1
|
Viana F, Boucontet L, Laghi V, Schator D, Ibranosyan M, Jarraud S, Colucci-Guyon E, Buchrieser C. Hiding in the yolk: A unique feature of Legionella pneumophila infection of zebrafish. PLoS Pathog 2023; 19:e1011375. [PMID: 37155695 DOI: 10.1371/journal.ppat.1011375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/18/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
The zebrafish has become a powerful model organism to study host-pathogen interactions. Here, we developed a zebrafish model to dissect the innate immune response to Legionella pneumophila during infection. We show that L. pneumophila cause zebrafish larvae death in a dose dependent manner. Additionally, we show that macrophages are the first line of defence and cooperate with neutrophils to clear the infection. Immunocompromised humans have an increased propensity to develop pneumonia, when either macrophages or neutrophils are depleted, these "immunocompromised" larvae become lethally sensitive to L. pneumophila. Also, as observed in human infections, the adaptor signalling molecule Myd88 is not required to control disease in the larvae. Furthermore, proinflammatory cytokine genes il1β and tnf-α were upregulated during infection, recapitulating key immune responses seen in human infection. Strikingly, we uncovered a previously undescribed infection phenotype in zebrafish larvae, whereby bloodborne, wild type L. pneumophila invade and grow in the larval yolk region, a phenotype not observed with a type IV secretion system deficient mutant that cannot translocate effectors into its host cell. Thus, zebrafish larva represents an innovative L. pneumophila infection model that mimics important aspects of the human immune response to L. pneumophila infection and will allow the elucidation of mechanisms by which type IV secretion effectors allow L. pneumophila to cross host cell membranes and obtain nutrients from nutrient rich environments.
Collapse
Affiliation(s)
- Flávia Viana
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, Paris, France
| | - Laurent Boucontet
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité and CNRS UMR 3738, Paris, France
| | - Valerio Laghi
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité and CNRS UMR 3738, Paris, France
| | - Daniel Schator
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Marine Ibranosyan
- National Reference Centre of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France
| | - Sophie Jarraud
- National Reference Centre of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie, Université Lyon 1, UMR CNRS 5308, Inserm U1111, ENS de Lyon, Lyon, France
| | - Emma Colucci-Guyon
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité and CNRS UMR 3738, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, Paris, France
| |
Collapse
|
2
|
Leseigneur C, Boucontet L, Duchateau M, Pizarro-Cerda J, Matondo M, Colucci-Guyon E, Dussurget O. NAD kinase promotes Staphylococcus aureus pathogenesis by supporting production of virulence factors and protective enzymes. eLife 2022; 11:e79941. [PMID: 35723663 PMCID: PMC9208755 DOI: 10.7554/elife.79941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) is the primary electron donor for reductive reactions that are essential for the biosynthesis of major cell components in all organisms. Nicotinamide adenine dinucleotide kinase (NADK) is the only enzyme that catalyzes the synthesis of NADP(H) from NAD(H). While the enzymatic properties and physiological functions of NADK have been thoroughly studied, the role of NADK in bacterial pathogenesis remains unknown. Here, we used CRISPR interference to knock down NADK gene expression to address the role of this enzyme in Staphylococcus aureus pathogenic potential. We find that NADK inhibition drastically decreases mortality of zebrafish infected with S. aureus. Furthermore, we show that NADK promotes S. aureus survival in infected macrophages by protecting bacteria from antimicrobial defense mechanisms. Proteome-wide data analysis revealed that production of major virulence-associated factors is sustained by NADK. We demonstrate that NADK is required for expression of the quorum-sensing response regulator AgrA, which controls critical S. aureus virulence determinants. These findings support a key role for NADK in bacteria survival within innate immune cells and the host during infection.
