1
|
Macedo JM, Souza MF, Lima AM, Francisco AF, Kayano AM, Gusmão MEMDL, de Araújo ECS, Salvador GHM, Fontes MRDM, Zuliani JP, Soares AM. Molecular interaction assays in silico of crotapotin from Crotalus durissus terrificus against the molecular target trypanothione reductase from Leishmania braziliensis. J Venom Anim Toxins Incl Trop Dis 2025; 31:e20240049. [PMID: 40190838 PMCID: PMC11970842 DOI: 10.1590/1678-9199-jvatitd-2024-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/12/2024] [Indexed: 04/09/2025] Open
Abstract
Background Leishmaniasis is a neglected disease that mainly affects impoverished populations and receives limited attention from governments and research institutions. Current treatments are based on antimonial therapies, which present high toxicity and cause significant side effects, such as cardiotoxicity and hepatotoxicity. This study proposes using crotapotin, isolated from Crotalus durissus terrificus venom, as a potential inhibitor of the enzyme trypanothione reductase from Leishmania braziliensis (LbTR). Methods In silico assays were conducted to evaluate the interaction of crotapotin with LbTR using molecular docking and molecular dynamics techniques. Recombinant LbTR was expressed in E. coli, and its enzymatic activity was confirmed. The inhibitory action of crotapotin on LbTR was then tested in enzymatic assays. Results The stability of these interactions was confirmed over 200 ns molecular dynamics simulations, with a clustering analysis using the GROMACS method revealing a total of 12 distinct clusters. The five most representative clusters showed low RMSD values, indicating high structural stability of the LbTR-crotapotin complex. In particular, cluster 1, with 3,398 frames and an average RMSD of 0.189 nm from the centroid, suggests a dominant stable conformation of the complex. Additional clusters maintained average RMSD values between 0.173 nm and 0.193 nm, further reinforcing the robustness of the complex under physiological conditions. Recombinant LbTR expression was successful, yielding 4.8 mg/L with high purity, as verified by SDS-PAGE. In the enzymatic assays, crotapotin partially inhibited LbTR activity, with an IC50 of 223.4 μM. Conclusion The in silico findings suggest a stable and structured interaction between crotapotin and LbTR, with low structural fluctuation, although the inhibition observed in in vitro assays was moderate. These results indicate the potential of crotapotin as a promising basis for developing specific LbTR inhibitors, contributing to the bioprospecting of new antiparasitic agents.
Collapse
Affiliation(s)
- Jamile Mariano Macedo
- Federal Institute of Rondônia, Porto Velho Calama Campus, Porto
Velho, RO, Brazil
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- Postgraduate Program in Biodiversity and Biotechnology - BIONORTE
Network (PPGBIONORTE), Federal University of Pará, Belém, PA, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
| | - Mateus Farias Souza
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- Postgraduate Program in Biodiversity and Biotechnology - BIONORTE
Network (PPGBIONORTE), Federal University of Pará, Belém, PA, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
| | - Anderson Maciel Lima
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- Postgraduate Program in Biodiversity and Biotechnology - BIONORTE
Network (PPGBIONORTE), Federal University of Pará, Belém, PA, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
| | - Aleff Ferreira Francisco
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
| | - Anderson Makoto Kayano
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
- Tropical Medicine Research Center (CEPEM/SESAU-RO), Porto Velho,
RO, Brazil
| | - Maria Elisabeth Moreira de Lima Gusmão
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
| | - Erika Crhistina Santos de Araújo
- Postgraduate Program in Cellular and Molecular Biology, Oswaldo
Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz
Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | | | - Marcos Roberto de Mattos Fontes
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
- Department of Biophysics and Pharmacology, Institute of
Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Institute for Advanced Studies of the Sea (IEAMar), São Paulo State
University (UNESP), São Vicente, SP, Brazil
| | - Juliana Pavan Zuliani
- Postgraduate Program in Biodiversity and Biotechnology - BIONORTE
Network (PPGBIONORTE), Federal University of Pará, Belém, PA, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz
Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- National Institute of Science and Technology of Epidemiology of
the Western Amazon (INCT EpiAmO), Porto Velho, RO, Brazil
| | - Andreimar Martins Soares
- Laboratory of Protein Biotechnology and Education Applied to One
Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
- Postgraduate Program in Biodiversity and Biotechnology - BIONORTE
Network (PPGBIONORTE), Federal University of Pará, Belém, PA, Brazil
- International Network of Research and Excellence Knowledge of the
Western Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
- National Institute of Science and Technology of Epidemiology of
the Western Amazon (INCT EpiAmO), Porto Velho, RO, Brazil
| |
Collapse
|
2
|
Cavalcante T, Marques AM, Medeiros MM, Reis TC, Quina D, de Alencar BC, Palmisano G, Stolf BS. Leishmania (Leishmania) amazonensis and Leishmania (Leishmania) infantum sialic acids enhance macrophage infection. Cell Biol Int 2025; 49:357-364. [PMID: 39764715 DOI: 10.1002/cbin.12269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/25/2024] [Accepted: 12/03/2024] [Indexed: 03/09/2025]
Abstract
Leishmaniases affect millions of people around the world, caused by Leishmania parasites. Leishmania are transmitted by female sandflies from Phlebotominae subfamily during their blood meals. In mammals, promastigotes are phagocytosed mainly by macrophages, differentiate into amastigotes and multiply. For entry and survival in macrophages, Leishmania uses virulence factors such as surface glycoconjugates. Sialic acids (Sias) are found in terminal portions of glycoconjugates and play important roles in human pathogens. The importance of Sias was explored only in L. (L.) donovani, associated with visceral leishmaniasis in Africa, Asia and Europe. Thus, the aim of this study was to characterize Sias of Leishmania (L.) amazonensis and Leishmania (L.) infantum, related to cutaneous and visceral leishmaniasis in South America, respectively. For that, we analyzed by HPLC-FLD the Sias of promastigotes of L. (L.) amazonensis LV79 and two L. (L.) infantum strains, and of L. (L.) amazonensis axenic amastigotes and amastigotes from paw lesions of infected mice. To evaluate Sias importance in promastigotes, we treated stationary phase parasites with sialidase and infected murine and human macrophages. We detected N-Acetylneuraminic Acid in promastigotes of all strains, with greater abundance in L. (L.) infantum. We identified N-Acetylneuraminic Acid and N-Glycolylneuraminic acid in amastigotes recovered from paw lesion, but only N-Acetylneuraminic Acid in axenic amastigotes. Promastigotes treated with sialidase infected less macrophages than parasites displaying total Sias. Our results demonstrate that Sias vary between Leishmania species and between L. (L.) amazonensis life stages and plays an important role in macrophage infection by L. (L.) amazonensis and L. (L.) infantum.
