1
|
Wang N, Zhang Z, Huang L, Chen T, Yu X, Huang Y. Current status and progress in the omics of Clonorchis sinensis. Mol Biochem Parasitol 2023; 255:111573. [PMID: 37127222 DOI: 10.1016/j.molbiopara.2023.111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Clonorchis sinensis (C. sinensis) is a fish-borne trematode that inhabits the bile duct of mammals including humans, cats, dogs, rats, and so on. In the complex life cycle of C. sinensis, the worm develops successively in two intermediate hosts in fresh water and one definitive host. What's more, it undergoes eight developmental stages with a distinct morphology. Clonorchiasis, caused by C. sinensis infection, is an important food-borne parasitic disease and one of the most common zoonoses. C. sinensis infection could result in hyperplasia of the bile duct epithelium, obstructive jaundice, gall-stones, cholecystitis and cholangitis, even liver cirrhosis and cholangiocarcinoma. Thus, clonorchiasis is a serious public health problem in endemic areas. Integrated strategies should be adopted in the prevention and control of clonorchiasis due to the epidemiological characteristics. The recent advances in high-throughput technologies have made available the profiling of multiple layers of a biological system, genomics, transcriptomics, proteomics, and metabolomics. These data can help us to get more information about the development, physiology, metabolism, and reproduction of the parasite as well as pathogenesis and parasite-host interactions in clonorchiasis. In the present study, we summarized recent progresses in omics studies on C. sinensis providing insights into the studies and future directions on treating and preventing C. sinensis associated diseases.
Collapse
Affiliation(s)
- Nian Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou 510080, Guangdong, People's Republic of China
| | - Zhuanling Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China
| | - Lisi Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, People's Republic of China
| | - Tingjin Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou 510080, Guangdong, People's Republic of China
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou 510080, Guangdong, People's Republic of China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou 510080, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Treeriya R, Ho PN, Titapun A, Klanrit P, Suksawat M, Kulthawatsiri T, Sirirattanakul S, Loilome W, Namwat N, Wangwiwatsin A, Chamadol N, Khuntikeo N, Phetcharaburanin J. 1H NMR fecal metabolic phenotyping of periductal fibrosis- and cholangiocarcinoma-specific metabotypes defining perturbation in gut microbial-host co-metabolism. PeerJ 2023; 11:e15386. [PMID: 37187520 PMCID: PMC10178365 DOI: 10.7717/peerj.15386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Background The liver fluke Opisthorchis viverrini (OV), which subsequently inhabits the biliary system and results in periductal fibrosis (PDF), is one of the primarily causes of cholangiocarcinoma (CCA), a bile duct cancer with an exceptionally high incidence in the northeast of Thailand and other Greater Mekong Subregion (GMS) countries. Insights in fecal metabolic changes associated with PDF and CCA are required for further molecular research related to gut health and potential diagnostic biological marker development. Methods In this study, nuclear magnetic resonance (NMR) metabolomics was applied for fecal metabolic phenotyping from 55 fecal water samples across different study groups including normal bile duct, PDF and CCA groups. Results By using NMR spectroscopy-based metabolomics, fecal metabolic profiles of patients with CCA or PDF and of individuals with normal bile duct have been established with a total of 40 identified metabolites. Further multivariate statistical analysis and hierarchical clustering heat map have demonstrated the PDF- and CCA-specific metabotypes through various altered metabolite groups including amino acids, alcohols, amines, anaerobic glycolytic metabolites, fatty acids, microbial metabolites, sugar, TCA cycle intermediates, tryptophan catabolism substrates, and pyrimidine metabolites. Compared to the normal bile duct group, PDF individuals showed the significantly elevated relative concentrations of fecal ethanol, glycine, tyrosine, and N-acetylglucosamine whereas CCA patients exhibited the remarkable fecal metabolic changes that can be evident through the increased relative concentrations of fecal uracil, succinate, and 5-aminopentanoate. The prominent fecal metabolic alterations between CCA and PDF were displayed by the reduction of relative concentration of methanol observed in CCA. The metabolic alterations associated with PDF and CCA progression have been proposed with the involvement of various metabolic pathways including TCA cycle, ethanol biogenesis, hexamine pathway, methanol biogenesis, pyrimidine metabolism, and lysine metabolism. Among them, ethanol, methanol, and lysine metabolism strongly reflect the association of gut-microbial host metabolic crosstalk in PDF and/or CCA patients. Conclusion The PDF- and CCA-associated metabotypes have been investigated displaying their distinct fecal metabolic patterns compared to that of normal bile duct group. Our study also demonstrated that the perturbation in co-metabolism of host and gut bacteria has been involved from the early step since OV infection to CCA tumorigenesis.
