1
|
Vásquez Paredes PJ. From Forest to Intensive Care Unit: Managing Severe Complications of Bothrops bilineatus Envenomation. Wilderness Environ Med 2025:10806032251337667. [PMID: 40329703 DOI: 10.1177/10806032251337667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Snakebites are a critical health issue in remote regions of the Amazon basin. I report a case of Bothrops bilineatus envenomation in a 29-y-old biologist conducting fieldwork in Parque Nacional del Manu, Peru. Following significant logistic delays-including an initial suboptimal antivenom dose and limited access to additional vials-the patient developed progressive edema, necrosis, coagulopathy, and signs of compartment syndrome. Management involved 2 partial doses of antivenom (1 at 1600 and the other at 2100), a subsequent transfer to a tertiary care center, antibiotics, analgesia, and eventually surgical intervention, including debridement and partial amputation. Although the patient received some treatment on the day of the bite, fragmented antivenom dosing and delayed transport likely contributed to worse local injury. This case highlights the importance of prompt, complete antivenom therapy, effective logistics, advanced diagnostic resources, and comprehensive rehabilitation in resource-limited settings.
Collapse
|
2
|
Weekers DJC, Alonso LL, Verstegen AX, Slagboom J, Kool J. Qualitative Profiling of Venom Toxins in the Venoms of Several Bothrops Species Using High-Throughput Venomics and Coagulation Bioassaying. Toxins (Basel) 2024; 16:300. [PMID: 39057940 PMCID: PMC11280908 DOI: 10.3390/toxins16070300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/15/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Envenoming resulting from snakebites is recognized as a priority neglected tropical disease by The World Health Organization. The Bothrops genus, consisting of different pitviper species, is considered the most medically significant taxa in Central and South America. Further research into Bothrops venom composition is important to aid in the development of safer and more effective snakebite treatments. In addition, the discovery of Bothrops toxins that could potentially be used for medical or diagnostic purposes is of interest to the pharmaceutical industry. This study aimed to employ high-throughput (HT) venomics to qualitatively analyze venom composition while utilizing coagulation bioassays for identifying coagulopathic toxins and characterizing coagulopathic activity in various Bothrops venoms. Using the recently demonstrated HT venomics workflow in combination with post-column coagulopathic bioassaying, focus was placed at anticoagulant toxins. Well-known procoagulant toxins were also investigated, taking into account that using the HT venomics workflow, procoagulant toxins are especially prone to denaturation during the reversed-phase chromatographic separations performed in the workflow. The findings revealed that the venoms of B. atrox and B. jararaca harbored procoagulant toxins, whereas those of B. alternatus and B. neuwiedi contained both procoagulant and anticoagulant toxins. In general, anticoagulation was associated with phospholipases A2s, while procoagulation was associated with snake venom metalloproteinases and snake venom serine proteases. These results showed the identification of coagulopathic venom toxins in the Bothrops venoms analyzed using multiple analytical methods that complement each other. Additionally, each venom underwent qualitative characterization of its composition.