Collapse
Affiliation(s)
- Tainá Cavalcante
- Laboratory of Leishmaniasis, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Antônio Moreira Marques
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mariana Medina Medeiros
- Laboratory of Leishmaniasis, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tania Carolina Reis
- Laboratory of Cell Biology of Immune System, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniel Quina
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruna Cunha de Alencar
- Laboratory of Cell Biology of Immune System, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Beatriz Simonsen Stolf
- Laboratory of Leishmaniasis, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Peña MS, Tang FHF, Franco FADL, Rodrigues AT, Carrara GMP, Araujo TLS, Giordano RJ, Palmisano G, de Camargo MM, Uliana SRB, Stolf BS. Leishmania (L.) amazonensis LaLRR17 increases parasite entry in macrophage by a mechanism dependent on GRP78. Parasitology 2023; 150:922-933. [PMID: 37553284 PMCID: PMC10577668 DOI: 10.1017/s0031182023000720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Leishmaniases affect 12 million people worldwide. They are caused by Leishmania spp., protozoan parasites transmitted to mammals by female phlebotomine flies. During the life cycle, promastigote forms of the parasite live in the gut of infected sandflies and convert into amastigotes inside the vertebrate macrophages. The parasite evades macrophage's microbicidal responses due to virulence factors that affect parasite phagocytosis, survival and/or proliferation. The interaction between Leishmania and macrophage molecules is essential to phagocytosis and parasite survival. Proteins containing leucine-rich repeats (LRRs) are common in several organisms, and these motifs are usually involved in protein–protein interactions. We have identified the LRR17 gene, which encodes a protein with 6 LRR domains, in the genomes of several Leishmania species. We show here that promastigotes of Leishmania (L.) amazonensis overexpressing LaLRR17 are more infective in vitro. We produced recombinant LaLRR17 protein and identified macrophage 78 kDa glucose-regulated protein (GRP78) as a ligand for LaLRR17 employing affinity chromatography followed by mass spectrometry. We showed that GRP78 binds to LaLRR17 and that its blocking precludes the increase of infection conferred by LaLRR17. Our results are the first to report LRR17 gene and protein, and we hope they stimulate further studies on how this protein increases phagocytosis of Leishmania.
Collapse
Affiliation(s)
- Mauricio S. Peña
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fenny Hui Fen Tang
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Ricardo José Giordano
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Beatriz Simonsen Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Barbosa GR, Marana SR, Stolf BS. Characterization of Leishmania ( L.) amazonensis oligopeptidase B and its role in macrophage infection. Parasitology 2022; 149:1411-1418. [PMID: 35703092 PMCID: PMC11010554 DOI: 10.1017/s0031182022000816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/09/2022] [Accepted: 05/30/2022] [Indexed: 11/07/2022]
Abstract
Leishmania spp. are parasitic protozoa that cause leishmaniasis, a disease endemic in 98 countries. Leishmania promastigotes are transmitted by the vector and differentiate into amastigotes within phagocytic cells of the vertebrate host. To survive in multiple and hostile environments, the parasite has several virulence factors. Oligopeptidase B (OPB) is a serine peptidase present in prokaryotes, some eukaryotes and some higher plants. It has been considered a virulence factor in trypanosomatids, but only a few studies, performed with Old World species, analysed its role in Leishmania virulence or infectivity.L. (L.) amazonensis is an important agent of cutaneous leishmaniasis in Brazil. The L. (L.) amazonensis OPB encoding gene has been sequenced and analysed in silico but has never been expressed. In this work, we produced recombinant L. (L.) amazonensis OPB and showed that its pH preferences, Km and inhibition patterns are similar to those reported for L. (L.) major and L. (L.) donovani OPBs. Since Leishmania is known to secrete OPB, we performed in vitro infection assays using the recombinant enzyme. Our results showed that active OPB increased in vitro infection by L. (L.) amazonensis when present before and throughout infection. Our findings suggest that OPB is relevant to L. (L.) amazonensis infection, and that potential drugs acting through OPB will probably be effective for Old and New World Leishmania species. OPB inhibitors may eventually be explored for leishmaniasis chemotherapy.
