1
|
Ma Z, Gao J, Wang G, Zhao M, Xing D, Zhao T, Zhang H. Effects of Wolbachia on mitochondrial DNA variation in Aedes albopictus (Diptera: Culicidae). Acta Trop 2025; 263:107561. [PMID: 39971081 DOI: 10.1016/j.actatropica.2025.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
Wolbachia species are symbiotic bacteria that are commonly found in arthropods and nematodes and live inside their cells. In nature, endosymbiont-host interactions and dynamics are complex, often depending on environmental conditions and evolutionary history. Both Wolbachia and mitochondrial DNA are maternally inherited in cells, and after a long period of coexistence, the presence of Wolbachia may have an impact on mitochondrial sequence diversity, thereby confounding mtDNA-based host phylogeny. The universal and typing primers for the wsp gene were used for PCR amplification, the number of positive samples was counted, and the infection pattern was analysed. The mitochondrial DNA diversity of four groups (Wolbachia-infected and uninfected samples, as well as between singly and double infected samples.) was analysed. PACo and ParaFitGlobal tests were used to explore evolutionary associations. The overall prevalence of Wolbachia in the 22 natural populations was 94.2 %, with Type A, Type B and A × B mixed infections detected in Aedes albopictus and coinfection between wAlbA and wAlbB prevalent. The mitochondrial DNA haplotype associated with Wolbachia (Hap1) became the dominant haplotype and was the most abundant and widely distributed in the population. The linkage map showed the predominant haplotype, Hap1, was more closely associated with wAlbA than with wAlbB. Neutral evolution deviated significantly from zero. The diversity of mtDNA COI genes associated with Wolbachia infection was reduced. Wolbachia infection may lead to the selective sweep of mitochondrial DNA in Ae. albopictus.
Collapse
Affiliation(s)
- Zu Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China; Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jian Gao
- Institute of Disinfection and Vector Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, PR China
| | - Ge Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | - Minghui Zhao
- Jiangxi International Travel Healthcare Center, Nanchang 330002, PR China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | - Tongyan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China.
| | - Hengduan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China.
| |
Collapse
|
2
|
Bhattacharyya J, Roelke DL. Wolbachia-based mosquito control: Environmental perspectives on population suppression and replacement strategies. Acta Trop 2025; 262:107517. [PMID: 39740726 DOI: 10.1016/j.actatropica.2024.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Mosquito-borne diseases pose a significant threat to global health, and traditional mosquito control methods often fall short of effectiveness. A promising alternative is the biological control strategy of transinfecting mosquitoes with Wolbachia, a bacterium capable of outcompeting harmful pathogens and reducing the ability of mosquitoes to transmit diseases. However, Wolbachia infections are sensitive to abiotic environmental factors such as temperature and humidity, which can affect their densities in mosquitoes and, consequently, their ability to block pathogens. This review evaluates the effectiveness of different Wolbachia strains transinfected into mosquitoes in reducing mosquito-borne diseases. It explores how Wolbachia contributes to mosquito population control and pathogen interference, highlighting the importance of mathematical models in understanding Wolbachia transmission dynamics. Additionally, the review addresses the potential impact on arboviral transmission and the challenges posed by environmental fluctuations in mosquito control programs.
Collapse
Affiliation(s)
- Joydeb Bhattacharyya
- Department of Mathematics, Karimpur Pannadevi College, Nadia, West Bengal 741152, India.
| | - Daniel L Roelke
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77554, USA
| |
Collapse
|
3
|
Ross PA, Hoffmann AA. Revisiting Wolbachia detections: Old and new issues in Aedes aegypti mosquitoes and other insects. Ecol Evol 2024; 14:e11670. [PMID: 38957696 PMCID: PMC11219197 DOI: 10.1002/ece3.11670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Wolbachia continue to be reported in species previously thought to lack them, particularly Aedes aegypti mosquitoes. The presence of Wolbachia in this arbovirus vector is considered important because releases of mosquitoes with transinfected Wolbachia are being used around the world to suppress pathogen transmission and these efforts depend on a lack of Wolbachia in natural populations of this species. We previously assessed papers reporting Wolbachia in natural populations of Ae. aegypti and found little evidence that seemed convincing. However, since our review, more and more papers are emerging on Wolbachia detections in this species. Our purpose here is to evaluate these papers within the context of criteria we previously established but also new criteria that include the absence of releases of transinfections within the local areas being sampled which has contaminated natural populations in at least one case where novel detections have been reported. We also address the broader issue of Wolbachia detection in other insects where similar issues may arise which can affect overall estimates of this endosymbiont more generally. We note continuing shortcomings in papers purporting to find natural Wolbachia in Ae. aegypti which are applicable to other insects as well.