Collapse
Affiliation(s)
- Dimoetsha J. C. Weekers
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Luis L. Alonso
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Anniek X. Verstegen
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Julien Slagboom
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| |
Collapse
|
3
|
Brasileiro-Martins LM, Cavalcante SA, Nascimento TP, Silva-Neto AV, Mariano Santos MD, Camillo-Andrade AC, da Gama Fischer JDS, Ferreira CC, Oliveira LB, Sartim MA, Costa AG, Pucca MB, Wen FH, Moura-da-Silva AM, Sachett J, Carvalho PC, de Aquino PF, Monteiro WM. Urinary proteomics reveals biological processes related to acute kidney injury in Bothrops atrox envenomings. PLoS Negl Trop Dis 2024; 18:e0012072. [PMID: 38536893 PMCID: PMC11020875 DOI: 10.1371/journal.pntd.0012072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/16/2024] [Accepted: 03/14/2024] [Indexed: 04/18/2024] Open
Abstract
Acute kidney injury (AKI) is a critical systemic complication caused by Bothrops envenoming, a neglected health problem in the Brazilian Amazon. Understanding the underlying mechanisms leading to AKI is crucial for effectively mitigating the burden of this complication. This study aimed to characterize the urinary protein profile of Bothrops atrox snakebite victims who developed AKI. We analyzed three groups of samples collected on admission: healthy subjects (controls, n = 10), snakebite victims who developed AKI (AKI, n = 10), and those who did not evolve to AKI (No-AKI, n = 10). Using liquid-chromatography tandem mass spectrometry, we identified and quantified (label-free) 1190 proteins. A panel of 65 proteins was identified exclusively in the urine of snakebite victims, with 32 exclusives to the AKI condition. Proteins more abundant or exclusive in AKI's urine were associated with acute phase response, endopeptidase inhibition, complement cascade, and inflammation. Notable proteins include serotransferrin, SERPINA-1, alpha-1B-glycoprotein, and NHL repeat-containing protein 3. Furthermore, evaluating previously reported biomarkers candidates for AKI and renal injury, we found retinol-binding protein, beta-2-microglobulin, cystatin-C, and hepcidin to be significant in cases of AKI induced by Bothrops envenoming. This work sheds light on physiological disturbances caused by Bothrops envenoming, highlighting potential biological processes contributing to AKI. Such insights may aid in better understanding and managing this life-threatening complication.
Collapse
Affiliation(s)
- Lisele Maria Brasileiro-Martins
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- School of Health Sciences, Amazonas State University, Manaus, Brazil
| | | | - Thaís Pinto Nascimento
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- School of Health Sciences, Amazonas State University, Manaus, Brazil
- Leonidas and Maria Deane Institute, Oswaldo Cruz Foundation, Manaus, Brazil
| | - Alexandre Vilhena Silva-Neto
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Marlon Dias Mariano Santos
- Structural and Computational Proteomics Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | - Amanda C. Camillo-Andrade
- Structural and Computational Proteomics Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | | | | | | | - Marco Aurelio Sartim
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- School of Health Sciences, Amazonas State University, Manaus, Brazil
- Department of Research, Nilton Lins University, Manaus, Brazil
| | - Allyson Guimarães Costa
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- School of Health Sciences, Amazonas State University, Manaus, Brazil
- Nursing School, Amazonas Federal University, Manaus, Brazil
| | - Manuela B. Pucca
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Fan Hui Wen
- Immunopathology Laboratory, Butantan Institute, São Paulo, Brazil
| | | | - Jacqueline Sachett
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Immunopathology Laboratory, Butantan Institute, São Paulo, Brazil
| | - Paulo Costa Carvalho
- Structural and Computational Proteomics Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | | | - Wuelton M. Monteiro
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- School of Health Sciences, Amazonas State University, Manaus, Brazil
| |
Collapse
|
4
|
Resiere D, Kallel H, Florentin J, Houcke S, Mehdaoui H, Gutiérrez JM, Neviere R. Bothrops (Fer-de-lance) snakebites in the French departments of the Americas (Martinique and Guyana): Clinical and experimental studies and treatment by immunotherapy. PLoS Negl Trop Dis 2023; 17:e0011083. [PMID: 36854042 PMCID: PMC9974124 DOI: 10.1371/journal.pntd.0011083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Snakebite envenomation is a relevant medical hazard in French Guiana and Martinique, two French territories in the Americas. All snakebite envenomations in Martinique are inflicted by the endemic viperid species Bothrops lanceolatus, whereas Bothrops atrox is responsible for the majority of snakebites in French Guiana, although other venomous snake species also occur in this South American territory. This review summarizes some of the key aspects of the natural history of these species, as well as of their venom composition, the main clinical manifestations of envenomations, and their treatment by antivenoms. B. atrox venom induces the typical set of clinical manifestations characteristic of Bothrops sp. venoms, i.e., local tissue damage and systemic alterations associated with coagulopathies, hemorrhage, hemodynamic alterations, and acute kidney injury. In the case of B. lanceolatus venom, in addition to some typical features of bothropic envenomation, a unique and severe thrombotic effect occurs in some patients. The pathogenesis of this effect remains unknown but may be related to the action of venom components and inflammatory mediators on endothelial cells in the vasculature. A monospecific antivenom has been successfully used in Martinique to treat envenomations by B. lanceolatus. In the case of French Guiana, a polyvalent antivenom has been used for some years, but it is necessary to assess the preclinical and clinical efficacy against viperid venoms in this country of other antivenoms manufactured in the Americas.
