1
|
Wilczak M, Surman M, Przybyło M. Altered Glycosylation in Progression and Management of Bladder Cancer. Molecules 2023; 28:molecules28083436. [PMID: 37110670 PMCID: PMC10146225 DOI: 10.3390/molecules28083436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Bladder cancer (BC) is the 10th most common malignancy worldwide, with an estimated 573,000 new cases and 213,000 deaths in 2020. Available therapeutic approaches are still unable to reduce the incidence of BC metastasis and the high mortality rates of BC patients. Therefore, there is a need to deepen our understanding of the molecular mechanisms underlying BC progression to develop new diagnostic and therapeutic tools. One such mechanism is protein glycosylation. Numerous studies reported changes in glycan biosynthesis during neoplastic transformation, resulting in the appearance of the so-called tumor-associated carbohydrate antigens (TACAs) on the cell surface. TACAs affect a wide range of key biological processes, including tumor cell survival and proliferation, invasion and metastasis, induction of chronic inflammation, angiogenesis, immune evasion, and insensitivity to apoptosis. The purpose of this review is to summarize the current information on how altered glycosylation of bladder cancer cells promotes disease progression and to present the potential use of glycans for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Magdalena Wilczak
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11 Street, 30-348 Krakow, Poland
| | - Magdalena Surman
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland
| |
Collapse
|
2
|
Mahapatra S, Mohanty S, Mishra R, Prasad P. An overview of cancer and the human microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 191:83-139. [DOI: 10.1016/bs.pmbts.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Peixoto A, Ferreira D, Azevedo R, Freitas R, Fernandes E, Relvas-Santos M, Gaiteiro C, Soares J, Cotton S, Teixeira B, Paulo P, Lima L, Palmeira C, Martins G, Oliveira MJ, Silva AMN, Santos LL, Ferreira JA. Glycoproteomics identifies HOMER3 as a potentially targetable biomarker triggered by hypoxia and glucose deprivation in bladder cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:191. [PMID: 34108014 PMCID: PMC8188679 DOI: 10.1186/s13046-021-01988-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/17/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Muscle invasive bladder cancer (MIBC) remains amongst the deadliest genitourinary malignancies due to treatment failure and extensive molecular heterogeneity, delaying effective targeted therapeutics. Hypoxia and nutrient deprivation, oversialylation and O-glycans shortening are salient features of aggressive tumours, creating cell surface glycoproteome fingerprints with theranostics potential. METHODS A glycomics guided glycoproteomics workflow was employed to identify potentially targetable biomarkers using invasive bladder cancer cell models. The 5637 and T24 cells O-glycome was characterized by mass spectrometry (MS), and the obtained information was used to guide glycoproteomics experiments, combining sialidase, lectin affinity and bottom-up protein identification by nanoLC-ESI-MS/MS. Data was curated by a bioinformatics approach developed in-house, sorting clinically relevant molecular signatures based on Human Protein Atlas insights. Top-ranked targets and glycoforms were validated in cell models, bladder tumours and metastases by MS and immunoassays. Cells grown under hypoxia and glucose deprivation disclosed the contribution of tumour microenvironment to the expression of relevant biomarkers. Cancer-specificity was validated in healthy tissues by immunohistochemistry and MS in 20 types of tissues/cells of different individuals. RESULTS Sialylated T (ST) antigens were found to be the most abundant glycans in cell lines and over 900 glycoproteins were identified potentially carrying these glycans. HOMER3, typically a cytosolic protein, emerged as a top-ranked targetable glycoprotein at the cell surface carrying short-chain O-glycans. Plasma membrane HOMER3 was observed in more aggressive primary tumours and distant metastases, being an independent predictor of worst prognosis. This phenotype was triggered by nutrient deprivation and concomitant to increased cellular invasion. T24 HOMER3 knockdown significantly decreased proliferation and, to some extent, invasion in normoxia and hypoxia; whereas HOMER3 knock-in increased its membrane expression, which was more pronounced under glucose deprivation. HOMER3 overexpression was associated with increased cell proliferation in normoxia and potentiated invasion under hypoxia. Finally, the mapping of HOMER3-glycosites by EThcD-MS/MS in bladder tumours revealed potentially targetable domains not detected in healthy tissues. CONCLUSION HOMER3-glycoforms allow the identification of patients' subsets facing worst prognosis, holding potential to address more aggressive hypoxic cells with limited off-target effects. The molecular rationale for identifying novel bladder cancer molecular targets has been established.
Collapse
Affiliation(s)
- Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135, Porto, Portugal.,Institute for Biomedical Engineering (INEB), University of Porto, 4200-135, Porto, Portugal
| | - Dylan Ferreira
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135, Porto, Portugal.,Institute for Biomedical Engineering (INEB), University of Porto, 4200-135, Porto, Portugal
| | - Rita Azevedo
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Rui Freitas
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135, Porto, Portugal.,Institute for Biomedical Engineering (INEB), University of Porto, 4200-135, Porto, Portugal
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135, Porto, Portugal.,Institute for Biomedical Engineering (INEB), University of Porto, 4200-135, Porto, Portugal.,REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, 4169-007, Porto, Portugal
| | - Cristiana Gaiteiro
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - Janine Soares
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - Sofia Cotton
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - Beatriz Teixeira
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Paula Paulo
- Cancer Genetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Carlos Palmeira
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal.,Immunology Department, Portuguese Institute of Oncology of Porto, 4200-072, Porto, Portugal.,Health School of University Fernando Pessoa, 4249-004, Porto, Portugal
| | - Gabriela Martins
- Immunology Department, Portuguese Institute of Oncology of Porto, 4200-072, Porto, Portugal
| | - Maria José Oliveira
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135, Porto, Portugal.,Institute for Biomedical Engineering (INEB), University of Porto, 4200-135, Porto, Portugal
| | - André M N Silva
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, 4169-007, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313, Porto, Portugal.,Health School of University Fernando Pessoa, 4249-004, Porto, Portugal.,Department of Surgical Oncology, Portuguese Institute of Oncology, 4200-072, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), 4200-072, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal. .,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313, Porto, Portugal. .,Porto Comprehensive Cancer Center (P.ccc), 4200-072, Porto, Portugal.
| |
Collapse
|
4
|
da Costa JMC, Gouveia MJ, Rinaldi G, Brindley PJ, Santos J, Santos LL. Control Strategies for Carcinogenic-Associated Helminthiases: An Integrated Overview. Front Cell Infect Microbiol 2021; 11:626672. [PMID: 33842386 PMCID: PMC8025785 DOI: 10.3389/fcimb.2021.626672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Helminthiases are extremely prevalent in the developing world. In addition, the chronic infection with some parasitic worms are classified as carcinogenic. Therefore, it is utmost importance to understand the parasite-host interactions, the mechanisms underlay carcinogenesis and how they could be counteracted. This knowledge may ultimately guide novel control strategies that include chemotherapy-based approaches targeting these pathogens and associated pathologies caused by their infections. Little is known on how some helminthiases are associated with cancer; however, it has been hypothesized that chemical carcinogenesis may be involved in the process. Here, we summarize the current knowledge on chemical carcinogenesis associated with helminthiases, along with available therapeutic options and potential therapeutic alternatives including chemotherapy and/or immunotherapy. Ideally, the treatment of the carcinogenic helminthiases should target both the parasite and associated pathologies. The success of any chemotherapeutic regimen often depends on the host immune response during the infection and nutritional status among other factors. The close association between chemotherapy and cell-mediated immunity suggests that a dual therapeutic approach would be advantageous. In addition, there is a pressing need for complementary drugs that antagonize the carcinogenesis process associated with the helminth infections.
