1
|
Boisson-Dupuis S, Bastard P, Béziat V, Bustamante J, Cobat A, Jouanguy E, Puel A, Rosain J, Zhang Q, Zhang SY, Boisson B. The monogenic landscape of human infectious diseases. J Allergy Clin Immunol 2025; 155:768-783. [PMID: 39724971 PMCID: PMC11875930 DOI: 10.1016/j.jaci.2024.12.1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The spectrum of known monogenic inborn errors of immunity is growing, with certain disorders underlying a specific and narrow range of infectious diseases. These disorders reveal the core mechanisms by which these infections occur in various settings, including inherited and acquired immunodeficiencies, thereby delineating the essential mechanisms of protective immunity to the corresponding pathogens. These findings also have medical implications, facilitating diagnosis and improving the management of individuals at risk of disease.
Collapse
Affiliation(s)
- Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
2
|
Bernard Q, Goumeidane M, Chaumond E, Robbe-Saule M, Boucaud Y, Esnault L, Croué A, Jullien J, Marsollier L, Marion E. Type-I interferons promote innate immune tolerance in macrophages exposed to Mycobacterium ulcerans vesicles. PLoS Pathog 2023; 19:e1011479. [PMID: 37428812 PMCID: PMC10358927 DOI: 10.1371/journal.ppat.1011479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/13/2023] [Indexed: 07/12/2023] Open
Abstract
Buruli ulcer is a chronic infectious disease caused by Mycobacterium ulcerans. The pathogen persistence in host skin is associated with the development of ulcerative and necrotic lesions leading to permanent disabilities in most patients. However, few of diagnosed cases are thought to resolve through an unknown self-healing process. Using in vitro and in vivo mouse models and M. ulcerans purified vesicles and mycolactone, we showed that the development of an innate immune tolerance was only specific to macrophages from mice able to heal spontaneously. This tolerance mechanism depends on a type I interferon response and can be induced by interferon beta. A type I interferon signature was further detected during in vivo infection in mice as well as in skin samples from patients under antibiotics regiment. Our results indicate that type I interferon-related genes expressed in macrophages may promote tolerance and healing during infection with skin damaging pathogen.
Collapse
Affiliation(s)
- Quentin Bernard
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | | | - Emmanuel Chaumond
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Marie Robbe-Saule
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Yan Boucaud
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Lucille Esnault
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Anne Croué
- Laboratoire d'anatomo-pathologie, CHU Angers, Angers, France
| | | | - Laurent Marsollier
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Estelle Marion
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| |
Collapse
|
3
|
Fevereiro J, Fraga AG, Pedrosa J. Genetics in the Host-Mycobacterium ulcerans interaction. Immunol Rev 2021; 301:222-241. [PMID: 33682158 DOI: 10.1111/imr.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Buruli ulcer is an emerging infectious disease associated with high morbidity and unpredictable outbreaks. It is caused by Mycobacterium ulcerans, a slow-growing pathogen evolutionarily shaped by the acquisition of a plasmid involved in the production of a potent macrolide-like cytotoxin and by genome rearrangements and downsizing. These events culminated in an uncommon infection pattern, whereby M. ulcerans is both able to induce the initiation of the inflammatory cascade and the cell death of its proponents, as well as to survive within the phagosome and in the extracellular milieu. In such extreme conditions, the host is sentenced to rely on a highly orchestrated genetic landscape to be able to control the infection. We here revisit the dynamics of M. ulcerans infection, drawing parallels from other mycobacterioses and integrating the most recent knowledge on its evolution and pathogenicity in its interaction with the host immune response.
Collapse
Affiliation(s)
- João Fevereiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
4
|
Translocating Mycobacterium ulcerans: An experimental model. PLoS One 2020; 15:e0230544. [PMID: 33378325 PMCID: PMC7773229 DOI: 10.1371/journal.pone.0230544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium ulcerans is a non-tuberculous environmental mycobacterium responsible for extensive cutaneous and subcutaneous ulcers in mammals, known as Buruli ulcer in humans. M. ulcerans has seldom been detected in the faeces of mammals and has not been detected in human faeces. Nevertheless, the detection and isolation of M. ulcerans in animal faeces does not fit with the current epidemiological schemes for the disease. Here, using an experimental model in which rats were fed with 109 colony-forming units of M. ulcerans, we detected M. ulcerans DNA in the faeces of challenged rats for two weeks and along their digestive tract for 10 days. M. ulcerans DNA was further detected in the lymphatic system including in the cervical and axillary lymph nodes and the spleen, but not in any other tissue including healthy and broken skin, 10 days post-challenge. These observations indicate that in some herbivorous mammals, M. ulcerans contamination by the digestive route may precede translocation and limited contamination of the lymphatic tissues without systemic infection. These herbivorous mammals may be sources of M. ulcerans for exposed populations but are unlikely to be reservoirs for the pathogen.