Collapse
Affiliation(s)
- Gustavo Rolim Barbosa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sandro Roberto Marana
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Beatriz Simonsen Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Germanó MJ, Mackern-Oberti JP, Vitório JG, Duarte MC, Pimenta DC, Sanchez MV, Bruna FA, Lozano ES, Fernandes AP, Cargnelutti DE. Identification of Immunodominant Antigens From a First-Generation Vaccine Against Cutaneous Leishmaniasis. Front Immunol 2022; 13:825007. [PMID: 35634280 PMCID: PMC9133320 DOI: 10.3389/fimmu.2022.825007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease (NTD) caused by parasites belonging to the Leishmania genus for which there is no vaccine available for human use. Thus, the aims of this study are to evaluate the immunoprotective effect of a first-generation vaccine against L. amazonensis and to identify its immunodominant antigens. BALB/c mice were inoculated with phosphate buffer sodium (PBS), total L. amazonensis antigens (TLAs), or TLA with Poly (I:C) and Montanide ISA 763. The humoral and cellular immune response was evaluated before infection. IgG, IgG1, and IgG2a were measured on serum, and IFN-γ, IL-4, and IL-10 cytokines as well as cell proliferation were measured on a splenocyte culture from vaccinated mice. Immunized mice were challenged with 104 infective parasites of L. amazonensis on the footpad. After infection, the protection provided by the vaccine was analyzed by measuring lesion size, splenic index, and parasite load on the footpad and spleen. To identify immunodominant antigens, total proteins of L. amazonensis were separated on 2D electrophoresis gel and transferred to a membrane that was incubated with serum from immunoprotected mice. The antigens recognized by the serum were analyzed through a mass spectrometric assay (LC-MS/MS-IT-TOF) to identify their protein sequence, which was subjected to bioinformatic analysis. The first-generation vaccine induced higher levels of antibodies, cytokines, and cell proliferation than the controls after the second dose. Mice vaccinated with TLA + Poly (I:C) + Montanide ISA 763 showed less footpad swelling, a lower splenic index, and a lower parasite load than the control groups (PBS and TLA). Four immunodominant proteins were identified by mass spectrometry: cytosolic tryparedoxin peroxidase, an uncharacterized protein, a kinetoplast-associated protein-like protein, and a putative heat-shock protein DNAJ. The identified proteins showed high levels of conserved sequence among species belonging to the Leishmania genus and the Trypanosomatidae family. These proteins also proved to be phylogenetically divergent to human and canine proteins. TLA + Poly (I:C) + Montanide ISA 763 could be used as a first-generation vaccine against leishmaniasis. The four proteins identified from the whole-protein vaccine could be good antigen candidates to develop a new-generation vaccine against leishmaniasis.
Collapse
Affiliation(s)
- María José Germanó
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Juan Pablo Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Médicas (FCM), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Jessica Gardone Vitório
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Costa Duarte
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Maria Victoria Sanchez
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Flavia Alejandra Bruna
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Esteban Sebastián Lozano
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Médicas (FCM), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Diego Esteban Cargnelutti
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Médicas (FCM), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- *Correspondence: Diego Esteban Cargnelutti,
| |
Collapse
|
6
|
Roh H, Kim DH. Identification, classification and functional characterization of HSP70s in rainbow trout (Oncorhynchus mykiss) through multi-omics approaches. FISH & SHELLFISH IMMUNOLOGY 2022; 121:205-214. [PMID: 34990808 DOI: 10.1016/j.fsi.2021.12.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Heat shock protein 70s (HSP70s) are known to play vital biological processes in rainbow trout. However, information on the numerous roles and classification of many different HSP70s is insufficient. The purpose of this study was to investigate the characteristics of all HSP70s in rainbow trout using multi-dimensional genomic and transcriptomic analyses for inspecting HSP70 homologs, phylogenetic characteristics, DNA motifs, and transcription factor binding sites (TFBSs). Also, the transcriptomic results in conditions of acute thermal stress and Ichthyophthirius multifiliis infection were used to characterize the expression of all HSP70 homologs, and the isoforms of the most sensitive HSP70 were predicted in silico. A total of 23 HSP70s were identified, and they were divided into seven evolutionary groups (groups 1-7). Groups 1 and 2 had relatively longer phylogenetic distances compared to the other groups, which can speculate origin of groups 1 and 2 HSP70s would be different compared to others. With transcriptomic profiling, most HSPs belonging to group 3 showed highly sensitive responses to I. multifiliis infection, not thermal stress, but the group 6 HSP70s had the opposite expression tendencies. Likewise, the composition of the TFBS in each HSP70 was consistent with its group classification. Since TFBSs are widely known to influence transcriptomic expression, they could be one of the major reasons for the different patterns of expression within the HSP70 groups. Moreover, this study demonstrated several isoforms of HSP70a, by far the most sensitive HSP70s, under several stress environments such as hypoxia, thermal, and overcrowding stress. This is an important fundamental study to expand the understanding of HSP70s in rainbow trout as well as for selecting the most sensitive biomarkers for types of stress.