Collapse
Affiliation(s)
- José Manuel Correia da Costa
- Centre for the Study in Animal Science (CECA/ICETA), University of Porto, Porto, Portugal
- Centre for Parasite Immunology and Biology, Department of Infectious Diseases, National Institute for Health Dr Ricardo Jorge, Porto, Portugal
| | - Maria João Gouveia
- Centre for the Study in Animal Science (CECA/ICETA), University of Porto, Porto, Portugal
- Centre for Parasite Immunology and Biology, Department of Infectious Diseases, National Institute for Health Dr Ricardo Jorge, Porto, Portugal
- REQUIMTE, Department of Chemical Sciences, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | | | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Centre for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States
| | - Júlio Santos
- Deparment of Urology, Clínica da Sagrada Esperança, Luanda, Angola
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center of Instituto Português de Oncologia, Porto, Portugal
| |
Collapse
|
5
|
Santos LL, Santos J, Gouveia MJ, Bernardo C, Lopes C, Rinaldi G, Brindley PJ, da Costa JMC. Urogenital Schistosomiasis-History, Pathogenesis, and Bladder Cancer. J Clin Med 2021; 10:jcm10020205. [PMID: 33429985 PMCID: PMC7826813 DOI: 10.3390/jcm10020205] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Schistosomiasis is the most important helminthiasis worldwide in terms of morbidity and mortality. Most of the infections occurs in Africa, which about two thirds are caused by Schistosoma haematobium. The infection with S. haematobium is considered carcinogenic leading to squamous cell carcinoma (SCC) and urothelial carcinoma of the urinary bladder. Additionally, it is responsible for female genital schistosomiasis leading to infertility and higher risk of human immunodeficiency virus (HIV) transmission. Remarkably, a recent outbreak in Corsica (France) drew attention to its potential re-mergence in Southern Europe. Thus far, little is known related to host-parasite interactions that trigger carcinogenesis. However, recent studies have opened new avenues to understand mechanisms on how the parasite infection can lead cancer and other associated pathologies. Here, we present a historical perspective of schistosomiasis, and review the infection-associated pathologies and studies on host-parasite interactions that unveil tentative mechanisms underlying schistosomiasis-associated carcinogenesis.
Collapse
Affiliation(s)
- Lúcio Lara Santos
- Experimental Pathology and Therapeutics, Research Centre, Portuguese Oncology Institute—Porto (IPO-Porto), 4200-072 Porto, Portugal; (L.L.S.); (C.L.)
- Department of Surgical Oncology, Portuguese Oncology Institute—Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Urology Department, Hospital Américo Boavida, Luanda 00200, Angola;
| | - Júlio Santos
- Urology Department, Hospital Américo Boavida, Luanda 00200, Angola;
| | - Maria João Gouveia
- Center for the Study in Animal Science (CECA/ICETA), University of Porto, Rua de D. Manuel II, Apt 55142, 4051-401 Porto, Portugal;
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
| | - Carina Bernardo
- Hormones and Cancer Lab, Institute of Biomedicine, iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Carlos Lopes
- Experimental Pathology and Therapeutics, Research Centre, Portuguese Oncology Institute—Porto (IPO-Porto), 4200-072 Porto, Portugal; (L.L.S.); (C.L.)
- Department of Surgical Oncology, Portuguese Oncology Institute—Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK;
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA;
- Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - José M. Correia da Costa
- Center for the Study in Animal Science (CECA/ICETA), University of Porto, Rua de D. Manuel II, Apt 55142, 4051-401 Porto, Portugal;
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
- Correspondence:
| |
Collapse
|
6
|
Mbanefo EC, Agbo CT, Zhao Y, Lamanna OK, Thai KH, Karinshak SE, Khan MA, Fu CL, Odegaard JI, Saltikova IV, Smout MJ, Pennington LF, Nicolls MR, Jardetzky TS, Loukas A, Brindley PJ, Falcone FH, Hsieh MH. IPSE, an abundant egg-secreted protein of the carcinogenic helminth Schistosoma haematobium, promotes proliferation of bladder cancer cells and angiogenesis. Infect Agent Cancer 2020; 15:63. [PMID: 33101456 PMCID: PMC7578584 DOI: 10.1186/s13027-020-00331-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Schistosoma haematobium, the helminth causing urogenital schistosomiasis, is a known bladder carcinogen. Despite the causal link between S. haematobium and bladder cancer, the underlying mechanisms are poorly understood. S. haematobium oviposition in the bladder is associated with angiogenesis and urothelial hyperplasia. These changes may be pre-carcinogenic events in the bladder. We hypothesized that the Interleukin-4-inducing principle of Schistosoma mansoni eggs (IPSE), an S. haematobium egg-secreted "infiltrin" protein that enters host cell nuclei to alter cellular activity, is sufficient to induce angiogenesis and urothelial hyperplasia. Methods: Mouse bladders injected with S. haematobium eggs were analyzed via microscopy for angiogenesis and urothelial hyperplasia. Endothelial and urothelial cell lines were incubated with recombinant IPSE protein or an IPSE mutant protein that lacks the native nuclear localization sequence (NLS-) and proliferation measured using CFSE staining and real-time monitoring of cell growth. IPSE's effects on urothelial cell cycle status was assayed through propidium iodide staining. Endothelial and urothelial cell uptake of fluorophore-labeled IPSE was measured. Findings: Injection of S. haematobium eggs into the bladder triggers angiogenesis, enhances leakiness of bladder blood vessels, and drives urothelial hyperplasia. Wild type IPSE, but not NLS-, increases proliferation of endothelial and urothelial cells and skews urothelial cells towards S phase. Finally, IPSE is internalized by both endothelial and urothelial cells. Interpretation: IPSE drives endothelial and urothelial proliferation, which may depend on internalization of the molecule. The urothelial effects of IPSE depend upon its NLS. Thus, IPSE is a candidate pro-carcinogenic molecule of S. haematobium. SUMMARY Schistosoma haematobium acts as a bladder carcinogen through unclear mechanisms. The S. haematobium homolog of IPSE, a secreted schistosome egg immunomodulatory molecule, enhances angiogenesis and urothelial proliferation, hallmarks of pre-carcinogenesis, suggesting IPSE is a key pro-oncogenic molecule of S. haematobium.
