1
|
Frazer JL, Norton R. Dengue: A review of laboratory diagnostics in the vaccine age. J Med Microbiol 2024; 73. [PMID: 38722305 DOI: 10.1099/jmm.0.001833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024] Open
Abstract
Background. Dengue is an important arboviral infection of considerable public health significance. It occurs in a wide global belt within a variety of tropical regions. The timely laboratory diagnosis of Dengue infection is critical to inform both clinical management and an appropriate public health response. Vaccination against Dengue virus is being introduced in some areas.Discussion. Appropriate diagnostic strategies will vary between laboratories depending on the available resources and skills. Diagnostic methods available include viral culture, the serological detection of Dengue-specific antibodies in using enzyme immunoassays (EIAs), microsphere immunoassays, haemagglutination inhibition or in lateral flow point of care tests. The results of antibody tests may be influenced by prior vaccination and exposure to other flaviviruses. The detection of non-structural protein 1 in serum (NS1) has improved the early diagnosis of Dengue and is available in point-of-care assays in addition to EIAs. Direct detection of viral RNA from blood by PCR is more sensitive than NS1 antigen detection but requires molecular skills and resources. An increasing variety of isothermal nucleic acid detection methods are in development. Timing of specimen collection and choice of test is critical to optimize diagnostic accuracy. Metagenomics and the direct detection by sequencing of viral RNA from blood offers the ability to rapidly type isolates for epidemiologic purposes.Conclusion. The impact of vaccination on immune response must be recognized as it will impact test interpretation and diagnostic algorithms.
Collapse
Affiliation(s)
| | - Robert Norton
- Pathology Queensland, Townsville QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Argotte-Ramos R, Cime-Castillo J, Vargas V, Lanz-Mendoza H, Rodriguez MH, Rodriguez MC. Development of an Enzyme-Linked Immunosorbent Assay (ELISA) as a tool to detect NS1 of dengue virus serotype 2 in female Aedes aegypti eggs for the surveillance of dengue fever transmission. Heliyon 2024; 10:e29329. [PMID: 38681627 PMCID: PMC11053180 DOI: 10.1016/j.heliyon.2024.e29329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024] Open
Abstract
Dengue is a significant disease transmitted by Aedes mosquitoes in the tropics and subtropics worldwide. The disease is caused by four virus (DENV) serotypes and is transmitted to humans by female Aedes aegypti mosquito bites infected with the virus and vertically to their progeny. Current strategies to control dengue transmission focus on the vector. In this study, we describe an indirect Enzyme-Linked Immunosorbent Assay (ELISA), using a monoclonal antibody against the non-structural dengue virus protein 1 (NS1), to detect DENV2 in Ae. aegypti eggs. The assay detects NS1 in eggs homogenates with 87.5% sensitivity and 75.0% specificity and it is proposed as a tool for the routine entomovirological surveillance of DENV 2 in field mosquito populations.
