1
|
Connors KA, Pedlow MR, Frey ZD, McGaughey JJ, Amarasinghe GK, Duprex WP, D’Aiuto L, Wills ZP, Hartman AL. Characterization of neural infection by Oropouche orthobunyavirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617875. [PMID: 39416126 PMCID: PMC11482897 DOI: 10.1101/2024.10.11.617875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Oropouche fever is a re-emerging global viral threat caused by infection with Oropouche orthobunyavirus (OROV). While disease is generally self-limiting, historical and recent reports of neurologic involvement highlight the importance of understanding the neuropathogenesis of OROV. In this study, we characterize viral replication kinetics in neurons and microglia derived from immortalized, primary, and induced pluripotent stem cell-derived cells, which are all permissive to infection. We demonstrate that ex vivo rat brain slice cultures can be infected by OROV and produce antiviral cytokines and chemokines, including IL-6, TNF-α and IFN-β, which introduces an additional model to study viral kinetics in the central nervous system. These findings provide additional insight into OROV neuropathogenesis and in vitro modeling strategies for a newly re-emerging arbovirus.
Collapse
Affiliation(s)
- Kaleigh A. Connors
- Department of Infectious Disease and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maris R. Pedlow
- Department of Infectious Disease and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary D. Frey
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Gaya K. Amarasinghe
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - W. Paul Duprex
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leonardo D’Aiuto
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary P. Wills
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amy L. Hartman
- Department of Infectious Disease and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Dedloff MR, Lazear HM. Antiviral and Immunomodulatory Effects of Interferon Lambda at the Maternal-Fetal Interface. Annu Rev Virol 2024; 11:363-379. [PMID: 38848605 DOI: 10.1146/annurev-virology-111821-101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Interferon lambda (IFN-λ, type III IFN, IL-28/29) is a family of antiviral cytokines that are especially important at barrier sites, including the maternal-fetal interface. Recent discoveries have identified important roles for IFN-λ during pregnancy, particularly in the context of congenital infections. Here, we provide a comprehensive review of the activity of IFN-λ at the maternal-fetal interface, highlighting cell types that produce and respond to IFN-λ in the placenta, decidua, and endometrium. Further, we discuss the role of IFN-λ during infections with congenital pathogens including Zika virus, human cytomegalovirus, rubella virus, and Listeria monocytogenes. We discuss advances in experimental models that can be used to fill important knowledge gaps about IFN-λ-mediated immunity.
Collapse
Affiliation(s)
- Margaret R Dedloff
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| | - Helen M Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| |
Collapse
|
3
|
Connors KA, Frey ZD, Demers MJ, Wills ZP, Hartman AL. Acute Rift Valley fever virus infection induces inflammatory cytokines and cell death in ex vivo rat brain slice culture. J Gen Virol 2024; 105:001970. [PMID: 38546100 PMCID: PMC10995633 DOI: 10.1099/jgv.0.001970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024] Open
Abstract
Rift Valley fever virus (RVFV) is an emerging arboviral disease with pandemic potential. While infection is often self-limiting, a subset of individuals may develop late-onset encephalitis, accounting for up to 20 % of severe cases. Importantly, individuals displaying neurologic disease have up to a 53 % case fatality rate, yet the neuropathogenesis of RVFV infection remains understudied. In this study, we evaluated whether ex vivo postnatal rat brain slice cultures (BSCs) could be used to evaluate RVFV infection in the central nervous system. BSCs mounted an inflammatory response after slicing, which resolved over time, and they were viable in culture for at least 12 days. Infection of rat BSCs with pathogenic RVFV strain ZH501 induced tissue damage and apoptosis over 48 h. Viral replication in BSCs reached up to 1×107 p.f.u. equivalents/ml, depending on inoculation dose. Confocal immunofluorescent microscopy of cleared slices confirmed direct infection of neurons as well as activation of microglia and astrocytes. Further, RVFV-infected rat BSCs produced antiviral cytokines and chemokines, including MCP-1 and GRO/KC. This study demonstrates that rat BSCs support replication of RVFV for ex vivo studies of neuropathogenesis. This allows for continued and complementary investigation into RVFV infection in an ex vivo postnatal brain slice culture format.