Collapse
Affiliation(s)
- Evaristus C. Mbanefo
- Division of Urology, Department of Surgery, Children’s National Hospital, West Wing, 4th Floor, 111 Michigan Avenue NW, Washington, DC 20010 USA
| | | | | | - Olivia K. Lamanna
- Division of Urology, Department of Surgery, Children’s National Hospital, West Wing, 4th Floor, 111 Michigan Avenue NW, Washington, DC 20010 USA
| | - Kim H. Thai
- Baylor Scott and White Health, Temple, TX USA
| | - Shannon E. Karinshak
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC USA
| | - Mohammad Afzal Khan
- King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | | | | | - Irina V. Saltikova
- Guardant Health, Redwood City, CA USA
- Siberian State Medical University, Tomsk, Russian Federation
| | | | | | - Mark R. Nicolls
- Division of Pulmonology, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA USA
| | | | - Alex Loukas
- James Cook University, Townsville, Australia
| | - Paul J. Brindley
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC USA
| | - Franco H. Falcone
- Institute of Parasitology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Michael H. Hsieh
- Division of Urology, Department of Surgery, Children’s National Hospital, West Wing, 4th Floor, 111 Michigan Avenue NW, Washington, DC 20010 USA
| |
Collapse
|
7
|
Vale N, Gouveia MJ, Gärtner F. Current and Novel Therapies Against Helminthic Infections: The Potential of Antioxidants Combined with Drugs. Biomolecules 2020; 10:E350. [PMID: 32106428 PMCID: PMC7175190 DOI: 10.3390/biom10030350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Infections caused by Schistosoma haematobium and Opisthorchisviverrini are classified as Group 1 biological carcinogen and it has been postulated that parasites produce oxysterol and estrogen-like metabolites that might be considered as initiators of infection-associated carcinogenesis. Chemotherapy for these helminthic infections relies on a single drug, praziquantel, (PZQ) that mainly targets the parasite. Additionally, PZQ has some major drawbacks as inefficacy against juvenile form and alone it is not capable to counteract pathologies associated to infections or prevent carcinogenesis. There is an urgent need to develop novel therapeutic approaches that not only target the parasite but also improve the pathologies associated to infection, and ultimately, counteract or/and prevent the carcinogenesis processes. Repurposing the drug in combination of compounds with different modes of action is a promising strategy to find novel therapeutics approaches against these helminthic infections and its pathologies. Here, we emphasized that using antioxidants either alone or combined with anthelmintic drugs could ameliorate tissue damage, infection-associated complications, moreover, could prevent the development of cancer associated to infections. Hence, antioxidants represent a potential adjuvant approach during treatment to reduce morbidity and mortality. Despite the success of some strategies, there is a long way to go to implement novel therapies for schistosomiasis.
Collapse
Affiliation(s)
- Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Maria João Gouveia
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Center for the Study in Animal Science (CECA/ICETA), University of Porto, Rua de D. Manuel II, Apt 55142, 4051-401 Porto, Portugal
| | - Fátima Gärtner
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| |
Collapse
|
8
|
Tetteh-Quarcoo PB, Akuetteh BK, Owusu IA, Quayson SE, Attah SK, Armah R, Afutu E, Afrah A, Addo-Osafo K, Smith C, Gyasi RK, Ayeh-Kumi PF. Cytological and Wet Mount Microscopic Observations Made in Urine of Schistosoma haematobium-Infected Children: Hint of the Implication in Bladder Cancer. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2019; 2019:7912186. [PMID: 31565106 PMCID: PMC6745107 DOI: 10.1155/2019/7912186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/23/2019] [Accepted: 08/17/2019] [Indexed: 12/03/2022]
Abstract
BACKGROUND Schistosomiasis is the second major human parasitic disease next to malaria, in terms of socioeconomic and public health consequences, especially in sub-Saharan Africa. Schistosoma haematobium (S. haematobium) is a trematode and one of the species of Schistosoma that cause urogenital schistosomiasis (urinary schistosomiasis). Although the knowledge of this disease has improved over the years, there are still endemic areas, with most of the reported cases in Africa, including Ghana. Not much has been done in Ghana to investigate cytological abnormalities in individuals within endemic communities, although there are epidemiologic evidences linking S. haematobium infection with carcinoma of the bladder. AIM The aim of this study was to identify microscopic and cytological abnormalities in the urine deposits of S. haematobium-infected children. METHODOLOGY Three hundred and sixty-seven (367) urine samples were collected from school children in Zenu and Weija communities. All the samples were examined microscopically for the presence of S. haematobium eggs, after which the infected samples and controls were processed for cytological investigation. RESULTS S. haematobium ova were present in 66 (18.0%) out of the 367 urine samples. Inflammatory cells (82%, 54/66), hyperkeratosis (47%, 31/66), and squamous cell metaplasia (24%, 16/66) were the main observations made during the cytological examination of the S. haematobium-infected urine samples. CONCLUSION Cytological abnormalities in S. haematobium-infected children may play an important role in the severity of the disease, leading to the possible development of bladder cancer in later years, if early attention is not given. Therefore, routine cytological screening for urogenital schistosomiasis patients (especially children) at hospitals in S. haematobium-endemic locations is recommended.
Collapse
Affiliation(s)
- Patience B. Tetteh-Quarcoo
- Department of Medical Microbiology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Benjamin K. Akuetteh
- Department of Medical Microbiology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Irene A. Owusu
- Department of Medical Microbiology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Solomon E. Quayson
- Department of Pathology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Simon K. Attah
- Department of Medical Microbiology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Robert Armah
- Department of Medical Microbiology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Emmanuel Afutu
- Department of Medical Microbiology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Ama Afrah
- Department of Pathology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Kantanka Addo-Osafo
- Department of Medical Microbiology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Cecilia Smith
- Department of Pathology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Richard K. Gyasi
- Department of Pathology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Patrick F. Ayeh-Kumi
- Department of Medical Microbiology, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
9
|
Fernandes E, Ferreira D, Peixoto A, Freitas R, Relvas-Santos M, Palmeira C, Martins G, Barros A, Santos LL, Sarmento B, Ferreira JA. Glycoengineered nanoparticles enhance the delivery of 5-fluoroucil and paclitaxel to gastric cancer cells of high metastatic potential. Int J Pharm 2019; 570:118646. [PMID: 31465836 DOI: 10.1016/j.ijpharm.2019.118646] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/26/2019] [Accepted: 08/24/2019] [Indexed: 01/08/2023]
Abstract
Gastric cancer is the third leading cause of cancer-related death worldwide, with half of patients developing metastasis within 5 years after curative treatment. Moreover, many patients cannot tolerate or complete systemic treatment due severe side-effects, reducing their effectiveness. Thus, targeted therapeutics are warranted to improve treatment outcomes and reduce toxicity. Herein, poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with 5-fluorouracil (5-FU) and paclitaxel were surface-functionalized with a monoclonal antibody targeting sialyl-Lewis A (sLeA), a known glycan mediating hematogenous metastasis. Nanoparticles, ranging from 137 to 330 nm, enabled the controlled release of cytotoxic drugs at neutral and acid pH, supporting potential for intravenous and oral administration. Nanoencapsulation also reduced the initial toxicity of the drugs against gastric cells, suggesting it may constitute a safer administration vehicle. Furthermore, nanoparticle functionalization significantly enhanced targeting to sLeA cells in vitro and ex vivo (over 40% in comparison to non-targeted nanoparticles). In summary, a glycoengineered nano-vehicle was successfully developed to deliver 5-FU and paclitaxel therapeutic agents to metastatic gastric cancer cells. We anticipate that this may constitute an important milestone to establish improved targeted therapeutics against gastric cancer. Given the pancarcinomic nature of the sLeA antigen, the translation of this solution to other models may be also envisaged.