Collapse
|
5
|
Manry J, Vincent QB, Johnson C, Chrabieh M, Lorenzo L, Theodorou I, Ardant MF, Marion E, Chauty A, Marsollier L, Abel L, Alcaïs A. Genome-wide association study of Buruli ulcer in rural Benin highlights role of two LncRNAs and the autophagy pathway. Commun Biol 2020; 3:177. [PMID: 32313116 PMCID: PMC7171125 DOI: 10.1038/s42003-020-0920-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Buruli ulcer, caused by Mycobacterium ulcerans and characterized by devastating necrotizing skin lesions, is the third mycobacterial disease worldwide. The role of host genetics in susceptibility to Buruli ulcer has long been suggested. We conduct the first genome-wide association study of Buruli ulcer on a sample of 1524 well characterized patients and controls from rural Benin. Two-stage analyses identify two variants located within LncRNA genes: rs9814705 in ENSG00000240095.1 (P = 2.85 × 10−7; odds ratio = 1.80 [1.43–2.27]), and rs76647377 in LINC01622 (P = 9.85 × 10−8; hazard ratio = 0.41 [0.28–0.60]). Furthermore, we replicate the protective effect of allele G of a missense variant located in ATG16L1, previously shown to decrease bacterial autophagy (rs2241880, P = 0.003; odds ratio = 0.31 [0.14–0.68]). Our results suggest LncRNAs and the autophagy pathway as critical factors in the development of Buruli ulcer. Jeremy Manry, Quentin Vincent et al. report a genome-wide association study for susceptibility to Buruli ulcer in a rural population from the West African country of Benin. They identify two independently associated variants within LncRNA genes and confirm the protective effect of a missense variant in the bacterial autophagy gene ATG16L1.
Collapse
Affiliation(s)
- Jeremy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Paris, France. .,Université de Paris, Imagine Institute, Paris, France.
| | - Quentin B Vincent
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Paris, France.,Université de Paris, Imagine Institute, Paris, France
| | - Christian Johnson
- Fondation Raoul Follereau, Paris, France.,Centre Interfacultaire de Formation et de Recherche en Environnement pour le Développement Durable. Université d'Abomey, Calavi, Benin
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Paris, France.,Université de Paris, Imagine Institute, Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Paris, France.,Université de Paris, Imagine Institute, Paris, France
| | - Ioannis Theodorou
- Center for Immunology and Infectious Diseases, INSERM UMR S 1135, Pierre and Marie Curie University, and AP-HP Laboratoire d'Immunologie et Histocompatibilité Hôpital Saint-Louis, Paris, France
| | - Marie-Françoise Ardant
- Fondation Raoul Follereau, Paris, France.,Centre de Dépistage et de Traitement de la Lèpre et de l'Ulcère de Buruli (CDTLUB), Pobè, Benin
| | - Estelle Marion
- INSERM UMR-U892 and CNRS U6299, team 7, Angers University, Angers University Hospital, Angers, France
| | - Annick Chauty
- Fondation Raoul Follereau, Paris, France.,Centre de Dépistage et de Traitement de la Lèpre et de l'Ulcère de Buruli (CDTLUB), Pobè, Benin
| | - Laurent Marsollier
- INSERM UMR-U892 and CNRS U6299, team 7, Angers University, Angers University Hospital, Angers, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Paris, France.,Université de Paris, Imagine Institute, Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Paris, France. .,Université de Paris, Imagine Institute, Paris, France.
| |
Collapse
|
6
|
Abstract
Buruli ulcer, the third most common mycobacterial disease worldwide, is caused by Mycobacterium ulcerans and characterized by devastating necrotizing skin lesions. Susceptibility to Buruli ulcer is thought to depend on host genetics, but very few genetic studies have been performed. The identification of a microdeletion on chromosome 8 in a familial form of severe Buruli ulcer suggested a monogenic basis of susceptibility. The role of common host genetic variants in Buruli ulcer development has been investigated in only three candidate-gene studies targeting genes involved in mycobacterial diseases. A recent genome-wide association study suggested a probable role for long non-coding RNAs and strengthened the contribution of autophagy as a major defense mechanism against mycobacteria. In this review, we summarize the history, epidemiological and clinical aspects of Buruli ulcer, focusing particularly on genetic findings relating to susceptibility to this disease. Finally, we discuss exciting new genetic avenues arising, in particular, from studies of mouse models, and the need for different disciplines to work together, to benefit from the extensive work on other mycobacterial diseases, mostly tuberculosis and leprosy. We are convinced that such pooling of effort will lead to the development of efficient novel strategies for combatting Buruli ulcer.