Collapse
Affiliation(s)
- Dabor Resiere
- Cardiovascular Research Team EA7525, Université des Antilles, Fort de France, France
- Department of Critical Care Medicine, Toxicology and Emergency, CHU Martinique (University Hospital of Martinique), Fort-de-France, France
| | - Hatem Kallel
- Intensive Care Unit, Cayenne General Hospital, Cayenne, French Guiana, France
| | - Jonathan Florentin
- Cardiovascular Research Team EA7525, Université des Antilles, Fort de France, France
- Department of Critical Care Medicine, Toxicology and Emergency, CHU Martinique (University Hospital of Martinique), Fort-de-France, France
| | - Stephanie Houcke
- Intensive Care Unit, Cayenne General Hospital, Cayenne, French Guiana, France
| | - Hossein Mehdaoui
- Cardiovascular Research Team EA7525, Université des Antilles, Fort de France, France
- Department of Critical Care Medicine, Toxicology and Emergency, CHU Martinique (University Hospital of Martinique), Fort-de-France, France
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Remi Neviere
- Cardiovascular Research Team EA7525, Université des Antilles, Fort de France, France
| |
Collapse
|
5
|
Gonçalves-Machado L, Verçoza BRF, Nogueira FCS, Melani RD, Domont GB, Rodrigues SP, Rodrigues JCF, Zingali RB. Extracellular Vesicles from Bothrops jararaca Venom Are Diverse in Structure and Protein Composition and Interact with Mammalian Cells. Toxins (Basel) 2022; 14:toxins14110806. [PMID: 36422980 PMCID: PMC9698812 DOI: 10.3390/toxins14110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Snake venoms are complex cocktails of non-toxic and toxic molecules that work synergistically for the envenoming outcome. Alongside the immediate consequences, chronic manifestations and long-term sequelae can occur. Recently, extracellular vesicles (EVs) were found in snake venom. EVs mediate cellular communication through long distances, delivering proteins and nucleic acids that modulate the recipient cell's function. However, the biological roles of snake venom EVs, including possible cross-organism communication, are still unknown. This knowledge may expand the understanding of envenoming mechanisms. In the present study, we isolated and characterized the EVs from Bothrops jararaca venom (Bj-EVs), giving insights into their biological roles. Fresh venom was submitted to differential centrifugation, resulting in two EV populations with typical morphology and size range. Several conserved EV markers and a subset of venom related EV markers, represented mainly by processing enzymes, were identified by proteomic analysis. The most abundant protein family observed in Bj-EVs was 5'-nucleotidase, known to be immunosuppressive and a low abundant and ubiquitous toxin in snake venoms. Additionally, we demonstrated that mammalian cells efficiently internalize Bj-EVs. The commercial antibothropic antivenom partially recognizes Bj-EVs and inhibits cellular EV uptake. Based on the proteomic results and the in vitro interaction assays using macrophages and muscle cells, we propose that Bj-EVs may be involved not only in venom production and processing but also in host immune modulation and long-term effects of envenoming.