Collapse
Affiliation(s)
- Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-013 Porto, Portugal; Institute for Research and Innovation in Health (i3s), University of Porto, 4200-135 Porto, Portugal; Institute for Biomedical Engineering (INEB), 4200-135 Porto, Portugal; Digestive Cancer Research Group, 1495-161 Algés, Portugal
| | - Dylan Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; Digestive Cancer Research Group, 1495-161 Algés, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-013 Porto, Portugal; Institute for Research and Innovation in Health (i3s), University of Porto, 4200-135 Porto, Portugal; Institute for Biomedical Engineering (INEB), 4200-135 Porto, Portugal
| | - Rui Freitas
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; Digestive Cancer Research Group, 1495-161 Algés, Portugal
| | - Carlos Palmeira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; Immunology Department, Portuguese Institute of Oncology of Porto, 4200-162 Porto, Portugal; Health Science Faculty, University of Fernando Pessoa, 4249-004 Porto, Portugal
| | - Gabriela Martins
- Immunology Department, Portuguese Institute of Oncology of Porto, 4200-162 Porto, Portugal
| | - Anabela Barros
- Digestive Cancer Research Group, 1495-161 Algés, Portugal; Department of Medical Oncology, Coimbra Hospital and University Centre, 3075-075 Coimbra, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-013 Porto, Portugal; Digestive Cancer Research Group, 1495-161 Algés, Portugal; Department of Surgical Oncology, Portuguese Institute of Oncology of Porto, 4200-162 Porto, Portugal; Porto Comprehensive Cancer Centre (P.ccc), 4200-162 Porto, Portugal
| | - Bruno Sarmento
- Institute for Research and Innovation in Health (i3s), University of Porto, 4200-135 Porto, Portugal; Institute for Biomedical Engineering (INEB), 4200-135 Porto, Portugal; Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), 4585-116 Gandra PRD, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-013 Porto, Portugal; Porto Comprehensive Cancer Centre (P.ccc), 4200-162 Porto, Portugal.
| |
Collapse
|
10
|
Differential responses of epithelial cells from urinary and biliary tract to eggs of Schistosoma haematobium and S. mansoni. Sci Rep 2019; 9:10731. [PMID: 31341177 PMCID: PMC6656753 DOI: 10.1038/s41598-019-46917-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/28/2019] [Indexed: 01/09/2023] Open
Abstract
Chronic urogenital schistosomiasis can lead to squamous cell carcinoma of the bladder. The International Agency for Research on Cancer classifies the infection with S. haematobium as a group 1 carcinogen, a definitive cause of cancer. By contrast, hepatointestinal schistosomiasis due to the chronic infection with S. mansoni or S. japonicum associated with liver periportal fibrosis, does not apparently lead to malignancy. The effects of culturing human epithelial cells, HCV29, established from normal urothelium, and H69, established from cholangiocytes, in the presence of S. haematobium or S. mansoni eggs were investigated. Cell growth of cells co-cultured with schistosome eggs was monitored in real time, and gene expression analysis of oncogenesis, epithelial to mesenchymal transition and apoptosis pathways was undertaken. Schistosome eggs promoted proliferation of the urothelial cells but inhibited growth of cholangiocytes. In addition, the tumor suppressor P53 pathway was significantly downregulated when exposed to schistosome eggs, and downregulation of estrogen receptor was predicted in urothelial cells exposed only to S. haematobium eggs. Overall, cell proliferative responses were influenced by both the tissue origin of the epithelial cells and the schistosome species.
Collapse
|
11
|
Neves M, Azevedo R, Lima L, Oliveira MI, Peixoto A, Ferreira D, Soares J, Fernandes E, Gaiteiro C, Palmeira C, Cotton S, Mereiter S, Campos D, Afonso LP, Ribeiro R, Fraga A, Tavares A, Mansinho H, Monteiro E, Videira PA, Freitas PP, Reis CA, Santos LL, Dieguez L, Ferreira JA. Exploring sialyl-Tn expression in microfluidic-isolated circulating tumour cells: A novel biomarker and an analytical tool for precision oncology applications. N Biotechnol 2018; 49:77-87. [PMID: 30273682 DOI: 10.1016/j.nbt.2018.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
Circulating tumour cells (CTCs) originating from a primary tumour, lymph nodes and distant metastases hold great potential for liquid biopsies by providing a molecular fingerprint for disease dissemination and its temporal evolution through the course of disease management. CTC enumeration, classically defined on the basis of surface expression of Epithelial Cell Adhesion Molecule (EpCAM) and absence of the pan-leukocyte marker CD45, has been shown to correlate with clinical outcome. However, existing approaches introduce bias into the subsets of captured CTCs, which may exclude biologically and clinically relevant subpopulations. Here we explore the overexpression of the membrane protein O-glycan sialyl-Tn (STn) antigen in advanced bladder and colorectal tumours, but not in blood cells, to propose a novel CTC isolation technology. Using a size-based microfluidic device, we show that the majority (>90%) of CTCs isolated from the blood of patients with metastatic bladder and colorectal cancers express the STn antigen, supporting a link with metastasis. STn+ CTC counts were significantly higher than EpCAM-based detection in colorectal cancer, providing a more efficient cell-surface biomarker for CTC isolation. Exploring this concept, we constructed a glycan affinity-based microfluidic device for selective isolation of STn+ CTCs and propose an enzyme-based strategy for the recovery of viable cancer cells for downstream investigations. Finally, clinically relevant cancer biomarkers (transcripts and mutations) in bladder and colorectal tumours, were identified in cells isolated by microfluidics, confirming their malignant origin and highlighting the potential of this technology in the context of precision oncology.
Collapse
Affiliation(s)
- Manuel Neves
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Rita Azevedo
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Luís Lima
- Portuguese Institute of Oncology, Porto, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal
| | - Marta I Oliveira
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Andreia Peixoto
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal; INEB-Institute for Biomedical Engineering of Porto, Portugal
| | | | - Janine Soares
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Elisabete Fernandes
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal; INEB-Institute for Biomedical Engineering of Porto, Portugal
| | - Cristiana Gaiteiro
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | | | - Sofia Cotton
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Stefan Mereiter
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal
| | - Diana Campos
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal
| | | | - Ricardo Ribeiro
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal; INEB-Institute for Biomedical Engineering of Porto, Portugal
| | - Avelino Fraga
- Hospital Centre- Hospital of Santo António of Porto, Portugal
| | - Ana Tavares
- Portuguese Institute of Oncology, Porto, Portugal
| | - Hélder Mansinho
- Hemato-Oncology Clinic, Hospital Garcia de Orta, EPE, Almada, Portugal; Gupo de Investigação do Cancro Digestivo-GICD, Portugal
| | | | - Paula A Videira
- Glycoimmunology Group, UCIBIO, Departamento Ciências da Vida, Faculdade de Ciência e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Paulo P Freitas
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal; INESC - Microsistemas e Nanotecnologias, Lisboa, Lisbon, Portugal
| | - Celso A Reis
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal; Faculty of Medicine, University of Porto, Portugal
| | - Lúcio Lara Santos
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; UFP: School of Health Sciences, Fernando Pessoa University of Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal
| | - Lorena Dieguez
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - José Alexandre Ferreira
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; International Iberian Nanotechnology Laboratory (INL), Braga, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal.