Collapse
Affiliation(s)
- Rujikorn Treeriya
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Phuc N. Ho
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Attapol Titapun
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thanaporn Kulthawatsiri
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Suphasarang Sirirattanakul
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Arporn Wangwiwatsin
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nittaya Chamadol
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jutarop Phetcharaburanin
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
3
|
Qiu YY, Chang QC, Gao JF, Bao MJ, Luo HT, Song JH, Hong SJ, Mao RF, Sun YY, Chen YY, Liu MY, Wang CR, Liu XL. Multiple biochemical indices and metabolomics of Clonorchis sinensis provide a novel interpretation of biomarkers. Parasit Vectors 2022; 15:172. [PMID: 35590378 PMCID: PMC9118806 DOI: 10.1186/s13071-022-05290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/16/2022] [Indexed: 11/29/2022] Open
Abstract
Background Clonorchiasis, an infectious disease caused by the liver fluke Clonorchis sinensis, may lead to the development of liver and gallbladder diseases, and even cholangiocarcinoma (CCA). However, the pathogenesis, host-pathogen interaction, and diagnostic markers for clonorchiasis remain unclear. Methods Eighteen rabbits were randomly divided into control group (n = 9) and C. sinensis-infected group (n = 9), and their plasma samples were collected at 7, 14, 28, and 63 days post-infection (dpi). Biochemical indices and metabolites in different infection periods were detected. A non-targeted ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach was employed to investigate the metabolic profiles of plasma in rabbits, and related metabolic pathways of differential metabolites and correlation between candidate biochemical indices and differential metabolites were analyzed. Finally, the candidate biomarkers were verified with human samples using a targeted metabolomics method. Results The result of biochemical indices indicated C. sinensis infection would affect the liver function biochemical indices, especially alanine aminotransferase, aspartate transaminase (AST), glutamyl transpeptidase (GGT), total bile acid, high-density lipoprotein, and cholinesterase. The metabonomic results showed that 58, 212, 23, and 21 differential metabolites were identified in different phases of the infection. Multivariate statistical analysis of differential metabolites revealed distinct metabolic signatures during different phases of infection, with most of these signatures being observed at 14 dpi, which mainly influences the amino acid metabolisms. For metabolites and biochemical indices, AST, GGT, hypoxanthine, l-pipecolic acid, and d-glucuronate represented potential noninvasive biomarkers for the diagnosis of C. sinensis (P < 0.05 and AUC > 0.8). Furthermore, GGT and d-glucuronate levels were positively correlated with the infection (r(28) = 0.98, P < 0.0001) and showed excellent diagnostic performance (AUC = 0.972; 95% confidence interval, 0.921 to 1.000). Conclusions The present results provide new insights into plasma metabolic changes in rabbits during C. sinensis infection, and the potential biomarker may be used for developing an effective method to diagnose clonorchiasis in the future. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05290-y.
Collapse
Affiliation(s)
- Yang-Yuan Qiu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin Province, China
| | - Qiao-Cheng Chang
- School of Public Health, Shantou University, Shantou, 515063, Guangdong Province, China
| | - Jun-Feng Gao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Ming-Jia Bao
- Jiamusi Center for Disease Control and Prevention, Jiamusi, 154000, Heilongjiang Province, China
| | - Hai-Tao Luo
- Department of Clinical Laboratory, Qiqihar Traditional Chinese Medicine Hospital, Qiqihar, 161000, Heilongjiang Province, China
| | - Jin-Ho Song
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, 06974, Republic of Korea
| | - Sung-Jong Hong
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon, 22012, Republic of Korea
| | - Rui-Feng Mao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Yun-Yi Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Ying-Yu Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Ming-Yuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin Province, China
| | - Chun-Ren Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China.