Collapse
Affiliation(s)
- Larissa Gonçalves-Machado
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (Inbeb), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Instituto Vital Brazil, Gerência de Desenvolvimento Tecnológico, Niterói 24230-410, Brazil
| | - Brunno Renato Farias Verçoza
- Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-Bio), Universidade Federal do Rio de Janeiro, Campus UFRJ Duque de Caxias, Duque de Caxias, Rio de Janeiro 25240-005, Brazil
| | - Fábio César Sousa Nogueira
- Laboratório de Química de Proteínas, Unidade Proteômica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratório de Proteômica (LabProt)—LADETEC, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Rafael Donadélli Melani
- Laboratório de Química de Proteínas, Unidade Proteômica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Gilberto Barbosa Domont
- Laboratório de Química de Proteínas, Unidade Proteômica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Silas Pessini Rodrigues
- Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-Bio), Universidade Federal do Rio de Janeiro, Campus UFRJ Duque de Caxias, Duque de Caxias, Rio de Janeiro 25240-005, Brazil
| | - Juliany Cola Fernandes Rodrigues
- Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-Bio), Universidade Federal do Rio de Janeiro, Campus UFRJ Duque de Caxias, Duque de Caxias, Rio de Janeiro 25240-005, Brazil
| | - Russolina Benedeta Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (Inbeb), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: ; Tel.: +55-2139386782
| |
Collapse
|
6
|
Diversity of Phospholipases A2 from Bothrops atrox Snake Venom: Adaptive Advantages for Snakes Compromising Treatments for Snakebite Patients. Toxins (Basel) 2022; 14:toxins14080543. [PMID: 36006204 PMCID: PMC9414272 DOI: 10.3390/toxins14080543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
The evolution of snake venoms resulted in multigene toxin families that code for structurally similar isoforms eventually harboring distinct functions. PLA2s are dominant toxins in viper venoms, and little is known about the impact of their diversity on human envenomings and neutralization by antivenoms. Here, we show the isolation of three distinct PLA2s from B. atrox venom. FA1 is a Lys-49 homologue, and FA3 and FA4 are catalytic Asp-49 PLA2s. FA1 and FA3 are basic myotoxic proteins, while FA4 is an acid non-myotoxic PLA2. FA3 was the most potent toxin, inducing higher levels of edema, inflammatory nociception, indirect hemolysis, and anticoagulant activity on human, rat, and chicken plasmas. FA4 presented lower anticoagulant activity, and FA1 had only a slight effect on human and rat plasmas. PLA2s presented differential reactivities with antivenoms, with an emphasis on FA3, which was not recognized or neutralized by the antivenoms used in this study. Our findings reveal the functional and antigenic diversity among PLA2s from B. atrox venom, highlighting the importance of assessing venom variability for understanding human envenomations and treatment with antivenoms, particularly evident here as the antivenom fails to recognize FA3, the most active multifunctional toxin described.
Collapse
|
7
|
Adrião AAX, dos Santos AO, de Lima EJSP, Maciel JB, Paz WHP, da Silva FMA, Pucca MB, Moura-da-Silva AM, Monteiro WM, Sartim MA, Koolen HHF. Plant-Derived Toxin Inhibitors as Potential Candidates to Complement Antivenom Treatment in Snakebite Envenomations. Front Immunol 2022; 13:842576. [PMID: 35615352 PMCID: PMC9126284 DOI: 10.3389/fimmu.2022.842576] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Snakebite envenomations (SBEs) are a neglected medical condition of global importance that mainly affect the tropical and subtropical regions. Clinical manifestations include pain, edema, hemorrhage, tissue necrosis, and neurotoxic signs, and may evolve to functional loss of the affected limb, acute renal and/or respiratory failure, and even death. The standard treatment for snake envenomations is antivenom, which is produced from the hyperimmunization of animals with snake toxins. The inhibition of the effects of SBEs using natural or synthetic compounds has been suggested as a complementary treatment particularly before admission to hospital for antivenom treatment, since these alternative molecules are also able to inhibit toxins. Biodiversity-derived molecules, namely those extracted from medicinal plants, are promising sources of toxin inhibitors that can minimize the deleterious consequences of SBEs. In this review, we systematically synthesize the literature on plant metabolites that can be used as toxin-inhibiting agents, as well as present the potential mechanisms of action of molecules derived from natural sources. These findings aim to further our understanding of the potential of natural products and provide new lead compounds as auxiliary therapies for SBEs.