Collapse
Affiliation(s)
- HyeongJin Roh
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, South Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, South Korea.
| |
Collapse
|
7
|
Wei FR, Gao CH, Wang JY, Yang YT, Shi F, Zheng B. Label-Free Quantitative Proteomic Analysis of Three Strains of Viscerotropic Leishmania Isolated from Patients with Different Epidemiological Types of Visceral Leishmaniasis in China. Acta Parasitol 2021; 66:1366-1386. [PMID: 34019278 DOI: 10.1007/s11686-021-00387-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND There are three epidemiological types of visceral leishmaniasis in China, which are caused by Leishmania strains belonging to the L. donovani complex. The mechanisms underlying their differences in the population affected, disease latency, and animal host, etc., remain unclear. We investigated the protein abundance differences among Leishmania strains isolated from three types of visceral leishmaniasis endemic areas in China. METHODS Promastigotes of the three Leishmania strains were cultured to the log phase and harvested. The protein tryptic digests were analyzed with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS), followed by label-free quantitative analysis. The MS experiment was performed on a Q Exactive mass spectrometer. Raw spectra were quantitatively analyzed with the MaxQuant software (ver 1.3.0.5) and matched with the reference database. Differentially expressed proteins were analyzed using the bioinformatics method. The MS analysis was repeated three times for each sample. RESULTS A total of 5012 proteins were identified across the KS-2, JIASHI-5 and SC6 strains in at least 2 of the three samples replicate. Of them, 1758 were identified to be differentially expressed at least between 2 strains, including 349 with known names. These differentially expressed proteins with known names are involved in biological functions such as energy and lipid metabolic process, nucleotide acid metabolic process, amino acid metabolic process, response to stress, cell membrane/cytoskeleton, cell cycle and proliferation, biological adhesion and proteolysis, localization and transport, regulation of the biological process, and signal transduction. CONCLUSION The differentially expressed proteins and their related biological functions may shed light on the pathogenicity of Leishmania and targets for the development of vaccines and medicines.
Collapse
Affiliation(s)
- Fu-Rong Wei
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China
| | - Chun-Hua Gao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China
| | - Jun-Yun Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China.
| | - Yue-Tao Yang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China
| | - Feng Shi
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China
| | - Bin Zheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China.
| |
Collapse
|
8
|
Ranjan R, Das P, Vijayakumar S. Differentially modulated proteins associated with Leishmaniasis-a systematic review of in-vivo and in-vitro studies. Mol Biol Rep 2020; 47:9159-9178. [PMID: 33113081 PMCID: PMC7591689 DOI: 10.1007/s11033-020-05936-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/20/2020] [Indexed: 11/05/2022]
Abstract
High-throughput proteomic technologies are widely used for understanding the disease mechanism, drug-resistant mechanism, and to identify drug targets and markers for diagnostics. Studies with proteomics applications, relating to Leishmaniasis, are being constantly reported in the literature. However, from such studies, a readily accessible knowledge of differentially modulated proteins associated with Leishmaniasis is lacking. Hence, we performed a systematic review concerning differentially modulated proteins (DMP) in Leishmania as well as host infected with Leishmania from the published articles between the years 2000 and 2019. This review is classified into five different sections, namely, DMP in the host after Leishmania infection, DMP between different strains of Leishmania, DMP in drug-resistant Leishmania, DMP in Leishmania under stress, and DMP in different life stages of Leishmania. A lot of consensuses could be observed among the DMP in drug-resistant and stressed Leishmania. In addition to the review, a database was constructed with the data collected in this study (protein accession ID, protein name, gene name, host organism, experimental conditions, fold change, and regulatory data). A total of 2635 records are available in the database. We believe this review and the database will help the researcher in understanding the disease better and provide information for the targeted proteomics study related to Leishmaniasis. Database availability: http://ldepdb.biomedinformri.com/ .
Collapse
Affiliation(s)
- Ravi Ranjan
- Department of Statistics/Bioinformatics Centre, Rajendra Memorial Research Institute of Medical Science, Indian Council for Medical Research, Agamkuan, Patna, Bihar, 800007, India
| | - Pradeep Das
- Department of Molecular Biology/Bioinformatics Centre, Rajendra Memorial Research Institute of Medical Science, Indian Council for Medical Research, Agamkuan, Patna, Bihar, 800007, India
| | - Saravanan Vijayakumar
- Department of Statistics/Bioinformatics Centre, Rajendra Memorial Research Institute of Medical Science, Indian Council for Medical Research, Agamkuan, Patna, Bihar, 800007, India.
