1
|
Rawle DJ, Hugo LE, Cox AL, Devine GJ, Suhrbier A. Generating prophylactic immunity against arboviruses in vertebrates and invertebrates. Nat Rev Immunol 2024; 24:621-636. [PMID: 38570719 DOI: 10.1038/s41577-024-01016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
The World Health Organization recently declared a global initiative to control arboviral diseases. These are mainly caused by pathogenic flaviviruses (such as dengue, yellow fever and Zika viruses) and alphaviruses (such as chikungunya and Venezuelan equine encephalitis viruses). Vaccines represent key interventions for these viruses, with licensed human and/or veterinary vaccines being available for several members of both genera. However, a hurdle for the licensing of new vaccines is the epidemic nature of many arboviruses, which presents logistical challenges for phase III efficacy trials. Furthermore, our ability to predict or measure the post-vaccination immune responses that are sufficient for subclinical outcomes post-infection is limited. Given that arboviruses are also subject to control by the immune system of their insect vectors, several approaches are now emerging that aim to augment antiviral immunity in mosquitoes, including Wolbachia infection, transgenic mosquitoes, insect-specific viruses and paratransgenesis. In this Review, we discuss recent advances, current challenges and future prospects in exploiting both vertebrate and invertebrate immune systems for the control of flaviviral and alphaviral diseases.
Collapse
Affiliation(s)
- Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leon E Hugo
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Abigail L Cox
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gregor J Devine
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia.
| |
Collapse
|
2
|
Hanley KA, Cecilia H, Azar SR, Moehn BA, Gass JT, Oliveira da Silva NI, Yu W, Yun R, Althouse BM, Vasilakis N, Rossi SL. Trade-offs shaping transmission of sylvatic dengue and Zika viruses in monkey hosts. Nat Commun 2024; 15:2682. [PMID: 38538621 PMCID: PMC10973334 DOI: 10.1038/s41467-024-46810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic (forest) cycles involving monkeys and canopy-living Aedes mosquitoes. Both viruses spilled over into human transmission and were translocated to the Americas, opening a path for spillback into Neotropical sylvatic cycles. Studies of the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. We infected a native, Asian host species (cynomolgus macaque) and a novel, American host species (squirrel monkey) with sylvatic strains of DENV-2 or ZIKV via mosquito bite. We then monitored aspects of viral replication (viremia), innate and adaptive immune response (natural killer (NK) cells and neutralizing antibodies, respectively), and transmission to mosquitoes. In both hosts, ZIKV reached high titers that translated into high transmission to mosquitoes; in contrast DENV-2 replicated to low levels and, unexpectedly, transmission occurred only when serum viremia was below or near the limit of detection. Our data reveal evidence of an immunologically-mediated trade-off between duration and magnitude of virus replication, as higher peak ZIKV titers are associated with shorter durations of viremia, and higher NK cell levels are associated with lower peak ZIKV titers and lower anti-DENV-2 antibody levels. Furthermore, patterns of transmission of each virus from a Neotropical monkey suggest that ZIKV has greater potential than DENV-2 to establish a sylvatic transmission cycle in the Americas.
Collapse
Affiliation(s)
- Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Sasha R Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Brett A Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jordan T Gass
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - Wanqin Yu
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Benjamin M Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
- Information School, University of Washington, Seattle, WA, 98105, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|