| |
Collapse
|
12
|
Ishida K, Hsieh MH. Understanding Urogenital Schistosomiasis-Related Bladder Cancer: An Update. Front Med (Lausanne) 2018; 5:223. [PMID: 30159314 PMCID: PMC6104441 DOI: 10.3389/fmed.2018.00223] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/20/2018] [Indexed: 12/30/2022] Open
Abstract
Infection with Schistosoma haematobium leads to urogenital schistosomiasis, which has been correlated with the occurrence of bladder cancer. However, mechanisms responsible for this association have not yet been clearly identified. In this short review, we provide an update, highlighting the most recent studies on schistosome-associated bladder cancer, including those that focus on identifying changes in host biology during S. haematobium infection, as well as studies for the identification of potentially pro-carcinogenic parasite molecules, and we offer a discussion on some possible mechanisms driving schistosomal bladder cancer.
Collapse
Affiliation(s)
- Kenji Ishida
- Bladder Immunology Group, Biomedical Research Institute, Rockville, MD, United States
| | - Michael H. Hsieh
- Bladder Immunology Group, Biomedical Research Institute, Rockville, MD, United States
- Department of Urology, The George Washington University, Washington, DC, United States
- Division of Urology, Children's National Medical Center, Washington, DC, United States
| |
Collapse
|
13
|
Sui X, Lei L, Chen L, Xie T, Li X. Inflammatory microenvironment in the initiation and progression of bladder cancer. Oncotarget 2017; 8:93279-93294. [PMID: 29190997 PMCID: PMC5696263 DOI: 10.18632/oncotarget.21565] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence suggests the idea that chronic inflammation may play a critical role in various malignancies including bladder cancer and long-term treatment with non-steroidal anti-inflammatory drugs (NSAIDs) is significantly effective in reducing certain cancer incidence and mortality. However, the molecular mechanisms leading to malignant transformation and the progression of bladder cancer in a chronically inflammatory environment remain largely unknown. In this review, we will describe the role of inflammation in the formation and development of bladder cancer and summarize the possible molecular mechanisms by which chronic inflammation regulates cell immune response, proliferation and metastasis. Understanding the novel function orchestrating inflammation and bladder cancer will hopefully provide us insights into their future clinical significance in preventing bladder carcinogenesis and progression.
Collapse
Affiliation(s)
- Xinbing Sui
- Department of Medical Oncology Holistic Integrative Oncology Institutes and Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Department of Medical Oncology Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Liming Lei
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Liuxi Chen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tian Xie
- Department of Medical Oncology Holistic Integrative Oncology Institutes and Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Department of Medical Oncology Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xue Li
- Departments of Urology and Pathology, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Vale N, Gouveia MJ, Rinaldi G, Santos J, Santos LL, Brindley PJ, da Costa JMC. The role of estradiol metabolism in urogenital schistosomiasis-induced bladder cancer. Tumour Biol 2017; 39:1010428317692247. [PMID: 28345469 DOI: 10.1177/1010428317692247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Urogenital schistosomiasis is a neglected tropical disease that can lead to bladder cancer. How urogenital schistosomiasis induces carcinogenesis remains unclear, although there is evidence that the human blood fluke Schistosoma haematobium, the infectious agent of urogenital schistosomiasis, releases estradiol-like metabolites. These kind of compounds have been implicated in other cancers. Aiming for enhanced understanding of the pathogenesis of the urogenital schistosomiasis-induced bladder cancer, here we review, interpret, and discuss findings of estradiol-like metabolites detected in both the parasite and in the human urine during urogenital schistosomiasis. Moreover, we predict pathways and enzymes that are involved in the production of these metabolites emphasizing their potential effects on the dysregulation of the tumor suppressor gene p53 expression during urogenital schistosomiasis. Enhanced understanding of these potential carcinogens may not only shed light on urogenital schistosomiasis-induced neoplasia of the bladder, but would also facilitate development of interventions and biomarkers for this and other infection-associated cancers at large.
Collapse
Affiliation(s)
- Nuno Vale
- 1 UCIBIO/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Maria J Gouveia
- 1 UCIBIO/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.,2 Center for the Study of Animal Science, ICETA, University of Porto, Porto, Portugal
| | - Gabriel Rinaldi
- 3 Department of Microbiology, Immunology, & Tropical Medicine and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA.,4 The Wellcome Trust Sanger Institute, Cambridge, UK
| | - Júlio Santos
- 5 Clínica da Sagrada Esperança, Luanda, Angola.,6 Experimental Pathology and Therapeutics Group, Research Center of Instituto Português de Oncologia, Porto, Portugal
| | - Lúcio Lara Santos
- 6 Experimental Pathology and Therapeutics Group, Research Center of Instituto Português de Oncologia, Porto, Portugal
| | - Paul J Brindley
- 3 Department of Microbiology, Immunology, & Tropical Medicine and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA
| | - José M Correia da Costa
- 2 Center for the Study of Animal Science, ICETA, University of Porto, Porto, Portugal.,7 Department of Infectious Diseases, R&D Unit, National Health Institute Doutor Ricardo Jorge (INSA), Porto, Portugal
| |
Collapse
|
15
|
Cotton S, Azevedo R, Gaiteiro C, Ferreira D, Lima L, Peixoto A, Fernandes E, Neves M, Neves D, Amaro T, Cruz R, Tavares A, Rangel M, Silva AMN, Santos LL, Ferreira JA. Targeted O-glycoproteomics explored increased sialylation and identified MUC16 as a poor prognosis biomarker in advanced-stage bladder tumours. Mol Oncol 2017; 11:895-912. [PMID: 28156048 PMCID: PMC5537688 DOI: 10.1002/1878-0261.12035] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/30/2022] Open
Abstract
Bladder carcinogenesis and tumour progression is accompanied by profound alterations in protein glycosylation on the cell surface, which may be explored for improving disease management. In a search for prognosis biomarkers and novel therapeutic targets we have screened, using immunohistochemistry, a series of bladder tumours with differing clinicopathology for short-chain O-glycans commonly found in glycoproteins of human solid tumours. These included the Tn and T antigens and their sialylated counterparts sialyl-Tn(STn) and sialyl-T(ST), which are generally associated with poor prognosis. We have also explored the nature of T antigen sialylation, namely the sialyl-3-T(S3T) and sialyl-6-T(S6T) sialoforms, based on combinations of enzymatic treatments. We observed a predominance of sialoglycans over neutral glycoforms (Tn and T antigens) in bladder tumours. In particular, the STn antigen was associated with high-grade disease and muscle invasion, in accordance with our previous observations. The S3T and S6T antigens were detected for the first time in bladder tumours, but not in healthy urothelia, highlighting their cancer-specific nature. These glycans were also overexpressed in advanced lesions, especially in cases showing muscle invasion. Glycoproteomic analyses of advanced bladder tumours based on enzymatic treatments, Vicia villosa lectin-affinity chromatography enrichment and nanoLC-ESI-MS/MS analysis resulted in the identification of several key cancer-associated glycoproteins (MUC16, CD44, integrins) carrying altered glycosylation. Of particular interest were MUC16 STn+ -glycoforms, characteristic of ovarian cancers, which were found in a subset of advanced-stage bladder tumours facing the worst prognosis. In summary, significant alterations in the O-glycome and O-glycoproteome of bladder tumours hold promise for the development of novel noninvasive diagnostic tools and targeted therapeutics. Furthermore, abnormal MUC16 glycoforms hold potential as surrogate biomarkers of poor prognosis and unique molecular signatures for designing highly specific targeted therapeutics.