| | - Xiao-Lei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin Province, China.
| |
Collapse
|
4
|
Haonon O, Liu Z, Dangtakot R, Pinlaor P, Puapairoj A, Cha'on U, Intuyod K, Pongking T, Chantawong C, Sengthong C, Chaidee A, Onsurathum S, Li JV, Pinlaor S. Opisthorchis viverrini infection induces metabolic disturbances in hamsters fed with high fat/high fructose diets: implications for liver and kidney pathologies. J Nutr Biochem 2022; 107:109053. [DOI: 10.1016/j.jnutbio.2022.109053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/15/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023]
|
5
|
Haonon O, Liu Z, Dangtakot R, Intuyod K, Pinlaor P, Puapairoj A, Cha'on U, Sengthong C, Pongking T, Onsurathum S, Yingklang M, Phetcharaburanin J, Li JV, Pinlaor S. Opisthorchis viverrini Infection Induces Metabolic and Fecal Microbial Disturbances in Association with Liver and Kidney Pathologies in Hamsters. J Proteome Res 2021; 20:3940-3951. [PMID: 34270897 DOI: 10.1021/acs.jproteome.1c00246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Opisthorchis viverrini (Ov) infection causes hepatobiliary diseases and is a major risk factor for cholangiocarcinoma. While several omics approaches have been employed to understand the pathogenesis of opisthorchiasis, effects of Ov infection on the host systemic metabolism and fecal microbiota have not been fully explored. Here, we used a 1H NMR spectroscopy-based metabolic phenotyping approach to investigate Ov infection-induced metabolic disturbances at both the acute (1 month postinfection, 1 mpi) and chronic (4 mpi) stages in hamsters. A total of 22, 3, and 4 metabolites were found to be significantly different in the liver, serum, and urine, respectively, between Ov+ and Ov- groups. Elevated levels of hepatic amino acids and tricarboxylic acid (TCA)-cycle intermediates (fumarate and malate) were co-observed with liver injury in acute infection, whereas fibrosis-associated metabolites (e.g., glycine and glutamate) increased at the chronic infection stage. Lower levels of lipid signals ((CH2)n and CH2CH2CO) and higher levels of lysine and scyllo-inositol were observed in serum from Ov+ hamsters at 1 mpi compared to Ov- controls. Urinary levels of phenylacetylglycine (a host-bacterial cometabolite) and tauro-β-muricholic acid were higher in the Ov+ group, which coexisted with hepatic and mild kidney fibrosis. Furthermore, Ov+ animals showed higher relative abundances of fecal Methanobrevibacter (Archaea), Akkermansia, and Burkholderia-Paraburkholderia compared to the noninfected controls. In conclusion, along with liver and kidney pathologies, O. viverrini infection resulted in hepatic and mild renal pathologies, disturbed hepatic amino acid metabolism and the TCA cycle, and induced changes in the fecal microbial composition and urinary host-microbial cometabolism. This study provides the initial step toward an understanding of local and systemic metabolic responses of the host to O. viverrini infection.
Collapse
Affiliation(s)
- Ornuma Haonon
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Zhigang Liu
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Rungtiwa Dangtakot
- Faculty of Medical Technology, Nakhonratchasima College, Nakhon Ratchasima 30000, Thailand
| | - Kitti Intuyod
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Porntip Pinlaor
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Centre for Research and Development in Medical Diagnostic Laboratory, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anucha Puapairoj
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ubon Cha'on
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chatchawan Sengthong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thatsanapong Pongking
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand.,Centre for Research and Development in Medical Diagnostic Laboratory, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sudarat Onsurathum
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Manachai Yingklang
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jia V Li
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
6
|
Kokova D, Verhoeven A, Perina EA, Ivanov VV, Heijink M, Yazdanbakhsh M, Mayboroda OA. Metabolic Homeostasis in Chronic Helminth Infection Is Sustained by Organ-Specific Metabolic Rewiring. ACS Infect Dis 2021; 7:906-916. [PMID: 33764039 PMCID: PMC8154418 DOI: 10.1021/acsinfecdis.1c00026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 11/28/2022]
Abstract
Opisthorchiasis, is a hepatobiliary disease caused by flukes of the trematode family Opisthorchiidae. A chronic form of the disease implies a prolonged coexistence of a host and the parasite. The pathological changes inflicted by the worm to the host's hepatobiliary system are well documented. Yet, the response to the infection also triggers a deep remodeling of the host systemic metabolism reaching a new homeostasis and affecting the organs beyond the worm location. Understanding the metabolic alternation in chronic opisthorchiasis, could help us to pinpoint pathways that underlie infection opening possibilities for the development of more selective treatment strategies. Here, with this report we apply an integrative, multicompartment metabolomics analysis, using multiple biofluids, stool samples and tissue extracts to describe metabolic changes in Opisthorchis felineus infected animals at the chronic stage. We show that the shift in lipid metabolism in the serum, a depletion of the amino acids pool, an alteration of the ketogenic pathways in the jejunum and a suppressed metabolic activity of the spleen are the key features of the metabolic host adaptation at the chronic stage of O. felineus infection. We describe this combination of the metabolic changes as a "metabolically mediated immunosuppressive status of organism" which develops during a chronic infection. This status in combination with other factors (e.g., parasite-derived immunomodulators) might increase risk of infection-related malignancy.