Collapse
Affiliation(s)
- Rocío Argotte-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México. Av. Universidad 655, C. P. 62100 Cuernavaca, Morelos, Mexico
| | - Jorge Cime-Castillo
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México. Av. Universidad 655, C. P. 62100 Cuernavaca, Morelos, Mexico
| | - Valeria Vargas
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México. Av. Universidad 655, C. P. 62100 Cuernavaca, Morelos, Mexico
| | - Humberto Lanz-Mendoza
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México. Av. Universidad 655, C. P. 62100 Cuernavaca, Morelos, Mexico
| | - Mario H. Rodriguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México. Av. Universidad 655, C. P. 62100 Cuernavaca, Morelos, Mexico
| | - Maria Carmen Rodriguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México. Av. Universidad 655, C. P. 62100 Cuernavaca, Morelos, Mexico
| |
Collapse
|
3
|
Parveen S, Riaz Z, Saeed S, Ishaque U, Sultana M, Faiz Z, Shafqat Z, Shabbir S, Ashraf S, Marium A. Dengue hemorrhagic fever: a growing global menace. JOURNAL OF WATER AND HEALTH 2023; 21:1632-1650. [PMID: 38017595 PMCID: wh_2023_114 DOI: 10.2166/wh.2023.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Dengue virus is an arthropod-borne virus, transmitted by Aedes aegypti among humans. In this review, we discussed the epidemiology of dengue hemorrhagic fever (DHF) as well as the disease's natural history, cycles of transmission, clinical diagnosis, aetiology, prevention, therapy, and management. A systematic literature search was done by databases such as PubMed and Google Scholar using search terms, 'dengue fever', 'symptoms and causes of dengue fever', 'dengue virus transmission', and 'strategies to control dengue'. We reviewed relevant literature to identify hazards related to DHF and the most recent recommendations for its management and prevention. Clinical signs and symptoms of dengue infection range from mild dengue fever (DF) to potentially lethal conditions like DHF or dengue shock syndrome (DSS). Acute-onset high fever, muscle and joint pain, myalgia, a rash on the skin, hemorrhagic episodes, and circulatory shock are among the most common symptoms. An early diagnosis is vital to lower mortality. As dengue virus infections are self-limiting, but in tropical and subtropical areas, dengue infection has become a public health concern. Hence, developing and executing long-term control policies that can reduce the global burden of DHF is a major issue for public health specialists everywhere.
Collapse
Affiliation(s)
- Shakeela Parveen
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan E-mail:
| | - Zainab Riaz
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Saba Saeed
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Urwah Ishaque
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Mehwish Sultana
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Zunaira Faiz
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Zainab Shafqat
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Saman Shabbir
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Sana Ashraf
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Amna Marium
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| |
Collapse
|
4
|
Estofolete CF, Versiani AF, Dourado FS, Milhim BHGA, Pacca CC, Silva GCD, Zini N, dos Santos BF, Gandolfi FA, Mistrão NFB, Garcia PHC, Rocha RS, Gehrke L, Bosch I, Marques RE, Teixeira MM, da Fonseca FG, Vasilakis N, Nogueira ML. Influence of previous Zika virus infection on acute dengue episode. PLoS Negl Trop Dis 2023; 17:e0011710. [PMID: 37943879 PMCID: PMC10662752 DOI: 10.1371/journal.pntd.0011710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/21/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The co-circulation of flaviviruses in tropical regions has led to the hypothesis that immunity generated by a previous dengue infection could promote severe disease outcomes in subsequent infections by heterologous serotypes. This study investigated the influence of antibodies generated by previous Zika infection on the clinical outcomes of dengue infection. METHODOLOGY/PRINCIPAL FINDINGS We enrolled 1,043 laboratory confirmed dengue patients and investigated their prior infection to Zika or dengue. Severe forms of dengue disease were more frequent in patients with previous Zika infection, but not in those previously exposed to dengue. CONCLUSIONS/SIGNIFICANCE Our findings suggest that previous Zika infection may represent a risk factor for subsequent severe dengue disease, but we did not find evidence of antibody-dependent enhancement (higher viral titer or pro-inflammatory cytokine overexpression) contributing to exacerbation of the subsequent dengue infection.