| |
Collapse
|
9
|
Motta FN, Azevedo CDS, Neves BP, Araújo CND, Grellier P, Santana JMD, Bastos IMD. Oligopeptidase B, a missing enzyme in mammals and a potential drug target for trypanosomatid diseases. Biochimie 2019; 167:207-216. [DOI: 10.1016/j.biochi.2019.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022]
|
10
|
Capelli-Peixoto J, Mule SN, Tano FT, Palmisano G, Stolf BS. Proteomics and Leishmaniasis: Potential Clinical Applications. Proteomics Clin Appl 2019; 13:e1800136. [PMID: 31347770 DOI: 10.1002/prca.201800136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/02/2019] [Indexed: 02/06/2023]
Abstract
Leishmaniases are diseases caused by protozoan parasites of the genus Leishmania. They are endemic in 98 countries, affect around 12 million people worldwide and may present several distinct clinical forms. Unfortunately, there are only a few drugs available for treatment of leishmaniasis, which are toxic and not always effective. Different parasite species and different clinical forms require optimization of the treatment or more specific therapies, which are not available. The emergence of resistance is also a matter of concern. Besides, diagnosis can sometimes be complicated due to atypical manifestations and associations with other pathologies. In this review, proteomic data are presented and discussed in terms of their application in important issues in leishmaniasis such as parasite resistance to chemotherapy, diagnosis of active disease in patients and dogs, markers for different clinical forms, identification of virulence factors, and their potential use in vaccination. It is shown that proteomics has contributed to the discovery of potential biomarkers for prognosis, diagnosis, therapeutics, monitoring of disease progression, treatment follow-up and identification of vaccine candidates for specific diseases. However, the authors believe its capabilities have not yet been fully explored for routine clinical analysis for several reasons, which will be presented in this review.
Collapse
Affiliation(s)
- Janaína Capelli-Peixoto
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Fabia Tomie Tano
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Beatriz Simonsen Stolf
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Christensen SM, Belew AT, El-Sayed NM, Tafuri WL, Silveira FT, Mosser DM. Host and parasite responses in human diffuse cutaneous leishmaniasis caused by L. amazonensis. PLoS Negl Trop Dis 2019; 13:e0007152. [PMID: 30845223 PMCID: PMC6405045 DOI: 10.1371/journal.pntd.0007152] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/11/2019] [Indexed: 02/01/2023] Open
Abstract
Diffuse cutaneous leishmaniasis (DCL) is a rare form of leishmaniasis where parasites grow uncontrolled in diffuse lesions across the skin. Meta-transcriptomic analysis of biopsies from DCL patients infected with Leishmania amazonensis demonstrated an infiltration of atypical B cells producing a surprising preponderance of the IgG4 isotype. DCL lesions contained minimal CD8+ T cell transcripts and no evidence of persistent TH2 responses. Whereas localized disease exhibited activated (so-called M1) macrophage presence, transcripts in DCL suggested a regulatory macrophage (R-Mϕ) phenotype with higher levels of ABCB5, DCSTAMP, SPP1, SLAMF9, PPARG, MMPs, and TM4SF19. The high levels of parasite transcripts in DCL and the remarkable uniformity among patients afforded a unique opportunity to study parasite gene expression in this disease. Patterns of parasite gene expression in DCL more closely resembled in vitro parasite growth in resting macrophages, in the absence of T cells. In contrast, parasite gene expression in LCL revealed 336 parasite genes that were differently upregulated, relative to DCL and in vitro macrophage growth, and these transcripts may represent transcripts that are produced by the parasite in response to host immune pressure.
Collapse
Affiliation(s)
- Stephen M. Christensen
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD United States of America
| | - Ashton T. Belew
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD United States of America
| | - Najib M. El-Sayed
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD United States of America
| | - Wagner L. Tafuri
- Departamento de Patologia Geral, Universidade Federal de Minas Geras, Belo Horizonte, Brazil
| | - Fernando T. Silveira
- Evandro Chagas Institute, Tropical Medicine Nucleus, Federal University of Pará, Belém, PA Brazil
| | - David M. Mosser
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD United States of America
| |
Collapse
|
12
|
Galuppo MK, de Rezende E, Forti FL, Cortez M, Cruz MC, Teixeira AA, Giordano RJ, Stolf BS. CD100/Sema4D Increases Macrophage Infection by Leishmania (Leishmania) amazonensis in a CD72 Dependent Manner. Front Microbiol 2018; 9:1177. [PMID: 29922261 PMCID: PMC5996280 DOI: 10.3389/fmicb.2018.01177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 05/15/2018] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is caused by trypanosomatid protozoa of the genus Leishmania, which infect preferentially macrophages. The disease affects 12 million people worldwide, who may present cutaneous, mucocutaneous or visceral forms. Several factors influence the form and severity of the disease, and the main ones are the Leishmania species and the host immune response. CD100 is a membrane bound protein that can also be shed. It was first identified in T lymphocytes and latter shown to be induced in macrophages by inflammatory stimuli. The soluble CD100 (sCD100) reduces migration and expression of inflammatory cytokines in human monocytes and dendritic cells, as well as the intake of oxidized low-density lipoprotein (oxLDL) by human macrophages. Considering the importance of macrophages in Leishmania infection and the potential role of sCD100 in the modulation of macrophage phagocytosis and activation, we analyzed the expression and distribution of CD100 in murine macrophages and the effects of sCD100 on macrophage infection by Leishmania (Leishmania) amazonensis. Here we show that CD100 expression in murine macrophages increases after infection with Leishmania. sCD100 augments infection and phagocytosis of Leishmania (L.) amazonensis promastigotes by macrophages, an effect dependent on macrophage CD72 receptor. Besides, sCD100 enhances phagocytosis of zymosan particles and infection by Trypanosoma cruzi.