Collapse
Affiliation(s)
- Sofia Cotton
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Rita Azevedo
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Cristiana Gaiteiro
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Dylan Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Manuel Neves
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Diogo Neves
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Teresina Amaro
- Department of Pathology, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Ricardo Cruz
- Department of Urology, Portuguese Institute of Oncology of Porto, Portugal
| | - Ana Tavares
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Department of Pathology, Portuguese Institute of Oncology of Porto, Portugal
| | - Maria Rangel
- UCIBIO-REQUIMTE, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal
| | - André M N Silva
- UCIBIO-REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Health School of University Fernando Pessoa, Porto, Portugal.,Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Portugal
| |
Collapse
|
16
|
Feng M, Cheng X. Parasite-Associated Cancers (Blood Flukes/Liver Flukes). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:193-205. [DOI: 10.1007/978-981-10-5765-6_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
van Tong H, Brindley PJ, Meyer CG, Velavan TP. Parasite Infection, Carcinogenesis and Human Malignancy. EBioMedicine 2016; 15:12-23. [PMID: 27956028 PMCID: PMC5233816 DOI: 10.1016/j.ebiom.2016.11.034] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022] Open
Abstract
Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic. Trypanosoma cruzi has a dual role in cancer development including both carcinogenic and anticancer properties. Initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by EBV. Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas.
We searched MEDLINE database and PubMed for articles from 1970 through June 30, 2016. Search terms used in various combinations were “parasite infection”, “carcinogenesis”, “cancer”, “human malignancy”, “parasite and cancer”, “infection-associated cancer”, “parasite-associated cancer” “schistosomiasis”, “opisthorchiasis”, “malaria”, “Chagas disease”, and “strongyloidiasis”. Articles resulting from these searches and relevant references cited in those articles were selected based on their related topics and were reviewed. Abstracts and reports from meetings were also included. Articles published in English were included.
Collapse
Affiliation(s)
- Hoang van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Biomedical and Pharmaceutical Applied Research Center, Vietnam Military Medical University, Hanoi, Vietnam.
| | - Paul J Brindley
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, D.C., USA
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Health Focus GmbH, Potsdam, Germany; Duy Tan University, Da Nang, Viet Nam; Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Viet Nam
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Duy Tan University, Da Nang, Viet Nam; Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Viet Nam.
| |
Collapse
|
18
|
Anisakis pegreffii (Nematoda: Anisakidae) products modulate oxidative stress and apoptosis-related biomarkers in human cell lines. Parasit Vectors 2016; 9:607. [PMID: 27887635 PMCID: PMC5124272 DOI: 10.1186/s13071-016-1895-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In countries with elevated prevalence of zoonotic anisakiasis and high awareness of this parasitosis, a considerable number of cases that associate Anisakis sp. (Nematoda, Anisakidae) and different bowel carcinomas have been described. Although neoplasia and embedded larvae were observed sharing the common site affected by chronic inflammation, no association between the nematode and malignancy were directly proved. Similarly, no data are available about the effect of secretory and excretory products of infecting larvae at the host's cellular level, except in respect to allergenic interaction. METHODS To test the mechanisms by which human non-immune cells respond to the larvae, we exposed the fibroblast cell line HS-68 to two Anisakis products (ES, excretory/secretory products; and EC, crude extract) and evaluated molecular markers related to stress response, oxidative stress, inflammation and apoptosis, such as p53, HSP70, TNF-α, c-jun and c-fos, employing cell viability assay, spectrophotometry, immunoblotting and qPCR. RESULTS Both Anisakis products led to increased production of reactive oxygen species (ROS), especially in EC-treated cells. While the ES treatment induces activation of kinases suggesting inflammation and cell proliferation (or inhibition of apoptosis), in EC-treated cells, other signaling pathways indicate the inhibition of apoptosis, marked by strong upregulation of Hsp70. Elevated induction of p53 in fibroblasts treated by both Anisakis products, suggests a significantly negative effect on the host DNA. CONCLUSIONS This study shows that in vitro cell response to Anisakis products can result in at least two different scenarios, which in both cases lead to inflammation and DNA damage. Although these preliminary results are far from proving a relationship between the parasite and cancer, they are the first to support the existence of conditions where such changes are feasible.
Collapse
|
19
|
Insight into the molecular basis of Schistosoma haematobium-induced bladder cancer through urine proteomics. Tumour Biol 2016; 37:11279-87. [PMID: 26951512 DOI: 10.1007/s13277-016-4997-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/25/2016] [Indexed: 12/21/2022] Open
Abstract
Infection due to Schistosoma haematobium is carcinogenic. However, the cellular and molecular mechanisms underlying urogenital schistosomiasis (UGS)-induced carcinogenesis have not been well defined. Conceptually, early molecular detection of this phenomenon, through non-invasive procedures, seems feasible and is desirable. Previous analysis of urine collected during UGS suggests that estrogen metabolites, including depurinating adducts, may be useful for this purpose. Here, a new direction was pursued: the identification of molecular pathways and potential biomarkers in S. haematobium-induced bladder cancer by analyzing the proteome profiling of urine samples from UGS patients. GeLC-MS/MS followed by protein-protein interaction analysis indicated oxidative stress and immune defense systems responsible for microbicide activity are the most representative clusters in UGS patients. Proteins involved in immunity, negative regulation of endopeptidase activity, and inflammation were more prevalent in UGS patients with bladder cancer, whereas proteins with roles in renal system process, sensory perception, and gas and oxygen transport were more abundant in subjects with urothelial carcinoma not associated with UGS. These findings highlighted a Th2-type immune response induced by S. haematobium, which seems to be further modulated by tumorigenesis, resulting in high-grade bladder cancer characterized by an inflammatory response and complement activation alternative pathway. These findings established a starting point for the development of multimarker strategies for the early detection of UGS-induced bladder cancer.
Collapse
|
20
|
Abstract
Schistosomiasis is a major neglected tropical disease that afflicts more than 240 million people, including many children and young adults, in the tropics and subtropics. The disease is characterized by chronic infections with significant residual morbidity and is of considerable public health importance, with substantial socioeconomic impacts on impoverished communities. Morbidity reduction and eventual elimination through integrated intervention measures are the focuses of current schistosomiasis control programs. Precise diagnosis of schistosome infections, in both mammalian and snail intermediate hosts, will play a pivotal role in achieving these goals. Nevertheless, despite extensive efforts over several decades, the search for sensitive and specific diagnostics for schistosomiasis is ongoing. Here we review the area, paying attention to earlier approaches but emphasizing recent developments in the search for new diagnostics for schistosomiasis with practical applications in the research laboratory, the clinic, and the field. Careful and rigorous validation of these assays and their cost-effectiveness will be needed, however, prior to their adoption in support of policy decisions for national public health programs aimed at the control and elimination of schistosomiasis.
