1
|
Marlais T, Bickford-Smith J, Talavera-López C, Le H, Chowdhury F, Miles MA. A comparative 'omics' approach for prediction of candidate Strongyloides stercoralis diagnostic coproantigens. PLoS Negl Trop Dis 2023; 17:e0010777. [PMID: 37068106 PMCID: PMC10138266 DOI: 10.1371/journal.pntd.0010777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/27/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023] Open
Abstract
Human infection with the intestinal nematode Strongyloides stercoralis is persistent unless effectively treated, and potentially fatal in immunosuppressed individuals. Epidemiological data are lacking, partially due to inadequate diagnosis. A rapid antigen detection test is a priority for population surveillance, validating cure after treatment, and for screening prior to immunosuppression. We used a targeted analysis of open access 'omics' data sets and used online predictors to identify S. stercoralis proteins that are predicted to be present in infected stool, Strongyloides-specific, and antigenic. Transcriptomic data from gut and non-gut dwelling life cycle stages of S. stercoralis revealed 328 proteins that are differentially expressed. Strongyloides ratti proteomic data for excreted and secreted (E/S) proteins were matched to S. stercoralis, giving 1,057 orthologues. Five parasitism-associated protein families (SCP/TAPS, prolyl oligopeptidase, transthyretin-like, aspartic peptidase, acetylcholinesterase) were compared phylogenetically between S. stercoralis and outgroups, and proteins with least homology to the outgroups were selected. Proteins that overlapped between the transcriptomic and proteomic datasets were analysed by multiple sequence alignment, epitope prediction and 3D structure modelling to reveal S. stercoralis candidate peptide/protein coproantigens. We describe 22 candidates from seven genes, across all five protein families for further investigation as potential S. stercoralis diagnostic coproantigens, identified using open access data and freely-available protein analysis tools. This powerful approach can be applied to many parasitic infections with 'omic' data to accelerate development of specific diagnostic assays for laboratory or point-of-care field application.
Collapse
Affiliation(s)
- Tegwen Marlais
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jack Bickford-Smith
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carlos Talavera-López
- Institute of Computational Biology, Computational Health Centre, Helmholtz Munich, Neuherberg, Germany
| | - Hai Le
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fatima Chowdhury
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael A Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
2
|
Rohweder PJ, Jiang Z, Hurysz BM, O'Donoghue AJ, Craik CS. Multiplex substrate profiling by mass spectrometry for proteases. Methods Enzymol 2022; 682:375-411. [PMID: 36948708 PMCID: PMC10201391 DOI: 10.1016/bs.mie.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Proteolysis is a central regulator of many biological pathways and the study of proteases has had a significant impact on our understanding of both native biology and disease. Proteases are key regulators of infectious disease and misregulated proteolysis in humans contributes to a variety of maladies, including cardiovascular disease, neurodegeneration, inflammatory diseases, and cancer. Central to understanding a protease's biological role, is characterizing its substrate specificity. This chapter will facilitate the characterization of individual proteases and complex, heterogeneous proteolytic mixtures and provide examples of the breadth of applications that leverage the characterization of misregulated proteolysis. Here we present the protocol of Multiplex Substrate Profiling by Mass Spectrometry (MSP-MS), a functional assay that quantitatively characterizes proteolysis using a synthetic library of physiochemically diverse, model peptide substrates, and mass spectrometry. We present a detailed protocol as well as examples of the use of MSP-MS for the study of disease states, for the development of diagnostic and prognostic tests, for the generation of tool compounds, and for the development of protease-targeted drugs.
Collapse
Affiliation(s)
- Peter J Rohweder
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States
| | - Brianna M Hurysz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States.
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
3
|
Huang L, Wu BL, He JX, Zhang Y, Chen J, Chen XJ. Molecular characterization and functional analysis of the lysosomal cathepsin D-like gene in red swamp crayfish, Procambarus clarkii. Genome 2021; 64:1041-1051. [PMID: 34323597 DOI: 10.1139/gen-2020-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aspartic proteinases are one of the four families of proteinase enzymes that are widely present in living organisms. They are involved in various physiological events, such as protein degradation, development, and host defense. However, the characterization and functional roles of aspartic proteinases remain to be elucidated in crustaceans. Here, we characterized a fragment of cathepsin D-like cDNA from red swamp crayfish, Procambarus clarkii (Pc-cathepsin D-like). The open reading frame of the Pc-cathepsin D-like gene contained 1152 bp, encoding a protein of 383 amino acid residues. We also evaluated the immunological role of the Pc-cathepsin D-like gene in vivo. Spatial distribution analysis revealed that the Pc-cathepsin D-like mRNA was high in the hepatopancreas, followed by the gut, gills, and hemocytes of P. clarkii. The expression levels of the Pc-cathepsin D-like gene increased following challenge with viral (polyinosinic: polycytidylic acid) and bacterial (lipopolysaccharides, peptidoglycan) PAMPs compared with PBS injection. The suppression of the Pc-cathepsin D-like gene by RNA interference significantly increased the expression of immune-associated genes. These results showed that the Pc-cathepsin D-like gene has an essential biological role in innate immune responses because it regulates the expression of immune-associated genes.