Collapse
Affiliation(s)
- Kaleigh A. Connors
- Department of Infectious Disease and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary D. Frey
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew J. Demers
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary P. Wills
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amy L. Hartman
- Department of Infectious Disease and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Hcini N, Lambert V, Picone O, Carod JF, Carles G, Pomar L, Epelboin L, Nacher M. Arboviruses and pregnancy: are the threats visible or hidden? Trop Dis Travel Med Vaccines 2024; 10:4. [PMID: 38355934 PMCID: PMC10868105 DOI: 10.1186/s40794-023-00213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/22/2023] [Indexed: 02/16/2024] Open
Abstract
Mosquito-borne arboviral diseases are a global concern and can have severe consequences on maternal, neonatal, and child health. Their impact on pregnancy tends to be neglected in developing countries. Despite hundreds of millions of infections, 90% pregnancies being exposed, scientific data on pregnant women is poor and sometimes non-existent. Recently and since the 2016 Zika virus outbreak, there has been a newfound interest in these diseases. Through various neuropathogenic, visceral, placental, and teratogenic mechanisms, these arbovirus infections can lead to fetal losses, obstetrical complications, and a wide range of congenital abnormalities, resulting in long-term neurological and sensory impairments. Climate change, growing urbanization, worldwide interconnectivity, and ease of mobility allow arboviruses to spread to other territories and impact populations that had never been in contact with these emerging agents before. Pregnant travelers are also at risk of infection with potential subsequent complications. Beyond that, these pathologies show the inequalities of access to care on a global scale in a context of demographic growth and increasing urbanization. It is essential to promote research, diagnostic tools, treatments, and vaccine development to address this emerging threat.Background The vulnerability of pregnant women and fetuses to emergent and re-emergent pathogens has been notably illustrated by the outbreaks of Zika virus. Our comprehension of the complete scope and consequences of these infections during pregnancy remains limited, particularly among those involved in perinatal healthcare, such as obstetricians and midwives. This review aims to provide the latest information and recommendations regarding the various risks, management, and prevention for pregnant women exposed to arboviral infections.
Collapse
Affiliation(s)
- Najeh Hcini
- Department of Obstetrics and Gynecology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana.
- CIC Inserm 1424 and DFR Santé Université Guyane, Cayenne, French Guiana, France.
| | - Véronique Lambert
- Department of Obstetrics and Gynecology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana
| | - Olivier Picone
- Department of Obstetrics and Gynecology, Hôpital Louis Mourier, Hôpitaux Universitaires Paris Nord Val de Seine, Assistance Publique : Hôpitaux de Paris, Université Paris Diderot, CEDEX, Colombes, France
| | - Jean-Francois Carod
- Department of Biology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana
| | - Gabriel Carles
- Department of Obstetrics and Gynecology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana
| | - Léo Pomar
- Materno-Fetal and Obstetrics Research Unit, Department "Woman-Mother-Child", Lausanne University Hospital, Lausanne, Switzerland
| | - Loïc Epelboin
- Department of Infectious and Tropical Diseases, Cayenne General Hospital, Cayenne, French Guiana, France
| | - Mathieu Nacher
- Centre d'Investigation Clinique Antilles Guyane, Inserm CIC1424, Centre Hospitalier de Cayenne, 97300, Cayenne, French Guiana
| |
Collapse
|
5
|
Freeman TL, McElroy AK. Laboratory Animal Models for Rift Valley Fever Virus Disease. Methods Mol Biol 2024; 2824:425-445. [PMID: 39039428 DOI: 10.1007/978-1-0716-3926-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Rift Valley fever virus (RVFV) is an arboviral pathogen of clinical and agricultural relevance. The ongoing development of targeted RVFV prophylactics and therapeutics is overwhelmingly dependent on animal models due to both natural, that is, sporadic outbreaks, and structural, for example, underresourcing of endemic regions, limitations in accessing human patient samples and cohorts. Elucidating mechanisms of viral pathogenesis and testing therapeutics is further complicated by the diverse manifestations of RVFV disease and the heterogeneity of the host response to infection. In this chapter, we describe major clinical manifestations of RVFV infection and discuss the laboratory animal models used to study each.
Collapse
Affiliation(s)
- Tracey L Freeman
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, PA, USA
- University of Pittsburgh Center for Vaccine Research, Pittsburgh, PA, USA
| | - Anita K McElroy
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, PA, USA.