Collapse
Affiliation(s)
- Perran A. Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
4
|
Reyes JIL, Suzuki T, Suzuki Y, Watanabe K. Detection and quantification of natural Wolbachia in Aedes aegypti in Metropolitan Manila, Philippines using locally designed primers. Front Cell Infect Microbiol 2024; 14:1360438. [PMID: 38562961 PMCID: PMC10982481 DOI: 10.3389/fcimb.2024.1360438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background The Philippines bears health and economic burden caused by high dengue cases annually. Presently, the Philippines still lack an effective and sustainable vector management. The use of Wolbachia, a maternally transmitted bacterium, that mitigate arbovirus transmission has been recommended. Cytoplasmic incompatibility and viral blocking, two characteristics that make Wolbachia suitable for vector control, depend on infection prevalence and density. There are no current Wolbachia release programs in the Philippines, and studies regarding the safety of this intervention. Here, we screened for Wolbachia in Aedes aegypti collected from Metropolitan Manila, Philippines. We designed location-specific primers for qPCR to test whether this improved Wolbachia detection in Ae. aegypti. We explored if host sex and Wolbachia strain could be potential factors affecting Wolbachia density. Methods Ae. aegypti mosquitoes (n=429) were screened for natural Wolbachia by taqman qPCR using location-specific Wolbachia surface protein primers (wspAAML) and known 16S rRNA primers. Samples positive for wspAAML (n=267) were processed for Sanger sequencing. We constructed a phylogenetic tree using IQ-TREE 2 to further characterize Wolbachia present in the Philippine Ae. aegypti. We then compared Wolbachia densities between Wolbachia groups and host sex. Statistical analyses were done using GraphPad Prism 9.0. Results Wolbachia prevalence for 16S rRNA (40%) and wspAAML (62%) markers were high. Wolbachia relative densities for 16S rRNA ranged from -3.84 to 2.71 and wspAAML from -4.02 to 1.81. Densities were higher in male than female mosquitoes. Wolbachia strains detected in Ae. aegypti clustered into supergroup B. Some 54% (123/226) of these sequences clustered under a group referred to here as "wAegML," that belongs to the supergroup B, which had a significantly lower density than wAegB/wAlbB, and wAlbA strains. Conclusion Location-specific primers improved detection of natural Wolbachia in Ae. aegypti and allowed for relative quantification. Wolbachia density is relatively low, and differed between host sexes and Wolbachia strains. An economical way of confirming sporadic or transient Wolbachia in Ae. aegypti is necessary while considering host sex and bacterial strain.
Collapse
Affiliation(s)
- Jerica Isabel L. Reyes
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Takahiro Suzuki
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Yasutsugu Suzuki
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| | - Kozo Watanabe
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| |
Collapse
|
5
|
Carlassara M, Khorramnejad A, Oker H, Bahrami R, Lozada-Chávez AN, Mancini MV, Quaranta S, Body MJA, Lahondère C, Bonizzoni M. Population-specific responses to developmental temperature in the arboviral vector Aedes albopictus: Implications for climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17226. [PMID: 38454541 DOI: 10.1111/gcb.17226] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
The increase of environmental temperature due to current global warming is not only favouring the expansion of the distribution range of many insect species, but it is also changing their phenology. Insect phenology is tightly linked to developmental timing, which is regulated by environmental temperatures. However, the degree to which the effects of developmental temperatures extend across developmental stages and their inter-stage relationships have not been thoroughly quantified in mosquitoes. Here, we used the mosquito Aedes albopictus, which is an aggressive invasive species and an arboviral vector, to study how developmental temperature influences fitness across developmental stages, thermal traits, energy reserves, transcriptome and Wolbachia prevalence in laboratory-reared populations originally collected from either temperate or tropical regions. We show that hatchability, larval and pupal viability and developmental speed are strongly influenced by temperature, and these effects extend to wing length, body mass, longevity and content of water, protein and lipids in adults in a population-specific manner. On the contrary, neither adult thermal preference nor heat resistance significantly change with temperature. Wolbachia density was generally lower in adult mosquitoes reared at 18°C than at other tested temperatures, and transcriptome analysis showed enrichment for functions linked to stress responses (i.e. cuticle proteins and chitin, cytochrome p450 and heat shock proteins) in mosquitoes reared at both 18 and 32°C. Our data showed an overall reduced vector fitness performance when mosquitoes were reared at 32°C, and the absence of isomorphy in the relationship between developmental stages and temperature in the laboratory population deriving from larvae collected in northern Italy. Altogether, these results have important implications for reliable model projections of the invasion potentials of Ae. albopictus and its epidemiological impact.