Collapse
Affiliation(s)
- Cassia F. Estofolete
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Alice F. Versiani
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Fernanda S. Dourado
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Bruno H. G. A. Milhim
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Carolina C. Pacca
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Gislaine C. D. Silva
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Nathalia Zini
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Barbara F. dos Santos
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Flora A. Gandolfi
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Natalia F. B. Mistrão
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Pedro H. C. Garcia
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Rodrigo S. Rocha
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School; Boston, Massachusetts, United States of America
| | - Irene Bosch
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Cambridge, Massachusetts, United States of America
| | - Rafael E. Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM); Campinas, Sao Paulo, Brazil
| | - Mauro M. Teixeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Flavio G. da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
- Centro de Tecnoogia em Vacinas da UFMG, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch; Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch; Galveston, Texas, United States of America
- Center for Tropical Diseases, University of Texas Medical Branch; Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Maurício L. Nogueira
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
| |
Collapse
|
5
|
Genomic Characterization of Dengue Virus Outbreak in 2022 from Pakistan. Vaccines (Basel) 2023; 11:vaccines11010163. [PMID: 36680008 PMCID: PMC9867254 DOI: 10.3390/vaccines11010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Pakistan, a dengue-endemic country, has encountered several outbreaks during the past decade. The current study aimed to explore the serotype and genomic diversity of dengue virus responsible for the 2022 outbreak in Pakistan. From August to October 2022, NS-1 positive blood samples (n = 343) were collected from dengue patients, among which, (85%; n = 293) were positive based on RT-PCR. In terms of gender and age, dengue infection was more prevalent in male patients (63%; n = 184), with more adults (21-30 years; n = 94) being infected. The serotyping results revealed DENV-2 to be the most predominant serotype (62%; n = 183), followed by DENV-1 (37%; n = 109) and DENV-3 (0.32%; n = 1). Moreover, a total of 10 samples (DENV-2; n = 8, DENV-1; n = 2) were subjected to whole-genome sequencing. Among these, four were collected in early 2022, and six were collected between August and October 2022. Phylogenetic analysis of DENV-2 sequenced samples (n = 8) revealed a monophyletic clade of cosmopolitan genotype IVA, which is closely related to sequences from China and Singapore 2018, and DENV-1 samples (n = 2) show genotype III, which is closely related to Pakistan isolates from 2019. We also reported the first whole genome sequence of a coinfection case (DENV1-DENV2) in Pakistan detected through a meta-genome approach. Thus, dengue virus dynamics reported in the current study warrant large-scale genomic surveillance to better respond to future outbreaks.
Collapse
|
6
|
Losada PX, Bosch I, Frydman GH, Gehrke L, Narváez CF. Dengue and Zika virus differential infection of human megakaryoblast MEG-01 reveals unique cellular markers. Virology 2022; 577:16-23. [PMID: 36257128 DOI: 10.1016/j.virol.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
Abstract
Platelet count is widely used for the diagnosis and follow-up of patients with dengue. Despite its close viral structural and symptomatic homology, ZIKV infection does not typically induce significant thrombocytopenia. To determine the effect of DENV-2 and ZIKV infection on human platelet precursors we utilized MEG-01 cell line to evaluate the viral infection, viability, innate gene expression and release of platelet-like particles (PLPs). DENV-2 induced a higher proportion of cell death at 48-72 h post-infection than ZIKV. The median range of intracellular NS1+/E+ cells was 11.2% (3.3%-25%) and 5% (3%-8.1%) for DENV-2 and ZIKV, respectively (p = 0.03). MEG-01 cells infected with DENV-2 quickly expressed higher levels of IFN-β, indolamine 2,3-dioxygenase and CXCL10 mRNA compared to ZIKV infected cells and DENV-2 but not ZIKV infection reduced the number PLPs from stimulated MEG-01 cells. The results shed light into mechanisms including thrombocytopenia present in patients with DENV but absent in ZIKV infections.
Collapse
Affiliation(s)
- Paula X Losada
- División de Inmunología, Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, 410001, Huila, Colombia
| | - Irene Bosch
- Institute for Medical Engineering and Science and the Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Galit H Frydman
- Institute for Medical Engineering and Science and the Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Lee Gehrke
- Institute for Medical Engineering and Science and the Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Carlos F Narváez
- División de Inmunología, Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, 410001, Huila, Colombia.