Collapse
Affiliation(s)
- Asenate A. X. Adrião
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Aline O. dos Santos
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Emilly J. S. P. de Lima
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Jéssica B. Maciel
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Weider H. P. Paz
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
| | - Felipe M. A. da Silva
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
- Multidisciplinary Support Center, Federal University of Amazonas, Manaus, Brazil
| | - Manuela B. Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
| | - Ana M. Moura-da-Silva
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Laboratory of Immunopathology, Institute Butantan, São Paulo, Brazil
| | - Wuelton M. Monteiro
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Marco A. Sartim
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- University Nilton Lins, Manaus, Brazil
| | - Hector H. F. Koolen
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
| |
Collapse
|
8
|
Lower levels of CXCL-8 and IL-2 on admission as predictors of early adverse reactions to Bothrops antivenom in the Brazilian Amazon. Cytokine 2022; 152:155825. [DOI: 10.1016/j.cyto.2022.155825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/25/2022] [Accepted: 02/06/2022] [Indexed: 12/13/2022]
|
9
|
Individual Variability in Bothropsatrox Snakes Collected from Different Habitats in the Brazilian Amazon: New Findings on Venom Composition and Functionality. Toxins (Basel) 2021; 13:toxins13110814. [PMID: 34822598 PMCID: PMC8618853 DOI: 10.3390/toxins13110814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
Differences in snake venom composition occur across all taxonomic levels and it has been argued that this variation represents an adaptation that has evolved to facilitate the capture and digestion of prey and evasion of predators. Bothrops atrox is a terrestrial pitviper that is distributed across the Amazon region, where it occupies different habitats. Using statistical analyses and functional assays that incorporate individual variation, we analyzed the individual venom variability in B. atrox snakes from four different habitats (forest, pasture, degraded area, and floodplain) in and around the Amazon River in Brazil. We observed venom differentiation between spatially distinct B. atrox individuals from the different habitats, with venom variation due to both common (high abundance) and rare (low abundance) proteins. Moreover, differences in the composition of the venoms resulted in individual variability in functionality and heterogeneity in the lethality to mammals and birds, particularly among the floodplain snakes. Taken together, the data obtained from individual venoms of B. atrox snakes, captured in different habitats from the Brazilian Amazon, support the hypothesis that the differential distribution of protein isoforms results in functional distinctiveness and the ability of snakes with different venoms to have variable toxic effects on different prey.
Collapse
|
10
|
Gimenes SNC, Sachett JAG, Colombini M, Freitas-de-Sousa LA, Ibiapina HNS, Costa AG, Santana MF, Park JJ, Sherman NE, Ferreira LCL, Wen FH, Monteiro WM, Moura-da-Silva AM, Fox JW. Observation of Bothrops atrox Snake Envenoming Blister Formation from Five Patients: Pathophysiological Insights. Toxins (Basel) 2021; 13:toxins13110800. [PMID: 34822585 PMCID: PMC8618272 DOI: 10.3390/toxins13110800] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
In the Brazilian Amazon, Bothrops atrox snakebites are frequent, and patients develop tissue damage with blisters sometimes observed in the proximity of the wound. Antivenoms do not seem to impact blister formation, raising questions regarding the mechanisms underlying blister formation. Here, we launched a clinical and laboratory-based study including five patients who followed and were treated by the standard clinical protocols. Blister fluids were collected for proteomic analyses and molecular assessment of the presence of venom and antivenom. Although this was a small patient sample, there appeared to be a correlation between the time of blister appearance (shorter) and the amount of venom present in the serum (higher). Of particular interest was the biochemical identification of both venom and antivenom in all blister fluids. From the proteomic analysis of the blister fluids, all were observed to be a rich source of damage-associated molecular patterns (DAMPs), immunomodulators, and matrix metalloproteinase-9 (MMP-9), suggesting that the mechanisms by which blisters are formed includes the toxins very early in envenomation and continue even after antivenom treatment, due to the pro-inflammatory molecules generated by the toxins in the first moments after envenomings, indicating the need for local treatments with anti-inflammatory drugs plus toxin inhibitors to prevent the severity of the wounds.