Collapse
Affiliation(s)
- Mariana K Galuppo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eloiza de Rezende
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fabio L Forti
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Mauro Cortez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mario C Cruz
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andre A Teixeira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ricardo J Giordano
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Beatriz S Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Oliveira MP, Martins VT, Santos TTO, Lage DP, Ramos FF, Salles BCS, Costa LE, Dias DS, Ribeiro PAF, Schneider MS, Machado-de-Ávila RA, Teixeira AL, Coelho EAF, Chávez-Fumagalli MA. Small Myristoylated Protein-3, Identified as a Potential Virulence Factor in Leishmania amazonensis, Proves to be a Protective Antigen against Visceral Leishmaniasis. Int J Mol Sci 2018; 19:E129. [PMID: 29301342 PMCID: PMC5796078 DOI: 10.3390/ijms19010129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/14/2017] [Accepted: 12/25/2017] [Indexed: 11/23/2022] Open
Abstract
In a proteomics approach conducted with Leishmania amazonensis, parasite proteins showed either an increase or a decrease in their expression content during extensive in vitro cultivation, and were related to the survival and the infectivity of the parasites, respectively. In the current study, a computational screening was performed to predict virulence factors among these molecules. Three proteins were selected, one of which presented no homology to human proteins. This candidate, namely small myristoylated protein-3 (SMP-3), was cloned, and its recombinant version (rSMP-3) was used to stimulate peripheral blood mononuclear cells (PBMCs) from healthy subjects living in an endemic area of leishmaniasis and from visceral leishmaniasis patients. Results showed high interferon-γ (IFN-γ) production and low levels of interleukin 10 (IL-10) in the cell supernatants. An in vivo experiment was then conducted on BALB/c mice, which were immunized with rSMP-3/saponin and later challenged with Leishmania infantum promastigotes. The rSMP-3/saponin combination induced high production of protein-specific IFN-γ, IL-12, and granulocyte-macrophage colony-stimulating factor (GM-CSF) by the spleen cells of the immunized mice. This pattern was associated with protection, which was characterized by a significant reduction in the parasite load in distinct organs of the animals. Altogether, these results have revealed that this new virulence factor is immunogenic in both mice and humans, and have proven its protective efficacy against visceral leishmaniasis in a murine model.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/metabolism
- Computational Biology
- Cytokines/metabolism
- Epitopes, T-Lymphocyte/metabolism
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Leishmania/pathogenicity
- Leishmania infantum
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/parasitology
- Leishmaniasis, Visceral/prevention & control
- Leukocytes, Mononuclear/metabolism
- Linear Models
- Mice, Inbred BALB C
- Molecular Sequence Annotation
- Protozoan Proteins/chemistry
- Protozoan Proteins/metabolism
- Reproducibility of Results
- Structural Homology, Protein
- Virulence Factors/metabolism
Collapse
Affiliation(s)
- Marcelo P Oliveira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Thaís T O Santos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Beatriz C S Salles
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Lourena E Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Daniel S Dias
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Patrícia A F Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Mônica S Schneider
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Ricardo A Machado-de-Ávila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Santa Catarina, Brazil.
| | - Antônio L Teixeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX 77041, USA.
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
- Departamento de Patologia Clínica, do Colégio Técnico (COLTEC), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Miguel A Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| |
Collapse
|
14
|
de Rezende E, Kawahara R, Peña MS, Palmisano G, Stolf BS. Quantitative proteomic analysis of amastigotes from Leishmania (L.) amazonensis LV79 and PH8 strains reveals molecular traits associated with the virulence phenotype. PLoS Negl Trop Dis 2017; 11:e0006090. [PMID: 29176891 PMCID: PMC5720813 DOI: 10.1371/journal.pntd.0006090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 12/07/2017] [Accepted: 11/01/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Leishmaniasis is an antropozoonosis caused by Leishmania parasites that affects around 12 million people in 98 different countries. The disease has different clinical forms, which depend mainly on the parasite genetics and on the immunologic status of the host. The promastigote form of the parasite is transmitted by an infected female phlebotomine sand fly, is internalized by phagocytic cells, mainly macrophages, and converts into amastigotes which replicate inside these cells. Macrophages are important cells of the immune system, capable of efficiently killing intracellular pathogens. However, Leishmania can evade these mechanisms due to expression of virulence factors. Different strains of the same Leishmania species may have different infectivity and metastatic phenotypes in vivo, and we have previously shown that analysis of amastigote proteome can give important information on parasite infectivity. Differential abundance of virulence factors probably accounts for the higher virulence of PH8 strain parasites shown in this work. In order to test this hypothesis, we have quantitatively compared the proteomes of PH8 and LV79 lesion-derived amastigotes using a label-free proteomic approach. METHODOLOGY/PRINCIPAL FINDINGS In the present work, we have compared lesion development by L. (L.) amazonensis PH8 and LV79 strains in mice, showing that they have different virulence in vivo. Viability and numbers of lesion-derived amastigotes were accordingly significantly different. Proteome profiles can discriminate parasites from the two strains and several proteins were differentially expressed. CONCLUSIONS/SIGNIFICANCE This work shows that PH8 strain is more virulent in mice, and that lesion-derived parasites from this strain are more viable and more infective in vitro. Amastigote proteome comparison identified GP63 as highly expressed in PH8 strain, and Superoxide Dismutase, Tryparedoxin Peroxidase and Heat Shock Protein 70 as more abundant in LV79 strain. The expression profile of all proteins and of the differential ones precisely classified PH8 and LV79 samples, indicating that the two strains have proteins with different abundances and that proteome profiles correlate with their phenotypes.