| |
Collapse
|
7
|
Combination of the Focus-Forming Assay and Digital Automated Imaging Analysis for the Detection of Dengue and Zika Viral Loads in Cultures and Acute Disease. J Trop Med 2022; 2022:2177183. [PMID: 35911823 PMCID: PMC9325612 DOI: 10.1155/2022/2177183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/26/2022] [Indexed: 12/03/2022] Open
Abstract
Optimized methods for the detection of flavivirus infections in hyperendemic areas are still needed, especially for working with patient serum as a starting material. The focus-forming assay (FFA) reveals critical aspects of virus-host interactions, as it is a quantitative assay to determine viral loads. Automated image analysis provides evaluations of relative amounts of intracellular viral protein at the single-cell level. Here, we developed an optimized FFA for the detection of infectious Zika virus (ZIKV) and dengue virus (DENV) viral particles in cell cultures and clinical serum samples, respectively. Vero-76 cells were infected with DENV-2 (16681) or ZIKV (PRVA BC59). Using a panel of anti-DENV and anti-ZIKV NS1-specific monoclonal antibodies (mAbs), the primary mAbs, concentration, and the optimal time of infection were determined. To determine whether intracellular accumulation of NS1 improved the efficiency of the FFA, brefeldin A was added to the cultures. Focus formation was identified by conventional optical microscopy combined with CellProfiler™ automated image analysis software. The FFA was used with spike assays for ZIKV and clinical specimens from natural infection by DENV-1 and DENV-2. mAb 7744-644 for ZIKV and mAb 724-323 for DENV used at a concentration of 1 μg/ml and a time of 24 hours postinfection produced the best detection of foci when combining conventional counting and automated digital analysis. Brefeldin A did not improve the assessment of FFUs or their digitally assessed intensity at single-cell level. The FFA showed 95% ZIKV recovery and achieved the detection of circulating DENV-1 and DENV-2 in the plasma of acutely ill patients. The combination of the two techniques optimized the FFA, allowing the study of DENV and ZIKV in culture supernatants and clinical specimens from natural infection in hyperendemic areas.
Collapse
|
8
|
Zhao EM, Mao AS, de Puig H, Zhang K, Tippens ND, Tan X, Ran FA, Han I, Nguyen PQ, Chory EJ, Hua TY, Ramesh P, Thompson DB, Oh CY, Zigon ES, English MA, Collins JJ. RNA-responsive elements for eukaryotic translational control. Nat Biotechnol 2022; 40:539-545. [PMID: 34711989 DOI: 10.1038/s41587-021-01068-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
The ability to control translation of endogenous or exogenous RNAs in eukaryotic cells would facilitate a variety of biotechnological applications. Current strategies are limited by low fold changes in transgene output and the size of trigger RNAs (trRNAs). Here we introduce eukaryotic toehold switches (eToeholds) as modular riboregulators. eToeholds contain internal ribosome entry site sequences and form inhibitory loops in the absence of a specific trRNA. When the trRNA is present, eToeholds anneal to it, disrupting the inhibitory loops and allowing translation. Through optimization of RNA annealing, we achieved up to 16-fold induction of transgene expression in mammalian cells. We demonstrate that eToeholds can discriminate among viral infection status, presence or absence of gene expression and cell types based on the presence of exogenous or endogenous RNA transcripts.
Collapse
Affiliation(s)
- Evan M Zhao
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Angelo S Mao
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Helena de Puig
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kehan Zhang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nathaniel D Tippens
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiao Tan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - F Ann Ran
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Isaac Han
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Peter Q Nguyen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Emma J Chory
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tiffany Y Hua
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Pradeep Ramesh
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - David B Thompson
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Crystal Yuri Oh
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Eric S Zigon
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Max A English
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA. .,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
9
|
Agarkar T, Nair VK, Tripathy S, Chawla V, Ghosh S, Kumar A. Oxygen vacancy modulated MnO2 bi-electrode system for attomole-level pathogen nucleic acid sequence detection. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Development of a Dengue Virus Serotype-Specific Non-Structural Protein 1 Capture Immunochromatography Method. SENSORS 2021; 21:s21237809. [PMID: 34883813 PMCID: PMC8659457 DOI: 10.3390/s21237809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022]
Abstract
Four serotypes of dengue virus (DENV), type 1 to 4 (DENV-1 to DENV-4), exhibit approximately 25–40% of the difference in the encoded amino acid residues of viral proteins. Reverse transcription of RNA extracted from specimens followed by PCR amplification is the current standard method of DENV serotype determination. However, since this method is time-consuming, rapid detection systems are desirable. We established several mouse monoclonal antibodies directed against DENV non-structural protein 1 and integrated them into rapid DENV detection systems. We successfully developed serotype-specific immunochromatography systems for all four DENV serotypes. Each system can detect 104 copies/mL in 15 min using laboratory and clinical isolates of DENV. No cross-reaction between DENV serotypes was observed in these DENV isolates. We also confirmed that there was no cross-reaction with chikungunya, Japanese encephalitis, Sindbis, and Zika viruses. Evaluation of these systems using serum from DENV-infected individuals indicated a serotype specificity of almost 100%. These assay systems could accelerate both DENV infection diagnosis and epidemiologic studies in DENV-endemic areas.