- University of Pittsburgh Center for Vaccine Research, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
McMillen CM, Chapman NS, Hoehl RM, Skvarca LB, Schwarz MM, Handal LS, Crowe JE, Hartman AL. A highly potent human neutralizing antibody prevents vertical transmission of Rift Valley fever virus in a rat model. Nat Commun 2023; 14:4507. [PMID: 37495594 PMCID: PMC10372071 DOI: 10.1038/s41467-023-40187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Rift Valley fever virus (RVFV) is an emerging mosquito-transmitted virus that circulates in livestock and humans in Africa and the Middle East. Outbreaks lead to high rates of miscarriages in domesticated livestock. Women are also at risk of vertical virus transmission and late-term miscarriages. MAb RVFV-268 is a highly potent recombinant neutralizing human monoclonal antibody that targets RVFV. Here we show that mAb RVFV-268 reduces viral replication in rat placenta explant cultures and prevents vertical transmission in a rat model of congenital RVF. Passive transfer of mAb RVFV-268 from mother to fetus occurs as early as 6 h after administration and persists through 24 h. Administering mAb RVFV-268 2 h prior to RVFV challenge or 24 h post-challenge protects the dams and offspring from RVFV infection. These findings support mAb RVFV-268 as a pre- and post-infection treatment to subvert RVFV infection and vertical transmission, thus protecting the mother and offspring.
Collapse
Affiliation(s)
- Cynthia M McMillen
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, PA, USA
- University of Pittsburgh, Department of Infectious Diseases and Microbiology, School of Public Health, Pittsburgh, PA, USA
| | - Nathaniel S Chapman
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, TN, USA
| | - Ryan M Hoehl
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, PA, USA
| | - Lauren B Skvarca
- University of Pittsburgh Medical Center, Magee-Womens Hospital, Department of Pathology, Pittsburgh, PA, USA
| | - Madeline M Schwarz
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, PA, USA
- University of Pittsburgh, Department of Infectious Diseases and Microbiology, School of Public Health, Pittsburgh, PA, USA
| | - Laura S Handal
- Vanderbilt University Medical Center, Vanderbilt Vaccine Center, Nashville, TN, USA
| | - James E Crowe
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.
- Vanderbilt University Medical Center, Vanderbilt Vaccine Center, Nashville, TN, USA.
- Vanderbilt University Medical Center, Department of Pediatrics, Nashville, TN, USA.
| | - Amy L Hartman
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, PA, USA.
- University of Pittsburgh, Department of Infectious Diseases and Microbiology, School of Public Health, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Schwarz MM, Ganaie SS, Feng A, Brown G, Yangdon T, White JM, Hoehl RM, McMillen CM, Rush RE, Connors KA, Cui X, Leung DW, Egawa T, Amarasinghe GK, Hartman AL. Lrp1 is essential for lethal Rift Valley fever hepatic disease in mice. SCIENCE ADVANCES 2023; 9:eadh2264. [PMID: 37450601 PMCID: PMC10348670 DOI: 10.1126/sciadv.adh2264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Rift Valley fever virus (RVFV) is an emerging arbovirus found in Africa. While RVFV is pantropic and infects many cells and tissues, viral replication and necrosis within the liver play a critical role in mediating severe disease. The low-density lipoprotein receptor-related protein 1 (Lrp1) is a recently identified host factor for cellular entry and infection by RVFV. The biological significance of Lrp1, including its role in hepatic disease in vivo, however, remains to be determined. Because Lrp1 has a high expression level in hepatocytes, we developed a mouse model in which Lrp1 is specifically deleted in hepatocytes to test how the absence of liver Lrp1 expression affects RVF pathogenesis. Mice lacking Lrp1 expression in hepatocytes showed minimal RVFV replication in the liver, longer time to death, and altered clinical signs toward neurological disease. In contrast, RVFV infection levels in other tissues showed no difference between the two genotypes. Therefore, Lrp1 is essential for RVF hepatic disease in mice.
Collapse
Affiliation(s)
- Madeline M. Schwarz
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Safder S. Ganaie
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Annie Feng
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Griffin Brown
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Tenzin Yangdon
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - J. Michael White
- Transgenic, Knockout and Micro-Injection Core, Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ryan M. Hoehl
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cynthia M. McMillen
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachael E. Rush
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kaleigh A. Connors
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoxia Cui
- Genome Engineering & Stem Cell Center, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daisy W. Leung
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Takeshi Egawa
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Gaya K. Amarasinghe
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Amy L. Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|