Collapse
Affiliation(s)
- Eloiza de Rezende
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rebeca Kawahara
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mauricio S. Peña
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Beatriz S. Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
15
|
Terreros MJS, de Luna LAV, Giorgio S. Long-term cell culture isolated from lesions of mice infected with Leishmania amazonensis: a new approach to study mononuclear phagocyte subpopulations during the infection. Pathog Dis 2017; 75:4554384. [DOI: 10.1093/femspd/ftx114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/13/2017] [Indexed: 11/14/2022] Open
|
16
|
Peña MS, Cabral GC, Fotoran WL, Perez KR, Stolf BS. Metacaspase-binding peptide inhibits heat shock-induced death in Leishmania (L.) amazonensis. Cell Death Dis 2017; 8:e2645. [PMID: 28252649 PMCID: PMC5386556 DOI: 10.1038/cddis.2017.59] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 12/05/2016] [Accepted: 01/18/2017] [Indexed: 01/07/2023]
Abstract
Leishmania (Leishmania) amazonensis is an important agent of cutaneous leishmaniasis in Brazil. This parasite faces cell death in some situations during transmission to the vertebrate host, and this process seems to be dependent on the activity of metacaspase (MCA), an enzyme bearing trypsin-like activity present in protozoans, plants and fungi. In fact, the association between MCA expression and cell death induced by different stimuli has been demonstrated for several Leishmania species. Regulators and natural substrates of MCA are poorly known. To fulfill this gap, we have employed phage display over recombinant L. (L.) amazonensis MCA to identify peptides that could interact with the enzyme and modulate its activity. Four peptides were selected for their capacity to specifically bind to MCA and interfere with its activity. One of these peptides, similar to ecotin-like ISP3 of L. (L.) major, decreases trypsin-like activity of promastigotes under heat shock, and significantly decreases parasite heat shock-induced death. These findings indicate that peptide ligands identified by phage display affect trypsin-like activity and parasite death, and that an endogenous peptidase inhibitor is a possible natural regulator of the enzyme.
Collapse
Affiliation(s)
- Mauricio S Peña
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Guilherme C Cabral
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Wesley L Fotoran
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Katia R Perez
- Department of Biophysics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Beatriz S Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
17
|
Antileishmanial activity of verbascoside: Selective arginase inhibition of intracellular amastigotes of Leishmania (Leishmania) amazonensis with resistance induced by LPS plus IFN-γ. Biochem Pharmacol 2017; 127:28-33. [DOI: 10.1016/j.bcp.2016.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/20/2016] [Indexed: 11/27/2022]
|
18
|
Vacchina P, Norris-Mullins B, Carlson ES, Morales MA. A mitochondrial HSP70 (HSPA9B) is linked to miltefosine resistance and stress response in Leishmania donovani. Parasit Vectors 2016; 9:621. [PMID: 27906059 PMCID: PMC5133764 DOI: 10.1186/s13071-016-1904-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/22/2016] [Indexed: 11/29/2022] Open
Abstract
Background Protozoan parasites of the genus Leishmania are responsible for leishmaniasis, a neglected tropical disease affecting millions worldwide. Visceral leishmaniasis (VL), caused by Leishmania donovani, is the most severe form of leishmaniasis with high rates of mortality if left untreated. Current treatments include pentavalent antimonials and amphotericin B. However, high toxicity and emergence of resistance hinder the success of these options. Miltefosine (HePC) is the first oral treatment available for leishmaniasis. While treatment with HePC has proven effective, higher tolerance to the drug has been observed, and experimental resistance is easily developed in an in vitro environment. Several studies, including ours, have revealed that HePC resistance has a multi-factorial origin and this work aims to shed light on this complex mechanism. Methods 2D-DIGE quantitative proteomics comparing the soluble proteomes of sensitive and HePC resistant L. donovani lines identified a protein of interest tentatively involved in drug resistance. To test this link, we employed a gain-of-function approach followed by mutagenesis analysis. Functional studies were complemented with flow cytometry to measure HePC incorporation and cell death. Results We identified a mitochondrial HSP70 (HSPA9B) downregulated in HePC-resistant L. donovani promastigotes. The overexpression of HSPA9B in WT lines confers an increased sensitivity to HePC, regardless of whether the expression is ectopic or integrative. Moreover, the increased sensitivity to HePC is specific to the HSPA9B overexpression since dominant negative mutant lines were able to restore HePC susceptibility to WT values. Interestingly, the augmented susceptibility to HePC did not correlate with an increased HePC uptake. Leishmania donovani promastigotes overexpressing HSPA9B were subjected to different environmental stimuli. Our data suggest that HSPA9B is capable of protecting cells from stressful conditions such as low pH and high temperature. This phenotype was further corroborated in axenic amastigotes overexpressing HSPA9B. Conclusions The results from this study provide evidence to support the involvement of a mitochondrial HSP70 (HSPA9B) in experimental HePC resistance, a mechanism that is not yet fully understood, and reveal potential fundamental roles of HSPA9B in the biology of Leishmania. Overall, our findings are relevant for current and future antileishmanial chemotherapy strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1904-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Vacchina
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - B Norris-Mullins
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - E S Carlson