Collapse
Affiliation(s)
- Sarah N. C. Gimenes
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (S.N.C.G.); (M.C.); (L.A.F.-d.-S.)
| | - Jacqueline A. G. Sachett
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-030, AM, Brazil; (J.A.G.S.); (H.N.S.I.); (A.G.C.); (M.F.S.); (W.M.M.)
- Departamento de Ensino e Pesquisa, Fundação de Dermatologia Alfredo da Matta, Manaus 69065-130, AM, Brazil
| | - Mônica Colombini
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (S.N.C.G.); (M.C.); (L.A.F.-d.-S.)
| | - Luciana A. Freitas-de-Sousa
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (S.N.C.G.); (M.C.); (L.A.F.-d.-S.)
| | - Hiochelson N. S. Ibiapina
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-030, AM, Brazil; (J.A.G.S.); (H.N.S.I.); (A.G.C.); (M.F.S.); (W.M.M.)
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil;
| | - Allyson G. Costa
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-030, AM, Brazil; (J.A.G.S.); (H.N.S.I.); (A.G.C.); (M.F.S.); (W.M.M.)
- Departamento de Ensino e Pesquisa, Fundação de Hematologia e Hemoterapia do Amazonas, Manaus 69040-010, AM, Brazil
| | - Monique F. Santana
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-030, AM, Brazil; (J.A.G.S.); (H.N.S.I.); (A.G.C.); (M.F.S.); (W.M.M.)
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil;
- Departamento de Ensino e Pesquisa, Fundação de Hematologia e Hemoterapia do Amazonas, Manaus 69040-010, AM, Brazil
| | - Jeong-Jin Park
- School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (J.-J.P.); (N.E.S.)
| | - Nicholas E. Sherman
- School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (J.-J.P.); (N.E.S.)
| | - Luiz C. L. Ferreira
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil;
| | - Fan H. Wen
- Núcleo de Produção de Soros, Instituto Butantan, São Paulo 05503-900, SP, Brazil;
| | - Wuelton M. Monteiro
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-030, AM, Brazil; (J.A.G.S.); (H.N.S.I.); (A.G.C.); (M.F.S.); (W.M.M.)
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil;
| | - Ana M. Moura-da-Silva
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (S.N.C.G.); (M.C.); (L.A.F.-d.-S.)
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil;
- Correspondence: (A.M.M.-d.-S.); (J.W.F.)
| | - Jay W. Fox
- School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (J.-J.P.); (N.E.S.)
- Correspondence: (A.M.M.-d.-S.); (J.W.F.)
| |
Collapse
|
11
|
Patra A, Mukherjee AK. Assessment of snakebite burdens, clinical features of envenomation, and strategies to improve snakebite management in Vietnam. Acta Trop 2021; 216:105833. [PMID: 33485869 DOI: 10.1016/j.actatropica.2021.105833] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/16/2022]
Abstract
The sheer paucity of scientific documentation of herpetofauna in Vietnam and the rudimentary healthcare response to snakebite have stimulated this review. Over six decades of data culled from public data bases and search engines, have been used to assess snakebite burdens, clinical features of envenomation, and strategies for snakebite management in Vietnam. In addition, biochemical and proteomic analyses to decipher venom composition, rapid analytical techniques to be used for clinical diagnosis of snakebite in Vietnam have been discussed in detail. The assessment of efficacy, safety, and quality of commercial antivenom produced in Vietnam and improvement of antivenom production to meet the national requirement has been critically examined. It is apparent that snake bite incidence in Vietnam is exacerbated by mismatch in demand and supply of antivenom therapy, insufficient medical facilities, preference for traditional healers and poor management of clinical records. The impediments arising from geographical and species-specific variation in venom composition can be overcome by the 'Omics approach', and scientific documentation of pathophysiological manifestations post envenomation. The development of next generation of therapeutics, encouraging clinical research, novel approaches and social awareness against snakebite and its treatments have been suggested to significantly reduce the snakebite mortality and morbidity in this region.