Collapse
Affiliation(s)
- Clarisse Leseigneur
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité de Recherche YersiniaParisFrance
| | - Laurent Boucontet
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Unité Macrophages et Développement de l’ImmunitéParisFrance
| | - Magalie Duchateau
- Institut Pasteur, Université Paris Cité, CNRS USR2000, Unité de Spectrométrie de Masse pour la Biologie, Plateforme de protéomiqueParisFrance
| | - Javier Pizarro-Cerda
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité de Recherche YersiniaParisFrance
| | - Mariette Matondo
- Institut Pasteur, Université Paris Cité, CNRS USR2000, Unité de Spectrométrie de Masse pour la Biologie, Plateforme de protéomiqueParisFrance
| | - Emma Colucci-Guyon
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Unité Macrophages et Développement de l’ImmunitéParisFrance
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité de Recherche YersiniaParisFrance
| |
Collapse
|
3
|
Tello Rubio B, Bugault F, Baudon B, Raynal B, Brûlé S, Morel JD, Saint-Auret S, Blanchard N, Demangel C, Guenin-Macé L. Molecular Mechanisms Underpinning the Circulation and Cellular Uptake of Mycobacterium ulcerans Toxin Mycolactone. Front Pharmacol 2021; 12:733496. [PMID: 34603049 PMCID: PMC8481864 DOI: 10.3389/fphar.2021.733496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Mycolactone is a diffusible lipid toxin produced by Mycobacterium ulcerans, the causative agent of Buruli ulcer disease. Altough bacterially derived mycolactone has been shown to traffic from cutaneous foci of infection to the bloodstream, the mechanisms underpinning its access to systemic circulation and import by host cells remain largely unknown. Using biophysical and cell-based approaches, we demonstrate that mycolactone specific association to serum albumin and lipoproteins is necessary for its solubilization and is a major mechanism to regulate its bioavailability. We also demonstrate that Scavenger Receptor (SR)-B1 contributes to the cellular uptake of mycolactone. Overall, we suggest a new mechanism of transport and cell entry, challenging the dogma that the toxin enters host cells via passive diffusion.
Collapse
Affiliation(s)
- Bruno Tello Rubio
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| | - Florence Bugault
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| | - Blandine Baudon
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| | - Bertrand Raynal
- Plateforme de Biophysique Moléculaire, UMR 3528 CNRS, Institut Pasteur, Paris, France
| | - Sébastien Brûlé
- Plateforme de Biophysique Moléculaire, UMR 3528 CNRS, Institut Pasteur, Paris, France
| | - Jean-David Morel
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| | - Sarah Saint-Auret
- CNRS, LIMA, UMR 7042, Université de Haute-Alsace, Université de Strasbourg, Mulhouse, France
| | - Nicolas Blanchard
- CNRS, LIMA, UMR 7042, Université de Haute-Alsace, Université de Strasbourg, Mulhouse, France
| | - Caroline Demangel
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| | - Laure Guenin-Macé
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| |
Collapse
|
4
|
Demangel C. Immunity against Mycobacterium ulcerans: The subversive role of mycolactone. Immunol Rev 2021; 301:209-221. [PMID: 33607704 DOI: 10.1111/imr.12956] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Mycobacterium ulcerans causes Buruli ulcer, a neglected tropical skin disease manifesting as chronic wounds that can leave victims with major, life-long deformity and disability. Differently from other mycobacterial pathogens, M ulcerans produces mycolactone, a diffusible lipid factor with unique cytotoxic and immunomodulatory properties. Both traits result from mycolactone targeting Sec61, the entry point of the secretory pathway in eukaryotic cells. By inhibiting Sec61, mycolactone prevents the host cell's production of secreted proteins, and most of its transmembrane proteins. This molecular blockade dramatically alters the functions of immune cells, thereby the generation of protective immunity. Moreover, sustained inhibition of Sec61 triggers proteotoxic stress responses leading to apoptotic cell death, which can stimulate vigorous immune responses. The dynamics of bacterial production of mycolactone and elimination by infected hosts thus critically determine the balance between its immunostimulatory and immunosuppressive effects. Following an introduction summarizing the essential information on Buruli ulcer disease, this review focuses on the current state of knowledge regarding mycolactone's regulation and biodistribution. We then detail the consequences of mycolactone-mediated Sec61 blockade on initiation and maintenance of innate and adaptive immune responses. Finally, we discuss the key questions to address in order to improve immunity to M ulcerans, and how increased knowledge of mycolactone biology may pave the way to innovative therapeutics.
Collapse
Affiliation(s)
- Caroline Demangel
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| |
Collapse
|