Collapse
Affiliation(s)
- Martina Carlassara
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ayda Khorramnejad
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Helen Oker
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Romina Bahrami
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | | | - Stefano Quaranta
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mélanie J A Body
- Department of Horticulture, Michigan State University, East Lansing, Michigan, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | |
Collapse
|
6
|
Muharromah AF, Reyes JIL, Kagia N, Watanabe K. Genome-wide detection of Wolbachia in natural Aedes aegypti populations using ddRAD-Seq. Front Cell Infect Microbiol 2023; 13:1252656. [PMID: 38162582 PMCID: PMC10755911 DOI: 10.3389/fcimb.2023.1252656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Background Wolbachia, an endosymbiotic bacterium, is globally used to control arboviruses because of its ability to block arboviral replication and manipulate the reproduction of Wolbachia host, Aedes aegypti. Polymerase chain reaction (PCR)-based Wolbachia detection has been recently reported from natural Ae. aegypti populations. However, due to the technical limitations of PCR, such as primer incompatibility, PCR-based assays are not sufficiently reliable or accurate. In this study, we examined double digestion restriction site-associated DNA sequencing (ddRAD-Seq) efficiency and limitations in Wolbachia detection and quantification in field-collected Ae. aegypti natural populations in Metro Manila, the Philippines, compared with PCR-based assays. Methods A total of 217 individuals Ae. aegypti were collected from Metropolitan Manila, Philippines. We separated it into 14 populations consisting of 7 female and male populations. We constructed a library for pool ddRAD-Seq per population and also screened for Wolbachia by PCR assays using wsp and 16S rRNA. Wolbachia density per population were measured using RPS17 as the housekeeping gene. Results From 146,239,637 sequence reads obtained, 26,299 and 43,778 reads were mapped across the entire Wolbachia genome (with the wAlbA and wAlbB strains, respectively), suggesting that ddRAD-Seq complements PCR assays and supports more reliable Wolbachia detection from a genome-wide perspective. The number of reads mapped to the Wolbachia genome per population positively correlated with the number of Wolbachia-infected individuals per population based on PCR assays and the relative density of Wolbachia in the Ae. aegypti populations based on qPCR, suggesting ddRAD-Seq-based semi-quantification of Wolbachia by ddRAD-Seq. Male Ae. aegypti exhibited more reads mapped to the Wolbachia genome than females, suggesting higher Wolbachia prevalence rates in their case. We detected 150 single nucleotide polymorphism loci across the Wolbachia genome, allowing for more accurate the detection of four strains: wPip, wRi, TRS of Brugia malayi, and wMel. Conclusions Taken together, our results demonstrate the feasibility of ddRAD-Seq-based Wolbachia detection from field-collected Ae. aegypti mosquitoes.
Collapse
Affiliation(s)
- Atikah Fitria Muharromah
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
- Entomology Laboratory, Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jerica Isabel L. Reyes
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| | - Ngure Kagia
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| | - Kozo Watanabe
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| |
Collapse
|
7
|
Yeo H, Tan HZ, Tang Q, Tan TRH, Puniamoorthy N, Rheindt FE. Dense residential areas promote gene flow in dengue vector mosquito Aedes albopictus. iScience 2023; 26:107577. [PMID: 37680477 PMCID: PMC10481301 DOI: 10.1016/j.isci.2023.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/13/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
Aedes albopictus is a successful disease vector due to its ability to survive in a wide range of habitats. Despite its ubiquity and impact on public health, little is known about its differential gene flow capabilities across different city habitats. We obtained a comprehensive dataset of >27,000 genome-wide DNA markers across 105 wild-caught Ae. albopictus individuals from Singapore, a dengue-endemic tropical city with heterogeneous landscapes from densely populated urban areas to forests. Despite Singapore's challenging small-scale heterogeneity, our landscape-genomic approach indicated that dense urban areas are characterized by higher Aedes gene flow rates than managed parks and forests. We documented the incidence of Wolbachia infections of Ae. albopictus involving two strains (wAlbA and wAlbB). Our results dispel the misconception that substantial dispersal of Ae. albopictus is limited to urban greenery, with wide implications for vector management and critical insights into urban planning strategies to combat dengue transmission.
Collapse
Affiliation(s)
- Huiqing Yeo
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Hui Zhen Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Qian Tang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Tyrone Ren Hao Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Nalini Puniamoorthy
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Frank E. Rheindt
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| |
Collapse
|