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - M A Morales
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
19
|
Comparative genomics of Tunisian Leishmania major isolates causing human cutaneous leishmaniasis with contrasting clinical severity. INFECTION GENETICS AND EVOLUTION 2016; 50:110-120. [PMID: 27818279 DOI: 10.1016/j.meegid.2016.10.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/27/2016] [Accepted: 10/29/2016] [Indexed: 12/23/2022]
Abstract
Zoonotic cutaneous leishmaniasis caused by Leishmania (L.) major parasites affects urban and suburban areas in the center and south of Tunisia where the disease is endemo-epidemic. Several cases were reported in human patients for which infection due to L. major induced lesions with a broad range of severity. However, very little is known about the mechanisms underlying this diversity. Our hypothesis is that parasite genomic variability could, in addition to the host immunological background, contribute to the intra-species clinical variability observed in patients and explain the lesion size differences observed in the experimental model. Based on several epidemiological, in vivo and in vitro experiments, we focused on two clinical isolates showing contrasted severity in patients and BALB/c experimental mice model. We used DNA-seq as a high-throughput technology to facilitate the identification of genetic variants with discriminating potential between both isolates. Our results demonstrate that various levels of heterogeneity could be found between both L. major isolates in terms of chromosome or gene copy number variation (CNV), and that the intra-species divergence could surprisingly be related to single nucleotide polymorphisms (SNPs) and Insertion/Deletion (InDels) events. Interestingly, we particularly focused here on genes affected by both types of variants and correlated them with the observed gene CNV. Whether these differences are sufficient to explain the severity in patients is obviously still open to debate, but we do believe that additional layers of -omic information is needed to complement the genomic screen in order to draw a more complete map of severity determinants.
Collapse
|
20
|
Codonho BS, Costa SDS, Peloso EDF, Joazeiro PP, Gadelha FR, Giorgio S. HSP70 of Leishmania amazonensis alters resistance to different stresses and mitochondrial bioenergetics. Mem Inst Oswaldo Cruz 2016; 0:0. [PMID: 27304024 PMCID: PMC4957499 DOI: 10.1590/0074-02760160087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/28/2016] [Indexed: 01/09/2023] Open
Abstract
The 70 kDa heat shock protein (HSP70) is a molecular chaperone that assists the parasite Leishmania in returning to homeostasis after being subjected to different types of stress during its life cycle. In the present study, we evaluated the effects of HSP70 transfection of L. amazonensis promastigotes (pTEX-HSP70) in terms of morphology, resistance, infectivity and mitochondrial bioenergetics. The pTEX-HSP70 promastigotes showed no ultrastructural morphological changes compared to control parasites. Interestingly, the pTEX-HSP70 promastigotes are resistant to heat shock, H2O2-induced oxidative stress and hyperbaric environments. Regarding the bioenergetics parameters, the pTEX-HSP70 parasites had higher respiratory rates and released less H2O2 than the control parasites. Nevertheless, the infectivity capacity of the parasites did not change, as verified by the infection of murine peritoneal macrophages and human macrophages, as well as the infection of BALB/c mice. Together, these results indicate that the overexpression of HSP70 protects L. amazonensis from stress, but does not interfere with its infective capacity.
Collapse
Affiliation(s)
- Bárbara Santoni Codonho
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| | - Solange dos Santos Costa
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| | - Eduardo de Figueiredo Peloso
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Campinas, SP, Brasil
| | - Paulo Pinto Joazeiro
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Campinas, SP, Brasil
| | - Fernanda Ramos Gadelha
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Campinas, SP, Brasil
| | - Selma Giorgio
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| |
Collapse
|
21
|
Distinct courses of infection with Leishmania (L.) amazonensis are observed in BALB/c, BALB/c nude and C57BL/6 mice. Parasitology 2016; 143:692-703. [PMID: 26892342 DOI: 10.1017/s003118201600024x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Leishmania (L.) amazonensis [L. (L.) amazonensis] is widely distributed in Brazil and its symptomatic infections usually lead to few localized lesions and sometimes to diffuse cutaneous form, with nodules throughout the body, anergy to parasite antigens and poor therapeutic response. The variability of these manifestations draws attention to the need for studies on the pathophysiology of infection by this species. In this study, we analysed the course and immunological aspects of L. (L.) amazonensis infection in BALB/c and C57BL/6 strains, both susceptible, but displaying different clinical courses, and athymic BALB/c nude, to illustrate the role of T cell dependent responses. We analysed footpad thickness and parasite burden by in vivo imaging. Furthermore, we evaluated the cellular profile and cytokine production in lymph nodes and the inflammatory infiltrates of lesions. Nude mice showed delayed lesion development and less inflammatory cells in lesions, but higher parasite burden than BALB/c and C57BL/6. BALB/c and C57BL/6 mice had similar parasite burdens, lesion sizes and infiltrates until 6 weeks after infection, and after that C57BL/6 mice controlled the infection. Small differences in parasite numbers were observed in C57BL/6 macrophages in vitro, indicating that in vivo milieu accounts for most differences in infection. We believe our results shed light on the role of host immune system in the course of L. (L.) amazonensis infection by comparing three mouse strains that differ in parasitaemia and inflammatory cells.
Collapse
|