Collapse
|
21
|
Fernandes E, Peixoto A, Neves M, Afonso LP, Santos LL, Ferreira JA. Humoral response against sialyl-Le(a) glycosylated protein species in esophageal cancer: Insights for immunoproteomic studies. Electrophoresis 2015; 36:2902-7. [PMID: 26333169 DOI: 10.1002/elps.201500270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/13/2015] [Accepted: 08/12/2015] [Indexed: 12/18/2022]
Abstract
Esophageal cancers (ECs) show poor prognosis and decreased overall survival due to late diagnosis and ineffective therapeutics, urging the introduction of novel biomarkers to aid disease management. The levels of sialyl-Lewis(a) antigen (sLe(a) ) are frequently increased in digestive tumours, which has been explored in serological non-invasive prognostication (CA19-9 test); however, with low sensitivity and specificity. Autoantibodies against cancer antigens are considered the next generation biomarkers, as they are present in circulation long before tumour-associated proteins. Based on these observations we have mined the serum of EC patients (n = 7) for antibodies against sLe(a) -glycosylated protein species. All EC were positive for sLe(a) , irrespectively of their histological nature but only two patients showed elevated CA19-9. Moreover, IgG titers, with emphasis on IgG1, were elevated in EC patients in comparison to the control group. SLe(a) -glycoproteins were then extracted from tumours of patients with negative CA19-9, isolated by immunoprecipitation and blotted with patients IgG. Autoantibodies against sLe(a) -glycosylated proteins were detected in all cases. Different SLe(a) -glycoproteins were observed for tumours of distinct histological natures, which now require identification and validation in larger patient sets. This preliminary data suggests that antoantibodies against sLe(a) glycosylated proteins hold potential for non-invasive diagnosis in CA19-9 negative cases and sets the rational for future immunoproteomic studies envisaging highly specific EC biomarkers.
Collapse
Affiliation(s)
- Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto, Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Manuel Neves
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Luís Pedro Afonso
- Department of Pathology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Health School of University of Fernando Pessoa, Porto, Portugal.,Department of Surgical Oncology, Portuguese Institute for Oncology, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Mass Spectrometry Centre, QOPNA, Department of Chemistry of the University of Aveiro, Aveiro, Portugal
| |
Collapse
|
22
|
Zhou X, Ji G, Chen H, Jin W, Yin C, Zhang G. Clinical role of circulating miR-223 as a novel biomarker in early diagnosis of cancer patients. Int J Clin Exp Med 2015; 8:16890-16898. [PMID: 26629240 PMCID: PMC4659128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Current diagnostic procedures of cancers are invasive and non-specific. MicroRNAs (miRNAs) have become promising molecular markers for gastric cancer (GC) predication. However, there have been inconsistencies in the literature regarding the suitability of circulating miRNAs for early detection of cancers. METHODS We performed a comprehensive meta-analysis to integrate an evaluation index for diagnostic accuracy of miR-223 in diagnosing cancer patients. Furthermore, we conducted an independent validation set of 50 gastric cancer patients and 50 healthy controls comparing miR-223 expression. We also analyzed miR-223 expression in vitro. RESULTS A total of 11 studies met the inclusion criteria and therefore included in this meta-analysis. We found that miR-223 yielded a pooled area under ROC curve (AUC) of 0.89 (sensitivity: 81%, specificity: 84%) in discriminating cancer from controls. In our validation test, plasma miR-223 levels in GC patients were significantly higher than that in healthy controls (P<0.01). ROC curve analysis showed that AUC was 0.812 with a sensitivity of 70% and specificity of 80%. Moreover, the expression trend of miR-223 in plasma samples was in accordance with that of tissue and cell samples. CONCLUSION Current evidences suggested that plasma miR-223 could be a reliable and non-invasive biomarker for cancer diagnosis. Further large-scale prospective studies are necessary to validate their potential applicability in human cancer diagnosis.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, China
- First Clinical Medical College of Nanjing Medical UniversityNanjing 210029, China
| | - Guoping Ji
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, China
- First Clinical Medical College of Nanjing Medical UniversityNanjing 210029, China
| | - Han Chen
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, China
- First Clinical Medical College of Nanjing Medical UniversityNanjing 210029, China
| | - Wujuan Jin
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, China
- First Clinical Medical College of Nanjing Medical UniversityNanjing 210029, China
| | - Chengqiang Yin
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, China
- First Clinical Medical College of Nanjing Medical UniversityNanjing 210029, China
| | - Guoxin Zhang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, China
- First Clinical Medical College of Nanjing Medical UniversityNanjing 210029, China
| |
Collapse
|
23
|
Azevedo R, Ferreira JA, Peixoto A, Neves M, Sousa N, Lima A, Santos LL. Emerging antibody-based therapeutic strategies for bladder cancer: A systematic review. J Control Release 2015. [PMID: 26196222 DOI: 10.1016/j.jconrel.2015.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bladder cancer is the most common malignancy of the urinary tract, presents the highest recurrence rate among solid tumors and is the second leading cause of death in genitourinary cancers. Despite recent advances in understanding of pathophysiology of the disease, the management of bladder cancer patients remains a clinically challenging problem. Particularly, bladder tumors invading the muscularis propria and disseminated disease are often not responsive to currently available therapeutic approaches, which include surgery and conventional chemotherapy. Antibody-based therapeutic strategies have become an established treatment option for over a decade in several types of cancer. However, bladder cancer has remained mostly an "orphan disease" regarding the introduction of these novel therapeutics, which has been translated in few improvements in patients overall survival. In order to shift this paradigm, several clinical studies involving antibody-based therapeutic strategies targeting the most prominent bladder cancer-related biomolecular pathways and immunological mediators are ongoing. This systematic review explores antibody-based therapeutics for bladder cancer undergoing clinical trial and discusses the future perspectives in this field, envisaging the development of more effective guided therapeutics.