Collapse
|
7
|
Fevereiro J, Sajjadi N, Fraga AG, Teixeira PM, Pedrosa J. Individual and clinical variables associated with the risk of Buruli ulcer acquisition: A systematic review and meta-analysis. PLoS Negl Trop Dis 2020; 14:e0008161. [PMID: 32267838 PMCID: PMC7170268 DOI: 10.1371/journal.pntd.0008161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 04/20/2020] [Accepted: 02/21/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Buruli ulcer (BU) is a necrotizing skin disease, caused by Mycobacterium ulcerans, with poorly understood acquisition risk factors. This review aims at evaluating the importance of individual-sex, age, family ties with history of BU, gene variants-and clinical-Bacillus Calmette-Guérin (BCG) immunization, Human Immunodeficiency Virus (HIV) infection-variables in this process. METHODS A systematic review was performed considering the following databases: ClinicalTrials.gov, Cochrane Controlled Register of Trials (CENTRAL), Current Contents Connect, Embase, MEDLINE, SciELO, Scopus and Web of Science. Eligible studies were critically appraised with The Joanna Briggs Institute checklists and heterogeneity was assessed with Cochran Q-test and I2 statistic. Published demographic data was descriptively analysed and clinical data pooled within random-effects modelling for meta-analysis. RESULTS A total of 29 studies were included in the systematic review. Two randomized controlled trials (RCTs) and 21 case-control studies were selected for meta-analysis. Studies show that BU mainly affects age extremes, more preponderately males among children. Data pooled from RCTs do not reveal BCG to be protective against BU (odds ratio (OR) = 0.63; 95% CI = 0.38-1.05; I2 = 56%), a finding case-control studies appear to corroborate. HIV infection (OR = 6.80; 95% CI = 2.33-19.85; I2 = 0%) and SLC11A1 rs17235409 A allele (OR = 1.86; 95% CI = 1.25-2.77; I2 = 0%) are associated with increased prevalence of the disease. No definite conclusions can be drawn regarding the influence of previous family history of BU. DISCUSSION While available evidence warrants further robustness, these results have direct implications on current interventions and future research programs, and foster the development of more cost-effective preventive and screening measures. REGISTRATION The study was registered at PROSPERO with number CRD42019123611.
Collapse
Affiliation(s)
- João Fevereiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nikta Sajjadi
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G. Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro M. Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
8
|
Dallmann-Sauer M, Correa-Macedo W, Schurr E. Human genetics of mycobacterial disease. Mamm Genome 2018; 29:523-538. [PMID: 30116885 PMCID: PMC6132723 DOI: 10.1007/s00335-018-9765-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/23/2018] [Indexed: 12/18/2022]
Abstract
Mycobacterial diseases are caused by members of the genus Mycobacterium, acid-fast bacteria characterized by the presence of mycolic acids within their cell walls. Claiming almost 2 million lives every year, tuberculosis (TB) is the most common mycobacterial disease and is caused by infection with M. tuberculosis and, in rare cases, by M. bovis or M. africanum. The second and third most common mycobacterial diseases are leprosy and buruli ulcer (BU), respectively. Both diseases affect the skin and can lead to permanent sequelae and deformities. Leprosy is caused by the uncultivable M. leprae while the etiological agent of BU is the environmental bacterium M. ulcerans. After exposure to these mycobacterial species, a majority of individuals will not progress to clinical disease and, among those who do, inter-individual variability in disease manifestation and outcome can be observed. Susceptibility to mycobacterial diseases carries a human genetic component and intense efforts have been applied over the past decades to decipher the exact nature of the genetic factors controlling disease susceptibility. While for BU this search was mostly conducted on the basis of candidate genes association studies, genome-wide approaches have been widely applied for TB and leprosy. In this review, we summarize some of the findings achieved by genome-wide linkage, association and transcriptome analyses in TB disease and leprosy and the recent genetic findings for BU susceptibility.
