accepted: 09/29/2016] [Indexed: 01/09/2023]
Abstract
In previous studies we reported a novel series of organometallic compounds, RuII complexed with clotrimazole, displaying potent trypanosomatid activity with unnoticeable toxicity toward normal mammalian cells. In view of the promising activity of Ru-clotrimazole complexes against Leishmania major (L. major), the present work sought to investigate the anti-leishmanial activity of the AM162 complex in the murine model of cutaneous leishmaniasis. In addition, to facilitate the design of new therapeutic strategies against this disease, we investigated the mode of action of two Ru-clotrimazole complexes in L. major promastigotes. Overall, we demonstrate that AM162 significantly reduced the lesion size in mice exposed to L. major infection. In addition, Ru-clotrimazole compounds are able to induce a mitochondrial dependent apoptotic-like death in the extracellular form of the parasite based on labeling of DNA fragments, mitochondrial depolarization, cell cycle alteration profile and plasma membrane phospholipid externalization. Our findings reveal a promising efficacy of the Ru-clotrimazole AM162 complex for the treatment of cutaneous leishmaniasis, as well as pro-apoptotic activity and thus guarantees further evaluation in pre-clinical studies.
Collapse
Affiliation(s)
- Eva Iniguez
- Border Biomedical Research Center, Bioscience Research Building, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Armando Varela-Ramirez
- Border Biomedical Research Center, Bioscience Research Building, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Alberto Martínez
- Chemistry Department, New York City College of Technology, The City University of New York, Brooklyn, NY, USA.
| | - Caresse L Torres
- Border Biomedical Research Center, Bioscience Research Building, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Roberto A Sánchez-Delgado
- Chemistry Department, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY, USA
| | - Rosa A Maldonado
- Border Biomedical Research Center, Bioscience Research Building, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
15
|
Fang R, Zhu X, Zhu Y, Tong X, Li K, Bai H, Li X, Ben J, Zhang H, Yang Q, Chen Q. Miltefosine Suppresses Hepatic Steatosis by Activating AMPK Signal Pathway. PLoS One 2016; 11:e0163667. [PMID: 27681040 PMCID: PMC5040442 DOI: 10.1371/journal.pone.0163667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE It has been accepted that AMPK (Adenosine monophosphate-activated protein kinase) activation exhibits many beneficial effects on glucolipid metabolism. Lysophosphatidylcholine (LPC) is an important lysophospholipid which can improve blood glucose levels in diabetic mice and attenuate inflammation by activating AMPK signal pathway in macrophages. Synthetic alkylphospholipids (ALPs), such as miltefosine, is used as an alternate of LPC for the clinical application. Here, we investigated whether miltefosine could have an impact on hepatic steatosis and related metabolic disorders. EXPERIMENTAL APPROACH Mice were fed with high fat diet (HFD) for 16 weeks to generate an obese model. Next, the obese mice were randomly divided into three groups: saline-treated and miltefosine-treated (2.5 or 5 mg/kg/d) groups. Miltefosine was intraperitoneally administrated into mice for additional 4 weeks plus HFD treatment. KEY RESULTS It was shown that miltefosine treatment could substantially improve glucose metabolism, prevented hepatic lipid accumulation, and inhibited liver inflammation in HFD-fed mice by activating AMPK signal pathway. In vitro, miltefosine stimulated AMPKα phosphorylation both in time and dose dependent manner and decreased lipid accumulation in liver cells. When a specific AMPK inhibitor compound C was used to treat mice, the antagonistic effects of miltefosine on HFD-induced mouse hyperlipidaemia and liver steatosis were abolished. Treatment with miltefosine also dramatically inhibited the HFD-induced liver inflammation in mice. CONCLUSIONS AND IMPLICATIONS Here we demonstrated that miltefosine might be a new activator of AMPK signal pathway in vivo and in vitro and be useful for treatment of hepatic steatosis and related metabolic disorders.