Collapse
Affiliation(s)
- Long Huang
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China.,Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Ben-Li Wu
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China.,Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Ji-Xiang He
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China.,Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Ye Zhang
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China.,Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jing Chen
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China.,Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Xia-Jun Chen
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China.,Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| |
Collapse
|
4
|
Rojas A, Maldonado-Junior A, Mora J, Morassutti A, Rodriguez R, Solano-Barquero A, Tijerino A, Vargas M, Graeff-Teixeira C. Abdominal angiostrongyliasis in the Americas: fifty years since the discovery of a new metastrongylid species, Angiostrongylus costaricensis. Parasit Vectors 2021; 14:374. [PMID: 34294132 PMCID: PMC8296644 DOI: 10.1186/s13071-021-04875-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
Angiostrongylus costaricensis is a zoonotic parasitic nematode described for the first time in 1971 by Pedro Morera and Rodolfo Céspedes in Costa Rica. This parasite causes an infection known as abdominal angiostrongyliasis, affecting mainly school-aged children and young adults. Infection with A. costaricensis has been associated with a myriad of rodent and mollusk species in the Americas and the Caribbean, as its natural hosts and reservoirs. In this commemorative review, we highlight the extensive research collected through a 50-year journey, which includes ecological, pathological, and molecular studies on A. costaricensis and its implicated disease. We also identify major knowledge gaps in its evolutionary history, the ecological role of imported and invasive mollusk species, and immune response. We propose that the advent of -omics analyses will allow us to gather novel information regarding A. costaricensis biology and infection dynamics, as well as to promote the design of much-needed sensitive and specific diagnostic tools.
Collapse
Affiliation(s)
- Alicia Rojas
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Arnaldo Maldonado-Junior
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Fundação Oswaldo Cruz – FIOCRUZ, Rio de Janeiro, RJ Brazil
| | - Javier Mora
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Alessandra Morassutti
- Instituto de Patologia e Biologia Molecular de Passo Fundo, School of Medicine, IMED Passo Fundo, Rio Grande do Sul, Brazil
| | - Rubens Rodriguez
- Instituto de Patologia e Biologia Molecular de Passo Fundo, School of Medicine, IMED Passo Fundo, Rio Grande do Sul, Brazil
| | - Alberto Solano-Barquero
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Anamariela Tijerino
- National Reference Center of Parasitology, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud, Cartago, Costa Rica
| | - Marianela Vargas
- National Reference Center of Parasitology, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud, Cartago, Costa Rica
| | - Carlos Graeff-Teixeira
- Nucleo de Doenças Infecciosas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Brazil
| |
Collapse
|
5
|
Chen S, Yim JJ, Bogyo M. Synthetic and biological approaches to map substrate specificities of proteases. Biol Chem 2020; 401:165-182. [PMID: 31639098 DOI: 10.1515/hsz-2019-0332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
Proteases are regulators of diverse biological pathways including protein catabolism, antigen processing and inflammation, as well as various disease conditions, such as malignant metastasis, viral infection and parasite invasion. The identification of substrates of a given protease is essential to understand its function and this information can also aid in the design of specific inhibitors and active site probes. However, the diversity of putative protein and peptide substrates makes connecting a protease to its downstream substrates technically difficult and time-consuming. To address this challenge in protease research, a range of methods have been developed to identify natural protein substrates as well as map the overall substrate specificity patterns of proteases. In this review, we highlight recent examples of both synthetic and biological methods that are being used to define the substrate specificity of protease so that new protease-specific tools and therapeutic agents can be developed.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua J Yim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Wang T, Ma G, Ang CS, Korhonen PK, Koehler AV, Young ND, Nie S, Williamson NA, Gasser RB. High throughput LC-MS/MS-based proteomic analysis of excretory-secretory products from short-term in vitro culture of Haemonchus contortus. J Proteomics 2019; 204:103375. [PMID: 31071474 DOI: 10.1016/j.jprot.2019.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/08/2019] [Accepted: 05/02/2019] [Indexed: 12/27/2022]
Abstract
Parasitic nematodes of humans, animals and plants have a major, adverse impact on global health and agricultural production worldwide. To cope with their surrounding environment in and the immune attack from the host, excretory-secretory (ES) proteins are released by nematodes to orchestrate or regulate parasite-host interactions. In the present study, we characterised the ES products from short-term (12 h) in vitro culture of different developmental stages/sexes of Haemonchus contortus (one of the most important parasitic nematodes of livestock animals worldwide) using a high throughput tandem mass-spectrometry, underpinned by the most recent genomic dataset. In total, 878 unique proteins from key developmental stages/sexes (third-stage and fourth-stage larvae, and female and male adults) were identified and quantified with high confidence. Bioinformatic analyses showed noteworthy ES protein alterations during the transition from the free-living to the parasitic phase, especially for proteins which are likely involved in nutrient digestion and acquisition as well as parasite-host interactions, such as proteolytic cascade-related peptidases, glycoside hydrolases, C-type lectins and sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7 (= SCP/TAPS) proteins. Our findings provide an avenue to better explore interactive processes between the host and this highly significant parasitic nematode, to underpin the search for novel drug and vaccine targets. SIGNIFICANCE: The present study represents a comprehensive proteomic analysis of the secretome of key developmental stages/sexes of H. contortus maintained in short-term in vitro culture. High throughput LC-MS/MS analysis of ES products allowed the identification of a large repertoire of proteins (secretome) and the establishment of a new proteomic database for H. contortus. The secretome of H. contortus undergoes substantial changes during the nematode's transition from free-living to parasitic stages, suggesting a constant adaptation to different environments outside of and within the host animal. Understanding the host-parasite relationship at the molecular level could assist significantly in the development of intervention strategies (i.e. novel drugs and vaccines) against H. contortus and related nematodes.
Collapse
Affiliation(s)
- Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Shuai Nie
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|