Collapse
|
11
|
Farokhinejad F, Lane RE, Lobb RJ, Edwardraja S, Wuethrich A, Howard CB, Trau M. Generation of Nanoyeast Single-Chain Variable Fragments as High-Avidity Biomaterials for Dengue Virus Detection. ACS Biomater Sci Eng 2021; 7:5850-5860. [PMID: 34738789 DOI: 10.1021/acsbiomaterials.1c01001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioengineered yeast bio-nanomaterials termed nanoyeasts displaying antibody single-chain variable fragments (scFvs) against diagnostic targets are a promising alternative to monoclonal antibodies (mAbs). A potential limitation for translating nanoyeasts into diagnostic tools is batch-to-batch variability. Herein, we demonstrate a systematic approach for cost-efficient production of highly specific nanoyeasts that enabled accurate dengue virus (DENV) detection by immunoassay (2.5% CV). Yeasts bioengineered to surface express DENV-specific scFvs (up to 66% of the total cell population) were fragmented into nanoyeast fractions trialing sonication, bead beating, and high-pressure disruption methods. Nanoyeast fractions from sonication had optimal target binding, uniform particle size (±89 nm), were stable, and retained diagnostic activity for 7 days at 37 °C compared to traditional mAbs that lost activity after 1 day at 37 °C. We engineered a panel of nanoyeast scFvs targeting DENV nonstructural protein 1 (NS1): (i) specific for serotyping DENV 1-4 and (ii) cross-reactive anti-DENV scFvs that are suitable for "yes/no" diagnostic applications. We demonstrate highly specific nanoyeast scFvs for serotyping DENV. We show that nanoyeast scFvs specifically detect NS1 in simulated patient plasma with a limit of detection of 250 ng/mL, the concentration found in infected patients.
Collapse
Affiliation(s)
- Fahimeh Farokhinejad
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rebecca E Lane
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard J Lobb
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Selvakumar Edwardraja
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alain Wuethrich
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Christopher B Howard
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Matt Trau
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
12
|
Competitive ELISA for a serologic test to detect dengue serotype-specific anti-NS1 IgGs using high-affinity UB-DNA aptamers. Sci Rep 2021; 11:18000. [PMID: 34504185 PMCID: PMC8429655 DOI: 10.1038/s41598-021-97339-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Serologic tests to detect specific IgGs to antigens related to viral infections are urgently needed for diagnostics and therapeutics. We present a diagnostic method for serotype-specific IgG identification of dengue infection by a competitive enzyme-linked immunosorbent assay (ELISA), using high-affinity unnatural-base-containing DNA (UB-DNA) aptamers that recognize the four categorized serotypes. Using UB-DNA aptamers specific to each serotype of dengue NS1 proteins (DEN-NS1), we developed our aptamer-antibody sandwich ELISA for dengue diagnostics. Furthermore, IgGs highly specific to DEN-NS1 inhibited the serotype-specific NS1 detection, inspiring us to develop the competitive ELISA format for dengue serotype-specific IgG detection. Blood samples from Singaporean patients with primary or secondary dengue infections confirmed the highly specific IgG detection of this format, and the IgG production initially reflected the serotype of the past infection, rather than the recent infection. Using this dengue competitive ELISA format, cross-reactivity tests of 21 plasma samples from Singaporean Zika virus-infected patients revealed two distinct patterns: 8 lacked cross-reactivity, and 13 were positive with unique dengue serotype specificities, indicating previous dengue infection. This antigen-detection ELISA and antibody-detection competitive ELISA combination using the UB-DNA aptamers identifies both past and current viral infections and will facilitate specific medical care and vaccine development for infectious diseases.