Collapse
Affiliation(s)
- Ru Fang
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Xudong Zhu
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Yaqin Zhu
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Xing Tong
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Kexue Li
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Hui Bai
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Xiaoyu Li
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Jingjing Ben
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Hanwen Zhang
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Qing Yang
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Qi Chen
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, People’s Republic of China
- * E-mail:
| |
Collapse
|
16
|
Fortin A, Dorlo TPC, Hendrickx S, Maes L. Pharmacokinetics and pharmacodynamics of oleylphosphocholine in a hamster model of visceral leishmaniasis. J Antimicrob Chemother 2016; 71:1892-8. [DOI: 10.1093/jac/dkw089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/29/2016] [Indexed: 11/13/2022] Open
|
17
|
Sonzogni-Desautels K, Renteria AE, Camargo FV, Di Lenardo TZ, Mikhail A, Arrowood MJ, Fortin A, Ndao M. Oleylphosphocholine (OlPC) arrests Cryptosporidium parvum growth in vitro and prevents lethal infection in interferon gamma receptor knock-out mice. Front Microbiol 2015; 6:973. [PMID: 26441906 PMCID: PMC4585137 DOI: 10.3389/fmicb.2015.00973] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/01/2015] [Indexed: 12/31/2022] Open
Abstract
Cryptosporidium parvum is a species of protozoa that causes cryptosporidiosis, an intestinal disease affecting many mammals including humans. Typically, in healthy individuals, cryptosporidiosis is a self-limiting disease. However, C. parvum can cause a severe and persistent infection that can be life-threatening for immunocompromised individuals, such as AIDS patients. As there are no available treatments for these patients that can cure the disease, there is an urgent need to identify treatment options. We tested the anti-parasitic activity of the alkylphosphocholine oleylphosphocholine (OlPC), an analog of miltefosine, against C. parvum in in vitro and in vivo studies. In vitro experiments using C. parvum infected human ileocecal adenocarcinoma cells (HCT-8 cells) showed that OlPC has an EC50 of 18.84 nM. Moreover, no cell toxicity has been seen at concentrations ≤50 μM. C57BL/6 interferon gamma receptor knock-out mice, were infected by gavage with 4000 C. parvum oocysts on Day 0. Oral treatments, with OlPC, miltefosine, paromomycin or PBS, began on Day 3 post-infection for 10 days. Treatment with OlPC, at 40 mg/kg/day resulted in 100% survival, complete clearance of parasite in stools and a 99.9% parasite burden reduction in the intestines at Day 30. Doses of 30 and 20 mg/kg/day also demonstrated an increased survival rate and a dose-dependent parasite burden reduction. Mice treated with 10 mg/kg/day of miltefosine resulted in 50% survival at Day 30. In contrast, control mice, treated with PBS or 100 mg/kg/day of paromomycin, died or had to be euthanized between Days 6 and 13 due to severe illness. Results of parasite burden were obtained by qPCR and cross-validated by both flow cytometry of stool oocysts and histological sections of the ileum. Together, our results strongly support that OlPC represents a potential candidate for the treatment of C. parvum infections in immunocompromised patients.
Collapse
Affiliation(s)
- Karine Sonzogni-Desautels
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal QC, Canada ; Institute of Parasitology, Macdonald Campus, McGill University, Montreal QC, Canada
| | - Axel E Renteria
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal QC, Canada ; Department of Experimental Medicine, McGill University, Montreal QC, Canada
| | - Fabio V Camargo
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal QC, Canada
| | | | - Alexandre Mikhail
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal QC, Canada
| | - Michael J Arrowood
- Division of Foodborne, Waterborne, and Environmental Diseases, Center for Disease Control and Prevention, Atlanta GA, USA
| | - Anny Fortin
- Department of Biochemistry, McGill University, Montreal QC, Canada ; Dafra Pharma R&D Turnhout, Belgium
| | - Momar Ndao
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal QC, Canada ; Institute of Parasitology, Macdonald Campus, McGill University, Montreal QC, Canada ; Department of Experimental Medicine, McGill University, Montreal QC, Canada
| |
Collapse
|