Collapse
Affiliation(s)
- Daria Kokova
- Department
of Parasitology, Leiden University Medical
Center, Leiden, 2333ZA, The Netherlands
- Laboratory
of Clinical Metabolomics, Tomsk State University, Tomsk 634050, Russian Federation
| | - Aswin Verhoeven
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Leiden, 2333ZA, The Netherlands
| | - Ekaterina A. Perina
- Central
Research Laboratory Siberian State Medical University, Tomsk 634050, Russian Federation
| | - Vladimir V. Ivanov
- Central
Research Laboratory Siberian State Medical University, Tomsk 634050, Russian Federation
| | - Marieke Heijink
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Leiden, 2333ZA, The Netherlands
| | - Maria Yazdanbakhsh
- Department
of Parasitology, Leiden University Medical
Center, Leiden, 2333ZA, The Netherlands
| | - Oleg A. Mayboroda
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Leiden, 2333ZA, The Netherlands
| |
Collapse
|
7
|
Metabolomics Community in Russia: History of Development, Key Participants, and Results. BIOTECH 2020; 9:biotech9040020. [PMID: 35822823 PMCID: PMC9258313 DOI: 10.3390/biotech9040020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/05/2022] Open
Abstract
Metabolomics is the latest trend in the “-omics” sciences, of which technologies are widely used today in all life sciences. Metabolomics gave impetus to the description of biochemical processes that occur in many organisms, search for new biomarkers of disease, and laid the foundation for new clinical laboratory diagnostics. The purpose of this review is to show how metabolomics is represented in Russian science, what main research areas were chosen, and to demonstrate the successes and main achievements of Russian scientists in this field. The review is dedicated to the 10th anniversary of Russian metabolomics and also touches on the history of the formation of Russian metabolomics and prospects for the future.
Collapse
|
8
|
Lokhov PG, Balashova EE, Trifonova OP, Maslov DL, Archakov AI. [Ten years of the Russian metabolomics: history of development and achievements]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:279-293. [PMID: 32893819 DOI: 10.18097/pbmc20206604279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Metabolomics is one of the omics sciences, the technologies of which are widely used today in many life sciences. Its application influenced the discovery of new biomarkers of diseases, the description of biochemical processes occurring in many organisms, laid the basis for a new generation of clinical laboratory diagnostics. The purpose of this review is to show how metabolomics is represented in the studies of Russian scientists, to demonstrate the main directions and achievements of the Russian science in this field. The review also highlights the history of metabolomics, existing problems and the place of Russian metabolomics in their solution.