Collapse
Affiliation(s)
- Monica Dallmann-Sauer
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,The McGill International TB Centre, McGill University, Montreal, QC, Canada.,Departments of Human Genetics and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Wilian Correa-Macedo
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,The McGill International TB Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada. .,The McGill International TB Centre, McGill University, Montreal, QC, Canada. .,Departments of Human Genetics and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada. .,Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Rosain J, Oleaga-Quintas C, Deswarte C, Verdin H, Marot S, Syridou G, Mansouri M, Mahdaviani SA, Venegas-Montoya E, Tsolia M, Mesdaghi M, Chernyshova L, Stepanovskiy Y, Parvaneh N, Mansouri D, Pedraza-Sánchez S, Bondarenko A, Espinosa-Padilla SE, Yamazaki-Nakashimada MA, Nieto-Patlán A, Kerner G, Lambert N, Jacques C, Corvilain E, Migaud M, Grandin V, Herrera MT, Jabot-Hanin F, Boisson-Dupuis S, Picard C, Nitschke P, Puel A, Tores F, Abel L, Blancas-Galicia L, De Baere E, Bole-Feysot C, Casanova JL, Bustamante J. A Variety of Alu-Mediated Copy Number Variations Can Underlie IL-12Rβ1 Deficiency. J Clin Immunol 2018; 38:617-627. [PMID: 29995221 DOI: 10.1007/s10875-018-0527-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Inborn errors of IFN-γ immunity underlie Mendelian susceptibility to mycobacterial disease (MSMD). Autosomal recessive complete IL-12Rβ1 deficiency is the most frequent genetic etiology of MSMD. Only two of the 84 known mutations are copy number variations (CNVs), identified in two of the 213 IL-12Rβ1-deficient patients and two of the 164 kindreds reported. These two CNVs are large deletions found in the heterozygous or homozygous state. We searched for novel families with IL-12Rβ1 deficiency due to CNVs. METHODS We studied six MSMD patients from five unrelated kindreds displaying adverse reactions to BCG vaccination. Three of the patients also presented systemic salmonellosis, two had mucocutaneous candidiasis, and one had disseminated histoplasmosis. We searched for CNVs and other variations by IL12RB1-targeted next-generation sequencing (NGS). RESULTS We identified six new IL-12Rβ1-deficient patients with a complete loss of IL-12Rβ1 expression on phytohemagglutinin-activated T cells and/or EBV-transformed B cells. The cells of these patients did not respond to IL-12 and IL-23. Five different CNVs encompassing IL12RB1 (four deletions and one duplication) were identified in these patients by NGS coverage analysis, either in the homozygous state (n = 1) or in trans (n = 4) with a single-nucleotide variation (n = 3) or a small indel (n = 1). Seven of the nine mutations are novel. Interestingly, four of the five CNVs were predicted to be driven by nearby Alu elements, as well as the two previously reported large deletions. The IL12RB1 locus is actually enriched in Alu elements (44.7%), when compared with the rest of the genome (10.5%). CONCLUSION The IL12RB1 locus is Alu-enriched and therefore prone to rearrangements at various positions. CNVs should be considered in the genetic diagnosis of IL-12Rβ1 deficiency.
Collapse
Affiliation(s)
- Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Hannah Verdin
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Stéphane Marot
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | | | - Mahboubeh Mansouri
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Edna Venegas-Montoya
- The Immunodeficiencies Research Unit, National Institute of Pediatrics, Mexico City, Mexico
| | - Maria Tsolia
- Second Department of Pediatrics, P. and A. Kyriakou Children's Hospital, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Mehrnaz Mesdaghi
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Liudmyla Chernyshova
- Department of Pediatric Infectious Diseases and Immunology, Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine
| | - Yuriy Stepanovskiy
- Department of Pediatric Infectious Diseases and Immunology, Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine
| | - Nima Parvaneh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Mansouri
- Department of Internal Medicine, Division of Infectious Disease and Clinical Immunology, NRITLD, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Clinical Tuberculosis and Epidemiology Research Center, NRITLD, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sigifredo Pedraza-Sánchez
- Unit of Biochemistry, National Institute for Medical Sciences and Nutrition Salvador Zubiran (INCMNSZ), Mexico City, Mexico
| | - Anastasia Bondarenko
- Department of Pediatric Infectious Diseases and Immunology, Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine
| | | | | | - Alejandro Nieto-Patlán
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Nathalie Lambert
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Corinne Jacques
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Emilie Corvilain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Free University of Brussels, Brussels, Belgium
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Virginie Grandin
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - María T Herrera
- Department of Microbiology Research, National Institute of Respiratory Diseases (INER), Mexico City, Mexico
| | - Fabienne Jabot-Hanin
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Capucine Picard
- Imagine Institute, Paris Descartes University, Paris, France.,Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France.,Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Patrick Nitschke
- Bioinformatics Core Facility, Imagine Institute, SFR-Necker, INSERM UMR1163 and INSERM US24/CNRS UMS3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Frederic Tores
- Bioinformatics Core Facility, Imagine Institute, SFR-Necker, INSERM UMR1163 and INSERM US24/CNRS UMS3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | | | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Christine Bole-Feysot
- Genomic Core Facility, INSERM UMR1163, SFR-Necker, Imagine Institute, Paris, France.,INSERM US24/CNRS UMS3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France. .,Imagine Institute, Paris Descartes University, Paris, France. .,Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France. .,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
| |
Collapse
|