Collapse
Affiliation(s)
- Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India.
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; Institute of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India.
| |
Collapse
|
12
|
Patiño RSP, Salazar-Valenzuela D, Medina-Villamizar E, Mendes B, Proaño-Bolaños C, da Silva SL, Almeida JR. Bothrops atrox from Ecuadorian Amazon: Initial analyses of venoms from individuals. Toxicon 2021; 193:63-72. [PMID: 33503404 DOI: 10.1016/j.toxicon.2021.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/26/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
Bothrops atrox is the most clinically relevant snake species within the Amazon region, which includes Ecuadorian territories. It comprises a large distribution, which could contribute to the genetic and venomic variation identified in the species. The high variability and protein isoform diversity of its venom are of medical interest, since it can influence the clinical manifestations caused by envenomation and its treatment. However, in Ecuador there is insufficient information on the diversity of venomic phenotypes, even of relevant species such as B. atrox. Here, we characterized the biochemical and toxicological profiles of the venom of six B. atrox individuals from the Ecuadorian Amazon. Differences in catalytic activities of toxins, elution profiles in liquid chromatography, electrophoretic patterns, and toxic effects among the analyzed samples were identified. Nonetheless, in the preclinical testing of antivenom, two samples from Mera (Pastaza) required a higher dose to achieve total neutralization of lethality and hemorrhage. Taken together, these data highlight the importance of analyzing individual venoms in studies focused on the outcomes of envenoming.
Collapse
Affiliation(s)
- Ricardo S P Patiño
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador; Escuela Superior Politécnica del Litoral (ESPOL), Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Guayaquil, Ecuador
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Quito, Ecuador
| | - Evencio Medina-Villamizar
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador
| | - Bruno Mendes
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carolina Proaño-Bolaños
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador
| | - Saulo L da Silva
- Escuela de Bioquímica y Farmacia, Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca, Azuay, Ecuador; Centro de Innovación de la Salud - EUS/EP, Cuenca, Azuay, Ecuador; Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Porto, Portugal; LAQV - REQUIMTE, University of Porto, Porto, Portugal
| | - José R Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador.
| |
Collapse
|
13
|
Yu C, Yu H, Li P. Highlights of animal venom research on the geographical variations of toxin components, toxicities and envenomation therapy. Int J Biol Macromol 2020; 165:2994-3006. [PMID: 33122066 DOI: 10.1016/j.ijbiomac.2020.10.190] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/22/2023]
Abstract
Geographical variation of animal venom is common among venomous animals. This kind of intraspecific variation based on geographical location mainly concerned from envenomation cases and brought new problems in animal venom studies, including venom components regulatory mechanisms, differentiation of venom activities, and clinical treatment methods. At present, food is considered as the most related factor influencing venom development. Related research defined the variational venomous animal species by the comparison of venom components and activities in snakes, jellyfish, scorpions, cone snails, ants, parasitoid wasps, spiders and toads. In snake venom studies, researchers found that antivenom effectiveness was variated to different located venom samples. As described in some snake venom research, developing region-specific antivenom is the development trend. The difficulties of developing region-specific antivenom and theoretical solutions have been discussed. This review summarized biological studies of animal venom geographical variation by species, compared venom components and major biological activities of the vary venom from the same species, and listed the basic methods in comparing venom protein compositions and major toxicity differences to provide a comprehensive reference.
Collapse
Affiliation(s)
- Chunlin Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|