Collapse
Affiliation(s)
- P G Lokhov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - D L Maslov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
9
|
Biliary Microbiota and Bile Acid Composition in Cholelithiasis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1242364. [PMID: 32714973 PMCID: PMC7352139 DOI: 10.1155/2020/1242364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 12/28/2022]
Abstract
Background A functional interplay between BAs and microbial composition in gut is a well-documented phenomenon. In bile, this phenomenon is far less studied, and with this report, we describe the interactions between the BAs and microbiota in this complex biological matrix. Methodology. Thirty-seven gallstone disease patients of which twenty-one with Opisthorchis felineus infection were enrolled in the study. The bile samples were obtained during laparoscopic cholecystectomy for gallstone disease operative treatment. Common bile acid composition was measured by LC-MS/MS. Gallbladder microbiota were previously analyzed with 16S rRNA gene sequencing on Illumina MiSeq platform. The associations between bile acid composition and microbiota were analyzed. Results Bile acid signature and Opisthorchis felineus infection status exert influence on beta-diversity of bile microbial community. Direct correlations were found between taurocholic acid, taurochenodeoxycholic acid concentrations, and alpha-diversity of bile microbiota. Taurocholic acid and taurochenodeoxycholic acid both show positive associations with the presence of Chitinophagaceae family, Microbacterium and Lutibacterium genera, and Prevotella intermedia. Also, direct associations were identified for taurocholic acid concentration and the presence of Actinomycetales and Bacteroidales orders, Lautropia genus, Jeotgalicoccus psychrophilus, and Haemophilus parainfluenzae as well as for taurochenodeoxycholic acid and Acetobacteraceae family and Sphingomonas genus. There were no differences in bile acid concentrations between O. felineus-infected and noninfected patients. Conclusions/Significance. Associations between diversity, taxonomic profile of bile microbiota, and bile acid levels were evidenced in patients with cholelithiasis. Increase of taurochenodeoxycholic acid and taurocholic acid concentration correlates with bile microbiota alpha-diversity and appearance of opportunistic pathogens.
Collapse
|
10
|
Kokova D, Verhoeven A, Perina EA, Ivanov VV, Knyazeva EM, Saltykova IV, Mayboroda OA. Plasma metabolomics of the time resolved response to Opisthorchis felineus infection in an animal model (golden hamster, Mesocricetus auratus). PLoS Negl Trop Dis 2020; 14:e0008015. [PMID: 31978047 PMCID: PMC7002010 DOI: 10.1371/journal.pntd.0008015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/05/2020] [Accepted: 12/24/2019] [Indexed: 01/15/2023] Open
Abstract
Background Opisthorchiasis is a hepatobiliary disease caused by flukes of the trematode family Opisthorchiidae. Opisthorchiasis can lead to severe hepatobiliary morbidity and is classified as a carcinogenic agent. Here we investigate the time-resolved metabolic response to Opisthorchis felineus infection in an animal model. Methodology Thirty golden hamsters were divided in three groups: severe infection (50 metacercariae/hamster), mild infection (15 metacercariae/hamster) and uninfected (vehicle-PBS) groups. Each group consisted of equal number of male and female animals. Plasma samples were collected one day before the infection and then every two weeks up to week 22 after infection. The samples were subjected to 1H Nuclear Magnetic Resonance (NMR) spectroscopy and multivariate statistical modelling. Principal findings The time-resolved study of the metabolic response to Opisthorchis infection in plasma in the main lines agrees with our previous report on urine data. The response reaches its peak around the 4th week of infection and stabilizes after the 10th week. Yet, unlike the urinary data there is no strong effect of the gender in the data and the intensity of infection is presented in the first two principal components of the PCA model. The main trends of the metabolic response to the infection in blood plasma are the transient depletion of essential amino acids and an increase in lipoprotein and cholesterol concentrations. Conclusions The time resolved metabolic signature of Opisthorchis infection in the hamster’s plasma shows a coherent shift in amino acids and lipid metabolism. Our work provides insight into the metabolic basis of the host response on the helminth infection. Opisthorchiasis is a parasitic infection caused by liver flukes of the Opisthorchiidae family. The liver fluke infection triggers development of hepatobiliary pathologies such as chronic forms of cholecystitis, cholangitis, pancreatitis, and cholelithiasis and increases the risk of intrahepatic cholangiocarcinoma. This manuscript is the second part of our outgoing project dedicated to a comprehensive description of the metabolic response to opisthorchiasis (more specifically Opisthorchis felineus) in an animal model. We show that the metabolic response in blood plasma is unfolding according to the same scenario as in urine, reaching its peak at the 4th week and stabilizing after the 10th week post-infection. Yet, unlike the response described in urine, the observed metabolic response in plasma is less gender specific. Moreover, the biochemical basis of the detected response in blood plasma is restricted to the remodeling of the lipid metabolism and the transient depletion of essential amino acids. Together with our first manuscript this report forms the first systematic description of the metabolic response on opisthorchiasis in an animal model using two easily accessible biofluids. Thus, this contribution provides novel results and fills an information gap still existing in the analytically driven characterization of the “Siberian liver fluke”, Opisthorchis felineus.