Collapse
Affiliation(s)
- Rita Azevedo
- Experimental Pathology and Therapeutics Group - Research Center, Portuguese Institute of Oncology of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal; Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group - Research Center, Portuguese Institute of Oncology of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal; Mass Spectrometry Center, QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group - Research Center, Portuguese Institute of Oncology of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Manuel Neves
- Experimental Pathology and Therapeutics Group - Research Center, Portuguese Institute of Oncology of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal; Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Nuno Sousa
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Aurea Lima
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (Iinfacts), Department of Pharmaceutical Sciences, Rua Central de Gandra 1317, 4585-116, Gandra-PRD, Portugal; Molecular Oncology and Viral Pathology Group - Research Center, Portuguese Institute of Oncology of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Lucio Lara Santos
- Experimental Pathology and Therapeutics Group - Research Center, Portuguese Institute of Oncology of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal; Health School of University of Fernando Pessoa, Praça 9 de Abril 349, 4249-004 Porto, Portugal; Department of Surgical Oncology, Portuguese Institute of Oncology of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
| |
Collapse
|
24
|
Koonrungsesomboon N, Wadagni AC, Mbanefo EC. Molecular markers and Schistosoma-associated bladder carcinoma: A systematic review and meta-analysis. Cancer Epidemiol 2015; 39:487-96. [PMID: 26162479 DOI: 10.1016/j.canep.2015.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/20/2015] [Accepted: 06/22/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Molecular mechanisms and pathogenesis of schistosomal-associated bladder cancer (SABC), one of the most common malignancies in Africa and parts of the Middle East, is still unclear. Identification of host molecular markers involved in schistosomal related bladder carcinogenesis is of value in prediction of high-risk group, early detection and timely intervention. METHODS PubMed, Scopus, Google Scholar, Cochrane Library and African Journals Online databases were systematically searched and reviewed. A total of 63 articles reporting 41 host molecular factors were included in the meta-analysis. RESULTS Pooled odds ratio demonstrated associations of p53 expression, telomerase activity and sFas with SABC as compared to other schistosomal patients (p53 expression: OR=9.46, 95%CI=1.14-78.55, p=0.04; telomerase by TERT: OR=37.38, 95%CI=4.17-334.85, p=0.001; telomerase by TRAP: OR=10.36, 95%CI=6.08-17.64, p<0.00001; sFas: OR=34.37, 95%CI=3.32-355.51, p=0.003). In comparison to bladder cancers of other etiology, positive associations were found between SABC and p15 deletion, p16 deletion, telomerase activity and sFas (p15 deletion: OR=4.20, 95%CI=2.58-6.82, p<0.00001; p16 deletion: OR=4.93, 95%CI=2.52-9.65, p<0.00001; telomerase by TERT: OR=3.01, 95%CI=1.51-5.97, p=0.002; telomerase by TRAP: OR=2.66, 95%CI=1.18-6.01, p=0.02; sFas: OR=4.50, 95%CI=1.78-11.40, p=0.001). Other identified associations were reported by few numbers of studies to enable reliable interpretation. CONCLUSIONS Variations in gene expression or genomic alterations of some molecular markers in SABC as compared to non-SABC or other schistosomal patients were identified. These suggest minute differences in the pathogenesis and physiological profile of SABC, in relation to non-SABC.
Collapse
Affiliation(s)
- Nut Koonrungsesomboon
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, 852-8523, Japan.
| | - Anita Carolle Wadagni
- Centre for Buruli Ulcer Screening and Treatment, Ministry of Health, Cotonou, BP 03, Allada, Benin.
| | - Evaristus Chibunna Mbanefo
- Department of Parasitology and Entomology, Faculty of Bioscience, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria; Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, 852-8523, Japan.
| |
Collapse
|
25
|
Honeycutt J, Hammam O, Hsieh MH. Schistosoma haematobium egg-induced bladder urothelial abnormalities dependent on p53 are modulated by host sex. Exp Parasitol 2015; 158:55-60. [PMID: 26160678 DOI: 10.1016/j.exppara.2015.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 06/21/2015] [Accepted: 07/01/2015] [Indexed: 01/02/2023]
Abstract
INTRODUCTION AND OBJECTIVE The bladder urothelium changes dramatically during Schistosoma haematobium infection (urogenital schistosomiasis). These alterations include hyperplasia, ulceration, dysplasia, squamous metaplasia and frank carcinogenesis. Defining the pathways underpinning these urothelial responses will contribute to a deeper understanding of how S. haematobium egg expulsion, hematuria, and bladder cancer develop in humans. The tumor suppressor gene p53 is of particular interest, given its role in many cancers, including bladder cancer generally and schistosomal bladder cancer specifically. METHODS Transgenic mice featuring tamoxifen-inducible Cre recombinase activity in cells expressing the urothelial-specific gene uroplakin-3a (Upk3a-GCE mice) were crossed with either TdTomato-floxed-EGFP reporter or p53-floxed mice. Mice were administered tamoxifen or vehicle control to induce excision of floxed genes. TdTomato-EGFP reporter mice were sacrificed and their bladders harvested, sectioned, and imaged by fluorescence microscopy. p53-floxed mice underwent bladder wall injection with S. haematobium eggs or vehicle controls. Three months later, mice were sacrificed and their bladders subjected to histological analysis (H&E staining). RESULTS We first confirmed the phenotypic fidelity of Upk3a-GCE mice by crossing them with TdTomato-floxed-EGFP reporter mice and administering tamoxifen to their progeny. As expected, these progeny switched from TdTomato to EGFP expression in their bladder urothelium. Having confirmed the phenotype of Upk3a-GCE mice, we next crossed them to p53-floxed mice. The resulting progeny were given tamoxifen or vehicle control to render them urothelial p53-haploinsufficient or -intact, respectively. Then, we injected S. haematobium eggs or control vehicle into the bladder walls of these mice. Male p53-intact, egg-injected mice exhibited similar histological changes as their p53-haploinsufficient counterparts, including urothelial hyperplasia and ulceration. In contrast, female p53-intact, egg-injected mice featured no urothelial ulceration, whereas their p53-haploinsufficient counterparts often had significant ulceration. CONCLUSIONS Urothelial p53 signaling indeed seems to affect urothelial homeostasis during S. haematobium infection, albeit in a sex-specific manner. Ongoing work seeks to determine whether p53 mediates associated alterations in urothelial cell cycle status and frank carcinogenesis in the setting of urogenital schistosomiasis.
Collapse
Affiliation(s)
| | - Olfat Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Michael H Hsieh
- Biomedical Research Institute, Rockville, MD, USA; Division of Urology, Children's National Health System, Washington, DC, USA; The George Washington University, Washington, DC, USA.
| |
Collapse
|
26
|
Estrogen-like metabolites and DNA-adducts in urogenital schistosomiasis-associated bladder cancer. Cancer Lett 2015; 359:226-32. [PMID: 25615421 DOI: 10.1016/j.canlet.2015.01.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/08/2015] [Accepted: 01/14/2015] [Indexed: 01/26/2023]
Abstract
An estrogen-DNA adduct mediated pathway may be involved in the pathogenesis of the squamous cell carcinoma of the bladder associated with infection with the blood fluke Schistosoma haematobium. Extracts from developmental stages of S. haematobium, including eggs, induce tumor-like phenotypes in cultured cells. In addition, estrogen-derived, reactive metabolites occur in this pathogen and in sera of infected persons. Liquid chromatography-mass spectrometry analysis was performed on urine from 40 Angolans diagnosed with urogenital schistosomiasis (UGS), half of who also presented UGS-associated squamous cell carcinoma and/or urothelial cell carcinoma. The analysis revealed numerous estrogen-like metabolites, including seven specifically identified in UGS cases, but not reported in the database of metabolites in urine of healthy humans. These schistosome infection-associated metabolites included catechol estrogen quinones (CEQ) and CEQ-DNA-adducts, two of which had been identified previously in S. haematobium. In addition, novel metabolites derived directly from 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG) were identified in urine of all 40 cases of UGS. These metabolites can be expected to provide deeper insights into the carcinogenesis UGS-induced bladder cancer, and as biomarkers for diagnosis and/or prognosis of this neglected tropical disease-linked cancer.
Collapse
|