Collapse
|
13
|
Matsunaga KI, Kimoto M, Lim VW, Tan HP, Wong YQ, Sun W, Vasoo S, Leo YS, Hirao I. High-affinity five/six-letter DNA aptamers with superior specificity enabling the detection of dengue NS1 protein variants beyond the serotype identification. Nucleic Acids Res 2021; 49:11407-11424. [PMID: 34169309 PMCID: PMC8599795 DOI: 10.1093/nar/gkab515] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 12/25/2022] Open
Abstract
Genetic alphabet expansion of DNA by introducing unnatural bases (UBs), as a fifth letter, dramatically augments the affinities of DNA aptamers that bind to target proteins. To determine whether UB-containing DNA (UB-DNA) aptamers obtained by affinity selection could spontaneously achieve high specificity, we have generated a series of UB-DNA aptamers (KD: 27-182 pM) targeting each of four dengue non-structural protein 1 (DEN-NS1) serotypes. The specificity of each aptamer is remarkably high, and the aptamers can recognize the subtle variants of DEN-NS1 with at least 96.9% amino acid sequence identity, beyond the capability of serotype identification (69-80% sequence identities). Our UB-DNA aptamers specifically identified two major variants of dengue serotype 1 with 10-amino acid differences in the DEN-NS1 protein (352 aa) in Singaporeans' clinical samples. These results suggest that the high-affinity UB-DNA aptamers generated by affinity selection also acquire high target specificity. Intriguingly, one of the aptamers contained two different UBs as fifth and sixth letters, which are essential for the tight binding to the target. These two types of unnatural bases with distinct physicochemical properties profoundly expand the potential of DNA aptamers. Detection methods incorporating the UB-DNA aptamers will facilitate precise diagnoses of viral infections and other diseases.
Collapse
Affiliation(s)
- Ken-Ichiro Matsunaga
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore
| | - Michiko Kimoto
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore
| | - Vanessa Weixun Lim
- National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, Singapore 308442, Singapore
| | - Hui Pen Tan
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore
| | - Yu Qian Wong
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore
| | - William Sun
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Shawn Vasoo
- National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, Singapore 308442, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Dr., Experimental Medicine Building, Singapore 636921, Singapore
| | - Yee Sin Leo
- National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, Singapore 308442, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Dr., Experimental Medicine Building, Singapore 636921, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, #10-01, Singapore 117549, Singapore
| | - Ichiro Hirao
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore
| |
Collapse
|
14
|
A spatio-temporal analysis of dengue spread in a Brazilian dry climate region. Sci Rep 2021; 11:11892. [PMID: 34088931 PMCID: PMC8178350 DOI: 10.1038/s41598-021-91306-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
We investigated the relation between the spread, time scale, and spatial arrangement of dengue in Bahia, a Brazilian dry climate region, for the period 2000 to 2009. The degree of cross-correlation is calculated for 15 economic regions. We propose a multiscale statistical analysis to datasets of dengue cases in order to verify the effect of infection dispersal on the economic regions from the metropolitan region of Salvador. Our empirical results support a significant and persistent cross-correlation between most regions, reinforcing the idea that economic regions or climatic conditions are non-statistically significant in the spread of dengue in the State of Bahia. Our main contribution lies in the cross-correlation results revealing multiple aspects related to the propagation of dengue in dry climate regions.
Collapse
|