Collapse
Affiliation(s)
- Daria Kokova
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Laboratory of clinical metabolomics, Tomsk State University, Tomsk, Russia
- * E-mail:
| | - Aswin Verhoeven
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ekaterina A. Perina
- Central Research Laboratory Siberian State Medical University, Tomsk, Russian Federation
| | - Vladimir V. Ivanov
- Central Research Laboratory Siberian State Medical University, Tomsk, Russian Federation
| | - Elena M. Knyazeva
- School of Core Engineering Education, National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Irina V. Saltykova
- Central Research Laboratory Siberian State Medical University, Tomsk, Russian Federation
| | - Oleg A. Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
11
|
Ritler D, Rufener R, Li JV, Kämpfer U, Müller J, Bühr C, Schürch S, Lundström-Stadelmann B. In vitro metabolomic footprint of the Echinococcus multilocularis metacestode. Sci Rep 2019; 9:19438. [PMID: 31857639 PMCID: PMC6923418 DOI: 10.1038/s41598-019-56073-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
Alveolar echinococcosis (AE) is a zoonotic disease that is deadly if left untreated. AE is caused by the larval metacestode stage of the cestode Echinococcus multilocularis. Better knowledge on the host-parasite interface could yield novel targets for improvement of the treatment against AE. We analyzed culture media incubated with in vitro grown E. multilocularis metacestodes by 1H nuclear magnetic resonance spectroscopy to identify the unknown metabolic footprint of the parasite. Moreover, we quantitatively analyzed all amino acids, acetate, glucose, lactate, and succinate in time-course experiments using liquid chromatography and enzymatic assays. The E. multilocularis metacestodes consumed glucose and, surprisingly, threonine and produced succinate, acetate, and alanine as major fermentation products. The metabolic composition of vesicle fluid (VF) from in vitro grown E. multilocularis metacestodes was different from parasite-incubated culture medium with respect to the abundance, but not the spectrum, of metabolites, and some metabolites, in particular amino acids, accumulated in the VF. Overall, this study presents the first characterization of the in vitro metabolic footprint of E. multilocularis metacestodes and VF composition, and it provides the basis for analyses of potentially targetable pathways for future drug development.
Collapse
Affiliation(s)
- Dominic Ritler
- Institute of Parasitology, Department of Infectious Disease and Pathobiology, Vetsuisse Bern, University of Bern, Bern, Switzerland
| | - Reto Rufener
- Institute of Parasitology, Department of Infectious Disease and Pathobiology, Vetsuisse Bern, University of Bern, Bern, Switzerland
| | - Jia V Li
- Division of Systems and Digestive Medicine, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Urs Kämpfer
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Disease and Pathobiology, Vetsuisse Bern, University of Bern, Bern, Switzerland
| | - Claudia Bühr
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Stefan Schürch
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Britta Lundström-Stadelmann
- Institute of Parasitology, Department of Infectious Disease and Pathobiology, Vetsuisse Bern, University of Bern, Bern, Switzerland.
| |
Collapse
|
12
|
Sotillo J, Pearson MS, Loukas A. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:411-436. [PMID: 31297769 DOI: 10.1007/978-3-030-18616-6_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Trematode infections are among the most neglected tropical diseases despite their worldwide distribution and extraordinary ability to parasitise many different host species and host tissues. Furthermore, these parasites are of great socioeconomic, medical, veterinary and agricultural importance. During the last 10 years, there have been increasing efforts to overcome the lack of information on different "omic" resources such as proteomics and genomics. Herein, we focus on the recent advances in genomics and proteomics from trematodes of human importance, including liver, blood, intestinal and lung flukes. We also provide information on the latest technologies applied to study the biology of trematodes as well as on the resources available for the study of the molecular aspects of this group of helminths.
Collapse
Affiliation(s)
- Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| | - Mark S Pearson
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|